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Abstract—The ensemble Gaussian mixture filter (EnGMF) is
a powerful filter for highly non-Gaussian and non-linear models
that has practical utility in the case of a small number of samples,
and theoretical convergence to full Bayesian inference in the
ensemble limit. We aim to increase the utility of the EnGMF
by introducing a particle-local notion of covariance into the
Gaussian mixture estimate of the prior distribution. We show
on a simple bivariate problem that each particle having its own
local estimate of the covariance both has nice qualitative and
quantitative properties, and significantly improves the estimate
of the prior and posterior distributions for all ensemble sizes.
We additionally show the utility of the proposed methodology
for sequential filtering for the Lorenz ’63 equations, achieving a
significant reduction in error in the low ensemble size regime.

Index Terms—ensemble Gaussian mixture filter, localization,
sequential filtering, data assimilation

I. INTRODUCTION

The sample covariance is a good measure of the global
relationship between state variables, but fails to capture rela-
tionships between variables for distributions whose curvature
is highly non-Gaussian. In this work we present a way to more
accurately capture these relationships for state estimation in
the ensemble Gaussian mixture filter (EnGMF).

The first law of geography [1] states that “everything is
related to everything else, but near things are more related
than distant things.” In the context of state estimation and
data assimilation for geophysical systems [2], [3] this law
begets heuristics known as covariance localization. Common
approaches to covariance localization rely on spatial distances
between state and observation variables [2]. The two pre-
dominant approaches are are B-localization, where the prior
covariance is scaled in a way such that far away state variables
do not influence each other, and R-localization, where the
observation covariances are scaled in a way such that state
variables that are far away from an observation are not
influenced by it. These approaches fundamentally rely on a
spatial understanding of state variables, and are not fit for
general problems where the state variables might not have a
spatial structure. A new more general approach to localization
is therefore required.
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We propose a novel approach to localization that does not
require an innate spatial structure in the state variables, but
instead relies on inter-particle distance. This idea is loosely
based on the use of inter-particle distance in the ensemble
transform particle filter (ETPF) [4], though in the ETPF the
inter-particle distance is used to solve an optimal transport
problem. Continuing the naming trend, we call our approach
E-localization, standing for ensemble localization. In this work
we apply this methodology to the EnGMF to beget the E-
localized EnGMF (ELEnGMF).

We show that the proposed approach is able to more
accurately describe the prior distribution with less samples,
and that this description of the prior leads to a better posterior.
We show this both in a qualitative and quantitative manner on
a simple test problem. We additionally show that this approach
begets better performance in the sequential filtering setting.

This paper is organized as follows: we first provide some
background on the filtering problem and introduce the EnGMF
in section II. We next introduce the E-localization methodol-
ogy in section III. We illustrate the difference between the
classic EnGMF and the E-localized EnGMF for a simple
bivariate example in section IV. Penultimately, we showcase
the ELEnGMF on the Lorenz ’63 equations in section V.
Finally, we have some concluding remarks in section VI.

II. ENSEMBLE GAUSSIAN MIXTURE FILTER

We first provide a brief overview of the state estimation
problem/data assimilation problem. Assume that we wish to
estimate the true state xt of some physical process, but only
have access to noisy non-linear observations of it,

y = h(xt) + η, (1)

where η is unbiased additive Gaussian noise,

η ∼ N (0,R), (2)

and R is the observation error covariance. Given a random
variable x− that describes our prior knowledge about the state,
we use Bayesian inference to find a random variable

x+ = x−
∣∣y , (3)



that describes our posterior knowledge of the state, given the
newfound observation eq. (1).

We now describe the inner workings of the EnGMF [5]–[8],
in order to understand some of its deficiencies.

Given an ensemble of N independently and identically
distributed (iid) samples from the prior distribution, X− =[
x−1 , . . . , x

−
N

]
, one can use Kernel density estimation tech-

niques to construct an approximation of the prior distribution
as a Gaussian mixture model (GMM),

p−(x) =
1

N

N∑
j=1

N (
x
∣∣x−j , B−j ) , (4)

where each mean is centered at one of the ensemble members
(particles) and the covariances B−j are chosen in a way that
attempts to make the distribution estimate more accurate.

