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Abstract—Nonlinear measurement models pose a challenge to
linear filters. The ensemble Kalman filter (EnKF) is a popular
choice despite its tendency to diverge in systems with highly
accurate, highly nonlinear measurements. In this work, we
present the Bayesian Recursive Update EnKF (BRUEnKF): a
novel EnKF that employs the Bayesian Recursive Update Filter
(BRUF) measurement update. The BRUF divides the the extended
Kalman filter (EKF) update into an integer number of steps,
allowing for the recomputation of the measurement Jacobian at
regular intervals. We adapt the BRUF update for an ensemble
filter, taking advantage of the EnKF’s numerical covariance
computation at each update step. The BRUEnKF is shown to
outperform the EnKF for systems with range measurements.

Index Terms—statistical estimation, ensemble kalman filter,
bayesian recursive update

I. INTRODUCTION

The objective of state estimation is to approximate the states
of a dynamical system given information from measurements.
In statistical estimation, the uncertainty of the state estimate
is represented by a probability distribution. The state estimate
at any time is given by a statistic of the distribution (e.g.,
the mean). Uncertainty in the state estimate is driven by
process noise and measurement noise. Process noise arises
primarily due to unmodeled dynamics and uncertainty in
control inputs. Measurement noise is caused by imperfect
sensors. For linear systems with additive Gaussian noise, the
Kalman filter provides the optimal state estimate in the mean-
square error sense [1].

For nonlinear systems, the fundamental linearity assumption
of the Kalman filter breaks down. In general, the probability
distribution is no longer Gaussian. Numerous techniques for
extending the Kalman filter to nonlinear applications have been
proposed. Perhaps the most common approach is the Extended
Kalman Filter (EKF), which simply assumes linearizations of
the dynamics and measurement models are valid in a small
area around the current state estimate. The Ensemble Kalman
Filter [2]–[5] (EnKF) represents the probability distribution
of a nonlinear system with an ensemble of M state vectors.
Each ensemble member is propagated and updated as in
the EKF, with the advantage that the covariance matrices

This work was sponsored in part by NASA’s Johnson Space Center under
project number 80NSSC20M0211.

required for the Kalman update can be computed numerically
at measurement time. Still, artificial inflation of the ensemble
and artificially-generated measurement noises are required to
maintain statistical consistency [6], [7].

In this work, we replace the usual EKF update in the
EnKF with the Bayesian Recursive Update Filter (BRUF)
measurement update introduced in [8]. Taking inspiration
from particle flow [9], [10], progressive Gaussian filtering
[11], [12], and other iterative methods [13]–[15], the BRUF
applies the EKF update gradually by breaking it up into N
steps. The main benefit of iterative update methods is the
recalculation of the measurement Jacobian at each step. In this
way, iterative methods are able to “follow” the nonlinearity
in the measurement model as the state is herded toward the
updated value. Ref. [16] presents an iterative EnKF update
inspired by the randomized maximum likelihood method.

The remainder of this paper is organized as follows: Section
II describes the BRUF and the EnKF and, notably, includes
two proofs regarding the equivalence of the BRUF update to
the Kalman update for linear systems; Section III introduces
the Bayesian Recursive Update EnKF (BRUEnKF), the filter
proposed in this work; Section IV compares the performance
of the BRUEnKF and the EnKF for a Lorenz ’63 system
with a range measurement; and, finally, Section V presents
conclusions and future work.

II. BACKGROUND

Consider nonlinear measurement,

y = h(x∗) + η, (1)

where x∗ is the true state, and

η ∼ N (0, R) (2)

is an additive zero-mean Gaussian noise. A prior estimate
of x∗, x̂−, is available with distribution p(x). The task of
the measurement update step is to approximate the Bayesian
posterior distribution p(x|y).

The BRUF solves this problem by breaking up the EKF
update into N steps. A new Kalman gain is computed for
each step using inflated measurement noise covariance NR.
Algorithm 1 summarizes the BRUF update. The computational



cost of the BRUF is N times the cost of the EKF update, where
N is an integer parameter chosen by the designer.

Algorithm 1 The Bayesian Recursive Update

Require: x̂−, the prior state estimate; P−, the prior covari-
ance; y, a measurement; R, the measurement covariance;
N , the number of steps

1: x0 ← x̂−

2: P0 ← P−

3: for i = 1 . . . N do
4: Hi =

dy
dx

∣∣∣
x=x̂i−1

5: Ki = Pi−1H
T
i (HiPi−1H

T
i +NR)−1

6: x̂i ← x̂i−1 +Ki(y − h(x̂i−1))
7: Pi ← (I −KiHi)Pi−1

8: end for
9: x̂+ ← x̂N

10: P+ ← PN

By recursively recalculating the measurement Jacobian, the
BRUF is able to better approximate the maximum a poste-
riori (MAP) estimate than a single EKF update. However,
if the measurement is linear, the BRUF yields the same
state estimate, x̂+, and covariance estimate, P+, as the EKF
update. This is true for any number of steps N . For the sake
of completeness, we explicitly prove that the EKF update
is equivalent to the BRUF update for linear measurements
h(x) = Hx. In other words, for linear measurements, per-
forming N Kalman updates with measurement error covari-
ance NR is equivalent to performing a single Kalman update
with measurement error covariance R. The proof is presented
in two parts; first, a proof that P+

BRUF = PEKF , and second
that x̂+

BRUF = x̂+
EKF .

Theorem II.1 (BRUF Linear Covariance Convergence). Given
P−, the prior covariance, the iterative BRUF update,

Pi =
[
I − Pi−1H

T (HPi−1H +NR)
−1

H
]
Pi−1,

2 < i < N,
(3)

with P1 = P−, and a linear observation H , the update (3) is
exactly equivalent to the Kalman update,

P+ = PN = (I −KH)P−. (4)

Proof. Consider the matrix inversion lemma [17]:

(P−1+HTR−1H)−1 =
(
I − PHT

(
HPHT +R

)−1
H
)
P.

(5)
Using (5), it is possible to rewrite the Kalman covariance
update (3) as

Pi =

[
P−1
i−1 +

1

N
HTR−1H

]−1

, 2 < i < N. (6)

Thus, by simple manipulation,

PN =

[(
P−)−1

+
1

N

N∑
i=1

HTR−1H

]−1

,

=
[(
P−)−1

+HTR−1H
]−1

= P+,

as required.

Theorem II.2 (BRUF Linear State Convergence). Given P−,
the prior covariance, x̂−, the prior state estimate, and the
iterative BRUF update,

x̂i ← x̂i−1 +Ki(y − h(x̂i−1)),

1 < i < N,
(7)

with P0 = P− and x0 = x̂−, and a linear observation H , the
update (7) is exactly equivalent to the Kalman update,

x̂+ = xN = x̂− +K(y −Hx̂−) (8)

where K is the Kalman gain expressed in terms of the updated
covariance [18],

K = P+HTR−1. (9)

Proof. We begin by re-expressing (7) in terms of the informa-
tion state [18]:

ẑi = P−1
i x̂i (10)

where
ẑi+1 ← ẑi +HT (NR)−1y (11)

is the information state update for BRUF step i.
The ith information state update can be expressed in terms

of the prior information state, ẑ−, as

ẑi+1 ← ẑ− +
i

N
HTR−1y. (12)

Thus,
ẑ+ = ẑN = ẑ− +HTR−1y. (13)

Equation (13) is the usual expression for the information state
update.

Next, we can express the updated state in terms of the
updated information state as

x̂N = PN ẑN . (14)

From Theorem II.1, we know that

PN = P+ =
[(
P−)−1

+HTR−1H
]−1

. (15)

Rearranging (15), it is easy to show that

P− =
[
(P+)−1 −HTR−1H

]−1
. (16)

Finally,

x̂N = PN ẑN = P+ẑN

= P+ẑ− + P+HTR−1y

= P+(P−)−1x̂− + P+HTR−1y

= P+
[
(P+)−1 −HTR−1H

]
x̂− + P+HTR−1y

= x̂− + P+HTR−1(y −Hx̂−),

(17)



which concludes the proof.