The EnGMF formulas, used to construct the posterior GMM
estimate, are

x∼j = x−j −Gj

(
h(x−j )− y

)
,

B+
j =

(
I−GjH

T
i

)
B−j ,

Gj = B−j H
T
j

(
HjB

−
j H

T
j +Ri

)−1

,

vj =
N

(
y
∣∣∣h(x−j ), HjB

−
j H

T
j +R

)
∑N

j=1 N
(
y
∣∣∣h(x−j ), HjB

−
i,jH

T
j +R

) ,
Hj =

dh

dx

∣∣∣∣
x=x−j

,

(5)

where x∼j are the means of the posterior GMM (but are not
samples from the posterior GMM), B+

j are the posterior co-
variances, Gj are the particle gain matrices, vj are the weights
of the posterior GMM modes, and Hj are the linearizations of
the observation operator eq. (1) about the ensemble members
(particles).

Through the use of eq. (5), the weighted estimate of the
posterior GMM can be constructed,

p+(x) =

N∑
j=1

vj N
(
x
∣∣x∼j , B+

j

)
, (6)

In the final step of the EnGMF, an ensemble of of iid
samples from the posterior GMM eq. (6) is computed, re-
sulting in X+ =

[
x+
1 , . . . , x

+
N

]
. There are many ways by

which a Gaussian mixture model can be sampled [6], [9].
In this work we focus on the naive approach. First sample
N random variables from the distribution defined by the
weights vj from eq. (5). For each random variable, take its
corresponding Gaussian mixture mode in eq. (6) and sample
a random variable from it, by the canonical procedure. For
details on implementation of the resampling procedure for
Gaussian mixture models see [6].

The choice of covariance in the prior GMM eq. (4) dictates
the convergence of the EnGMF algorithm. In the canonical
EnGMF [5] the prior covariances are chosen to all be the

same scaled empirical covariance. The unbiased estimate of
the empirical covariance at time index i is given by,

P− =
1

N − 1
X

(
IN − 1

N
1N1T

N

)
XT , (7)

which in this work we refer to as the global covariance as it
captures the global linear modes (in the eigenvector sense) of
the data. The scaling of the covariances,

Bj = β2P−, 1 ≤ j ≤ N, (8)

is performed by the choice of bandwidth factor β2, which
can be either determined empirically or through some prior
knowledge about the behavior of the data.

If the prior distribution is Gaussian, the bandwidth factor,

β2
sil =

(
4

N(n+ 2)

) 2
n+4

, (9)

known as Silverman’s rule of thumb [10], is optimal in
terms of minimizing squared integral error. The bandwidth
estimate eq. (9) is known to typically be too large in the case
of highly non-Gaussian data [10], [11]. To account for this
deficiency, in this work we choose to scale Silverman’s rule
of thumb bandwidth by a constant scaling factor,

β2 = sββ
2
sil, (10)

typically with 0 < sβ ≤ 1.
In the vast majority of interesting cases, things are non-

linear and non-Gaussian, thus merely looking at the global
linear estimate of the behavior of the data eq. (7) is likely
insufficient. Additionally the mean and covariance updates
in eq. (5) behave in a similar fashion to that of the ex-
tended Kalman filter. While this ensures that the EnGMF
converges [8], in the case of a non-linear model and non-
Gaussian distribution, a poor description of the prior would
lead to an even worse description of the posterior.

Though the EnGMF contains the word “ensemble”, it is
really a particle filter, though the distinction is not discussed
further in this work.

III. ESTIMATING LOCAL COVARIANCES

We now introduce the novel E-localization methodology. As
stated previously, the global estimate of the covariance eq. (7)
might not capture the local curvature of the distribution of
interest, thus setting the covariance of each Gaussian mixture
in the prior distribution estimate eq. (4) to have the same
covariance eq. (8) can induce said distribution estimate to be
of low accuracy.

To this end, we wish to find local covariance estimates for
each particle,

Bj = β2P−j , 1 ≤ j ≤ N, (11)

where each P−j is a unique estimate of the local curvature of
the prior distribution. It is evident that each particle having
its own covariance would enable a good estimate of the prior
distribution eq. (4) that is much more accurate than through
the use of the global covariance eq. (7) alone.