In this work, we propose integrating the BRUF update into
an EnKF. Of note is that there are two different flavours of
the ensemble Kalman filter that differ in their computation of
the Kalman gain [3]. In what we call the statistical EnKF, the
Kalman gain is computed in a statistical manner,

K = Cov(X, h(X)) (Cov(h(X), h(X)) +R)
−1

, (18)

where X is an ensemble of state vectors xj , j = 1 . . .M , and
the computations of the covariances require the measurement
perturbations

h(X)− 1

M

M∑
j=1

h(xj). (19)

The alternative form of the EnKF behaves more similar to the
EKF, whereby each ensemble member has its own Kalman
gain that utilizes the linearization of the measurement (1)
computed at the ensemble state,

Kj = Cov(X,X)HT
j

(
Hj Cov(X,X)HT

j +R
)−1

,

Hj =
∂h

∂x

∣∣∣∣
x=xj

,
(20)

which we call the linearized EnKF.
In this work we focus on systems for which the computation

of the covariance matrix Cov(X,X) is tractable, and the
measurement (1) is sufficiently non-linear, thus we make use
of the linearized EnKF form (20). The linearized EnKF update
is summarized in Algorithm 2.

Algorithm 2 The Linearized EnKF Update

Require: X−, an ensemble of M samples xj from the prior
distribution, where j = 1 . . .M ; α, an inflation factor

1: m = 1
M

∑M
j=1 xj ▷ Recompute mean

2: X←m+ α(X− −m) ▷ Perform inflation
3: P = 1

M−1 (X
− −m)(X− −m)T ▷ Recompute cov.

4: for j = 1 . . .M do
5: ŷj = h(xj) + γj ▷ γj ∼ N (0, R)

6: Hj =
∂h
∂x

∣∣
x=xj

7: S = HjPHT
j +R

8: K = PHT
j S

−1

9: xj ← xj +K(y − ŷj) ▷ Build X+

10: end for

The Linearized EnKF update begins with an inflation step.
Inflation is required for the EnKF to converge [7]. The inflated
samples are each updated according to the usual EKF update
using the ensemble covariance. The predicted measurement ŷ
is also perturbed with artificially generated measurement noise,
γj , in order to correct the posterior covariance [4].

III. THE BAYESIAN RECURSIVE UPDATE ENKF

In this work, we apply the Bayesian recursive update in an
ensemble Kalman filter. Given ensemble X− with members
xj , where j = 1, . . .M , and nonlinear measurement (1), we

replace the usual EnKF update with the Bayesian recursive
update. This approach is summarized in Algorithm 3.

Algorithm 3 The Bayesian Recursive Update Linearized
EnKF (BRUEnKF) Update Step

Require: X−, an ensemble of M samples xj from the prior
distribution, where j = 1 . . .M ; N , the number of BRUF
steps; α, an inflation factor

1: X0 ← X−

2: for i = 1 . . . N do
3: mi−1 = 1

M

∑M
j=1 xi−1,j

4: Xi−1 ←mi−1 + α1/N (Xi−1 −mi−1)
5: Pi−1 = 1

M−1 (Xi−1 −mi−1)(Xi−1 −mi−1)
T

6: for j = 1 . . .M do
7: ŷj = h(xi−1,j) + γj ▷ γj ∼ N (0, R)

8: Hj =
∂h
∂x

∣∣
x=xi−1,j

9: S = HjPi−1H
T
j +NR

10: K = Pi−1H
T
j S

−1

11: xi,j ← xi−1,j +K(y − ŷj) ▷ Build Xi

12: end for
13: end for
14: X+ ← XN

The BRUEnKF applies each successive BRUF update step
to the entire ensemble at once. Each BRUF update step begins
with an inflation of the ensemble Xi by inflation factor α.
Then the ensemble covariance Pi is computed numerically.
The ensemble covariance is used in a Kalman filter update
of each ensemble member xi,j . In Algorithm 3, the subscript
i indicates the BRUF step number and the subscript j is the
index of state xi,j in ensemble Xi. For each ensemble member,
the predicted measurement ŷj is perturbed with artificial noise
γj , where γj ∼ N (0, R). The rest of BRUF update step
i continues as detailed in Section II. When BRUF update
step i has been completed for each ensemble member, the
next BRUF update step is performed on ensemble Xi+1. The
updated ensemble X+ is the ensemble XN built in the final
BRUF update step.

The following example illustrates the BRUEnKF update for
a Gaussian-distributed prior ensemble X− and a nonlinear
measurement.

A. Two Dimensional Range Observation Example
We now illustrate how the proposed BRUEnKF differs from

the EnKF through a simple two dimensional example.
For our prior, we take a Gaussian distribution,

N
([
−3.5
0

]
,

[
1 1

2
1
2 1

])
(21)

that is off-center from the origin with the two variables
correlated. For the non-linear measurement, we take the range
from the origin,

h(x) =
√
x2
1 + x2

2, (22)

and measure the value of

y = 1, (23)
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Fig. 1. A plot of the two dimensional range observation example. The
blue dashed contour lines represent the prior distribution, the red dash-dotted
contour lines represent the measurement distribution, and the bold solid yellow
lines represent the posterior distribution. Green ×’s represent the posterior
ensemble generated by the EnKF, while purple +’s represent the posterior
ensemble generated by the BRUEnKF.

meaning that the measured value was poorly predicted by our
prior knowledge. We additionally take an error covariance of,

R = 0.12, (24)

implying that we have high confidence that our measurement
is correct.

Taking M = 500 samples from the prior (21), taking a high
inflation factor α = 1.5, and by using N = 100 steps in the
BRUEnKF (see Algorithm 3), we can look at the difference
between the EnKF and BRUEnKF at approximating the true
posterior. We visualize this in Fig. 1.

As can be seen, the true posterior is highly non-Gaussian,
has nonlinear curvature, and the region of high likelihood is
almost entirely a subset of the observation distribution. The
EnKF entirely fails to capture the posterior distribution. Most
of the samples that it generates would be considered outliers to
the truth, and are thus of little use. The BRUEnKF generates
samples that are highly likely in the posterior. It captures
the mean of the true posterior well. However, it is slightly
over confident, and does not fully represent the higher order
moments.

IV. NUMERICAL SIMULATION

In this example, we compare the performance of the EnKF
and the BRUEnKF on a modified version of the numerical
experiment in [19]. We use the Lorenz ’63 dynamics [20]:

ẋ1 = 10(x2 − x1),

ẋ2 = x1(28− x3)− x2,

ẋ3 = x1x2 −
8

3
x3.

(25)

The states are propagated using (25) in the classical 4th-order
Runge-Kutta integrator. The initial states are:

x0 =
[
0 1 0

]T
. (26)

The filter begins tracking the system after 10 time units. The
initial uncertainty is

P10 = I3×3. (27)

For the nonlinear measurement, we take the range from one
of the equilibrium points:

y =

√
(x1 − 6

√
2)2 + (x2 − 6

√
2)2 + (x3 − 27)2 + η (28)

where the measurement error variance is R = 1/16. A
measurement is recorded every ∆t = 0.12 time units. Fig.
2 shows the trajectory for the first 30 time units of the
simulation. The dynamics form a distinct butterfly shape.

Fig. 2. Lorenz ’63 trajectory. An instrument placed at the equilibrium point[
6
√
2 6

√
2 27

]T measures the range to the target.

Like the example in Section III-A, this is a challenging
scenario for linear filters. The relatively long propagation time
step allows the states to spread out sufficiently in between
measurement updates. The prior covariance is large, but the
measurements are highly accurate.

Both the EnKF and the BRUEnKF are given M =
15 ensemble members drawn from the initial distribution
N (x10, P10), where x10 is the true state after 10 time units.
For both filters, we use the inflation factor α = 1.01. For the
BRUEnKF, we choose N = 25 EKF updates.

Fig. 3 compares the performance of the BRUEnKF and the
EnKF for this example. We show results for the second half
of the simulation after a 60 time unit spin-up. The covariance
bounds shown in the figure are the mean 3σ standard deviation
bounds for all 100 filters.