We now formalize our approach. Similar to other localiza-
tion techniques [2], we make use of a decorrelation function
to diminish the influence of far away particles on the local
particle of interest. Given weights,

wj,k =
�(d(j, k)/rj)∑N

m=1 �(d(j, k)/rj)
, (12)

where d(j, k) is the distance between the jth and kth particles
(in this work we use Euclidean distance, but this could be
some other distance metric), rj is the localization radius whose
function is to scale the influence of the particles on each other,
and � is a decorrelation function. We additionally assign the
vector of all weights for the jth particle,

wj := [wj,1, . . . wj,N ]
T
. (13)

The localization radius, rj , is a parameter that has to be
carefully chosen. If the radius of influence is too large, the
weights eq. (12) would effectively be uniform and would
degenerate to the unlocalized case. If the radius of influence
is too small, poor sampling would result in spurious modes
being introduced to the covariance estimate. For localization
in the geosciences, state variables typically do not change
distance, but inter-particle distance changes at every step in
the sequential filtering case, thus a constant choice of radius
for each particle simply does not make sense.

In order to solve this newfound problem, we again take
inspiration from Kernel density estimation literature [10] in
determining the localization radius. For the jth particle, take
the distance to the

√
N th (rounded) nearest neighbor according

to the distance function d(j, k), and call it dj . We take the
localization radius to be a scaling of this distance,

rj = srdj , (14)

where sr is the radius scaling factor.
Care must be taken when calculating the inter-particle

distances in eq. (12), as a naive calculation can lead to an
O(N2) cost, which is undesirable. In sequential filtering, it
would be possible to keep track of a spatial index of particles
and approximate the

√
N th nearest-neighbor in only O(N)

computations. This idea is not further explored in this work.
Note that as the ensemble size tends towards infinity, N →

∞, the scaled radius eq. (14) tends towards zero, as the
√
N th

nearest neighbor of any particle should tend closer and closer
towards it if the region of support of the prior distribution is
connected.

Similar to other localization techniques [2], we take the
decorrelation function to be a Gaussian,

�(v) = e−
1
2 v

2

+ ε, (15)

where we take ε = 1e−4 to be a factor that ensures no
weights eq. (12) tend towards zero.

Given the weights vector wj defined by eq. (12)
and eq. (13), the local sample covariance for the jth particle
can be defined by,

P∼j =
1

1−∑N
k=1 w

2
j,k

X
(

wj −wjw
T
j

)
XT , (16)

where the symbol is used to represent the matrix consisting
of the subsequent on its diagonal and is zero otherwise.

The covariance estimate eq. (16) should tend towards a good
representation of the local modes (in the eigenvector sense) of
a given probability distribution, but is not necessarily scaled
in a desirable fashion. Observe that as the scaling factor sr
in eq. (14) tends towards zero, the weights wj,k in eq. (12)
degenerate towards only one weight dominating, meaning that
the local covariance estimate in eq. (16) tends towards the
zero matrix. This is not desirable behavior. In order to fix this
flaw, we enforce the local covariance estimates to have the
same mean trace-generalized-variance as the global covariance
estimate eq. (7) by linear scaling,

P−j =
trP−∑N

j=1 N
−1 trP∼j

P∼j , (17)

which we refer to as the normalized local covariance estimate.
Note that the trace of a symmetric positive definite co-

variance estimate matrix can be computed by only using the
ensemble anomalies without explicitly computing the matrix
itself [12]. This is especially useful in the case when the
ensemble size is significantly less than the state dimension
N � n. Additionally, it is important to note for the practi-
tioner that the computations of the local covariance estimates
in eq. (16) are completely independent of each other, and thus
can be performed in an embarrassingly parallel fashion.

Additionally, it is of note that the normalization correction
in eq. (17) is purely heuristic. It is of independent interest to
provide a more robust covariance correction, for instance one
based on more rigorous kernel density estimation theory.

Each local normalized covariance in eq. (17) can then be
used as the particle-localized covariance in eq. (11). This
begets the E-localized approximation to the prior distribution
in eq. (4). By utilizing this approximation to the prior in the
EnGMF eq. (5), we beget the E-localized EnGMF, which in
this work we refer to as the ELEnGMF.