The average behavior of the filters is similar for this
problem setting. For the EnKF, certain observations cause the
filters to diverge. We compare the performance of the two



Fig. 3. Comparison of BRUEnKF (left) and EnKF (right) error results for 100 Monte Carlo runs. The plots show the estimation error (gray) and mean filter
3σ bounds (red).

approaches using the mean spatio-temporal root mean square
error (RMSE):

RMSE =
1

nm

nm∑
m=1

√√√√ 1

nxnt

nx∑
n=1

nt∑
k=1

e2n,k (29)

where nm is the number of Monte Carlo runs, nx is the
dimension of the state, nt is the number of time steps, and
en,k is the error in the estimate of state n at time step k.
The mean spatio-temporal RMSE for the BRUEnKF is 0.2405,
while the mean spatio-temporal RMSE for the EnKF is 0.3435.
The difference in RMSE values implies that, on average, the
performance of the EnKF is worse than the BRUEnKF.

Finally, we would like give more insight into the behavior of
the BRUEnKF update. Fig. 4 shows the error and covariance
bounds for a portion of the trajectory with three measurement
updates. This time, ∆t = 0.01. There are 20 propagation steps
in between each measurement update. The sections of the plot
highlighted in pink show the changes in the state error and
covariance during the BRUEnKF update. In other words, the
pink sections of the plot contain the N = 25 “pseudotime”
steps during which the BRUEnKF update is carried out. The
EnKF update is also included for comparison. The changes in
the EnKF covariance bounds appear as straight lines through
the highlighted portions of the plot, since the EnKF update is
applied in a single step.

Fig. 4. The BRUEnKF update. The highlighted portions of the plot (pink)
the BRUEnKF state error and 3σ covariance bounds (black) during N =
25 update steps. The corresponding EnKF state error and covariance values
are shown in gray, dashed lines. The intervals [tk, t

′
k] denote the BRUEnKF

update “pseudotime” steps. The evolution of the error dynamics in real time
occurs during intervals [t′k, tk+1].



The second BRUEnKF update in Fig. 4 reveals an important
aspect of the BRUF update: the covariance may shrink and
then grow again, all in the course of a single update. This is
possible due to the iterative recomputation of the measurement
Jacobian. The BRUEnKF ends the update step with a slightly
higher covariance than the EnKF. For observations that cause
the BRUEnKF covariance to form this J-curve shape, the
EnKF covariance is overconfident. This behavior helps the
BRUEnKF maintain consistency during measurement updates
where the EnKF cannot. Note that the BRUEnKF covariance
still decreases overall during the measurement update. The
filter’s uncertainty does not increase due to the incorporation
of information from a nonlinear measurement. It simply de-
creases less than the EnKF uncertainty.

V. CONCLUSION

In this work, we adapt the BRUF update [8] for use
in an ensemble Kalman filter. The BRUEnKF is shown to
improve on the EnKF for systems with large prior uncertainty
and highly accurate, nonlinear measurements. The BRUEnKF
measurement update is able to “follow” the nonlinearity in
the measurement by recursively recalculating the measurement
Jacobian. We present two examples with range measurements.
In the two-dimensional example, the BRUEnKF matches the
true Bayesian posterior better than the EnKF for a single
measurement update. In the second example, the BRUEnKF
successfully tracks the Lorenz ’63 dynamics. On average, the
EnKF is prone to higher error.

In the future, we will continue to explore new applications
for the BRUF update. We will adapt it for other types of
filters, including particle filters. Among single-state filters,
the BRUF is most closely related to the Recursive Update
Filter [14] and the Iterated EKF [13]. Of the three, it is the
simplest to compute. It performs exactly N EKF updates for
each measurement, making its computational cost N times the
computational cost of the EKF. We will also continue to probe
the convergence properties of the BRUF. In this work, we show
that the BRUF update is equivalent to the Kalman update for
linear measurements. In the future, we would like to provide
stronger convergence guarantees for nonlinear measurements.
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