IV. ILLUSTRATION WITH A SIMPLE BIVARIATE
DISTRIBUTION

We use a simple bivariate example to highlight the virtues
of our proposed methodology.

We first construct a bivariate (in terms of two state variables
x =

[
x1 x2

]T
) Gaussian mixture model consisting of

two constituent terms such that the local covariance of each
constituent term in the mixture is significantly different that
the global covariance of the total mixture. Each constituent
term has the same local covariance,

Clocal =

[
1 ρ
ρ 1

]
, (18)

where ρ is the correlation coefficient. We separate the two
Gaussian terms in the x2 direction by a constant half-height
υ, meaning that the means of the two constituent terms are,

μ1 =
[
0 υ

]T
, μ2 =

[
0 −υ

]T
. (19)
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Fig. 1. A qualitative look at the differences between the EnGMF and the
ELEnGMF for a bivariate two mode Gaussian mixture. The top left panel
shows the true prior distribution (red heat map), the observation with one
standard deviation (yellow dot and circle), and the sample-based EnGMF
Gaussian mixture means (blue dots) and one standard deviation (blue ellipses).
The top right panel is similar to the previous, except the blue elipses
now represent the ELEnGMF Gaussian mixture standard deviations. The
middle left and right panels represent the EnGMF and ELEnGMF posterior
distributions respectively, with the the opacity of the blue mixture modes
representing their weights. The bottom two panels focus on the bottom mode
of the true posterior to better showcase the differences in the covariances of
the ELEnGMF versus the EnGMF.

Explicitly, the Gaussian mixture distribution that we analyze
is,

p(x) =
1

2
[N (x|μ1,Clocal) +N (x|μ2,Clocal)] , (20)

where each term is equally weighted.
By a simple application of known formulas [13] the global

covariance of eq. (20) is given by,

Cglobal =

[
1 ρ
ρ 1 + υ2

]
, (21)

meaning that as we increase the separation half-height υ, the
second state variable starts to dominate the global covariance.

We can formalize this intuition by looking at the dominant
eigenvectors of the covariances. When the correlation coef-
ficient ρ is positive, the dominant eigenvector of the local
covariance eq. (18) is,

[
1 1

]T
, (22)

which is not dependent on either the correlation coefficient ρ
or the separation half-height υ. The dominant eigenvector of
the global covariance eq. (21), on the other hand, is,

[
−υ2+

√
υ4+4ρ2

2ρ 1

]T
, (23)

which tends towards an eigenvector of,

[
0 1

]T
, (24)

as the separation half-height υ tends towards infinity.
This mismatch between the dominant modes eqs. (22)

and (23) of the two covariances eqs. (18) and (21) is taken
advantage of by our proposed E-localization technique.

With our newfound intuition, we are ready to perform
filtering experiments. For our prior distribution we take the
Gaussian mixture eq. (20) with correlation coefficient ρ = 0.75
and vertical separation radius of υ = 5. For our observation
operator eq. (1), we take the identity function h = id, meaning
that we observe both variables. For the observation error
covariance, we take the scaled identity R = 2I2. We assume
that we received an observation exactly at the origin,

[
0 0

]T
,

thus tending both modes towards it.
We first attempt to glean some qualitative information about

the inner workings of the algorithms. Taking N = 25 particles,
the bandwidth scaling factor sβ = 0.1, and the E-localization
radius scaling factor sr = 1, fig. 1 looks at the efficacy of the
EnGMF versus that of the ELEnGMF. As can we observed
the EnGMF utilizes the global covariance eq. (21) to attempt
and match each of the faraway modes while the ELEnGMF
builds local estimates that more closely approximate the local
covariance eq. (18). Of particular note is the outlier in the
samples of the posterior to the right of the bottom mode.
In the EnGMF, this mode is given the same weight as all
other modes. In the ELEnGMF, this mode’s covariance is
significantly increases as its nearest neighbor is comparatively
far away. This likely means that the ELEnGMF is much more
likely to accurately describe long tail distributions.

We now take a more quantitative look at the efficacy of the
ELEnGMF versus that of the EnGMF. The KL divergence [14]
of a distribution described by data, p, from a distribution
describing the truth, q, can be written as the following ex-
pectation,

DKL(p ‖ q) = Ex∼p

[
log

(
p(x)

q(x)

)]
, (25)
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Fig. 2. KL diveregence experiment for the simple bivariate distribution. The left four panels are all heatmaps with the ensemble size (N ) in log-scale on
the x-axis, the bandwidth scaling factor sβ from eq. (10) in log-scale on the y-axis, and the colors representing the KL divergence of the GMM expressed
therein from the truth. Of the left four, the top left panel represents the KL divergence of the prior GMM of the EnGMF from the true prior, the bottom left
panel represents the corresponding posterior GMM KL divergence from the true posterior, the top middle papel represents the ELEnGMF prior GMM KL
divergence from the true prior, and the bottom middle represents the KL divergence of the ELEnGMF posterior GMM KL divergence from the true posterior.
The right two panels look at the best case scenario for the bandwidth scaling factor sβ , taking the minimal KL divergence for each ensemble size N for
the EnGMF and ELEnGMF. The top right panel represents the best case scenario for the prior GMMs and the bottom right panel represents the best case
scenario for the posterior GMMs.

which can be approximated by the following numerically
stable, but biased, formula,

DKL(p ‖ q) ≈ 1

M

M∑
xi∼p,i=1

1

2
(log q(x)− log p(x))

2
, (26)

where M is a finite number of samples from the candidate
posterior. The formulation eq. (26) is taken from [15]. We use
the KL divergence to measure the error induced by the GMM
estimates of the prior and the posterior versus the truth.

Taking a fixed radius scaling factor eq. (14) of sr = 1, and
varying both the Silverman bandwidth scaling factor eq. (10)
sβ and ensemble size N , we can compute the KL diver-
gence eq. (25) of the prior and posterior distributions for
both the EnGMF and the ELEnGMF. Averaging over 250
samples of possible prior, and using M = 25 quasi-samples
to approximate the KL divergence eq. (26), we obtain the KL
divergence experiment results which can be seen in fig. 2.
Of note is the fact that the ELEnGMF always performs
strictly better than the EnGMF, even when both are given
the their optimal bandwidth scaling factor sβ from eq. (10).
The ELEnGMF also remains stable for a larger range of the
scaling factor for both the prior and posterior distributions,
with the difference in the posterior of particular interest where
the difference in the EnGMF and ELEnGMF GMM estimates
becomes more pronounced.

Of interest is the fact that a good bandwidth scaling factor
for the prior does not necessarily correspond to a good
bandwidth scaling factor for the posterior. In fact, while there
seems to be a correlation between a good representation of the
prior and a good representation of the posterior in the EnGMF
and the ELEnGMF algorithms, it is not a direct relationship.

V. SEQUENTIAL FILTERING WITH THE LORENZ ’63
EQUATIONS

The final round of experiments aims to put the ELEnGMF to
practical use in a sequential filtering experiment. In sequential
filtering our aim is to find an optimal estimate of the truth
xt at some time index i. This is performed by ‘forecasting’ a
state estimate to time index i to obtain a prior and performing
inference eq. (3) to obtain a posterior estimate of the state x+

i ,
then repeating the cycle over and over again ad infinitum (or
until a desired time).

To this end we use the Lorenz ’63 equations [16],

ẋ1 = 10(x2 − x1),

ẋ2 = x1(28− x3)− x2,

ẋ3 = x1x2 − 8

3
x3,

(27)

which is one of the foundational problems for particle fil-
ters [3].
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Fig. 3. Sequential filtering results for the Lorenz ’63 equations. The x-axis
represents the ensemble size N in log-scale, and the y-axis represents the
mean spatio-temporal RMSE eq. (29) of the analysis mean generated by each
algorith. All ensemble Gaussian mixture variants tested herein use the same
bandwidth scaling factor of sβ = 1. The dark blue line with circular markers
represents the canonical EnGMF, the red line with square markers represents
the ELEnGMF with a radius scaling factor of sr = 0.5, the yellow line with x
markers represents the ELEnGMF with a radius scaling factor of sr = 1, and
the sky blue line with plus markers represents the ELEnGMF with a radius
scaling factor of sr = 2. The sequential importance sampling filter is used
to compute the best-case spatio-temporal RMSE in the limit of ensemble size
N → ∞ that should be close to true Bayesian inference, and is represented
by a constant dashed grey line at the bottom of the graph.

The following problem setup is taken from [8]. We per-
form inference every Δt = 0.5 time, with 5500 sequential
steps taken (the first 500 of which are discarded to account
for spinup—discarding errors from initial over- or under-
confidence of the algorithm). We take the scalar range ob-
servation,

h(x) = ‖x− c2‖2, (28)

where c2 =
[
6
√
2 6

√
2 27

]T
is the center of one of

the wings of the Lorenz butterfly, with unbiased Gaussian
observation error determined by the variance R = 1. For this
experiment we take the spatio-temporal RMSE of the posterior
means of the data with respect to the truth,

RMSE(x+) =

√
1

|x|
∑
i,j

x+
i,j − xt

i,j (29)

where x+ is the temporal collection of posterior means, xt is
the collection of true states of the system, i is the time index,
j is the state index, and |x| is the cardinality of the data. In
the following experiments the mean of the RMSE eq. (29) is
taken over four independent sequential filtering runs.

For the EnGMF and the ELEnGMF we fix the bandwidth
scaling factor eq. (10) to sβ = 1 assuming a naive Gaussian
optimal bandwidth factor on the prior—which is known to
be suboptimal. For the ELEnGMF we vary the radius scaling
factor eq. (14) between sr = 0.5, 1, 2 in order to observe the

differences in the RMSE at small ensemble sized. Finally we
vary the ensemble size from N = 25 to N = 500 to observe
both small ensemble and asymptotic behavior. We additionally
compute a bootstrap sequential importance resampling filter
for N = 10000 particles to attempt to estimate the lowest
possible error under the assumptions of conventional Bayesian
inference.

The results of this experiment can be seen in fig. 3. Of
note is the fact that for N = 500 particles all the ELEnGMF
variants effectively converege to performing true Bayesian
inference, while the EnGMF seems to require significantly
more particles. While the influence of the covariance on the
algorithm is diminished by the fact that bandwidth param-
eter eq. (9) tends towards zero [8], the Silverman band-
width assumption still severely hampers the naive EnGMF.
The ELEnGMF significantly outperforms the EnGMF for the
same error, requiring from two to three times less ensemble
members for the same level of accuracy. Additionaly, the
ELEnGMF is fairly robust to changes in the radius scaling
factor eq. (14), and had very little noticeable difference for all
possible factors tested.

VI. CONCLUSIONS

In this work we have introduced the E-localization method-
ology and have applied it to the ensemble Gaussian mixture
filter (EnGMF), creating the E-localized ensemble Gaussian
mixture filter (ELEnGMF). We have shown through both qual-
itative and quantitative means that this methodology addresses
one issue—the disparity between local and global notions of
covariance—that arises in the application of the EnGMF to
the case of a small ensemble size. Additionally, through the
application of the methodology to the Lorenz ’63 equations,
we have shown that the ELEnGMF has the potential to be a
superior particle filter to the EnGMF in the sequential filtering
setup.

While this work has tackled some issues inherent to the
EnGMF, it has left many as open problems, and has even
introduced some new issues. One new issue is the selection
of localization radius rj in eq. (12). The methodology pre-
sented in this work for tackling this issue clearly has nice
empirical behavior, but its justification is purely heuristic.
Another related issue is that of the choice of decorrelation
function eq. (15). Exploring this choice in future work is
desirable. Another more serious issue is the lack of theory
for the E-localization procedure. Significant theoretical work
has to be performed before E-localization can be applied in a
more practical setting.

Future non-theoretic work would involve applying adaptive
covariance parameterization techniques [8] to the ELEnGMF,
such that the choice of bandwidth scaling factor eq. (10) and
radius scaling factor eq. (14) could be performed adaptively
in the sequential filtering regime. Another future direction
would involve applying the ELEnGMF to a practical orbit
determination problem [7].
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