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RECURSIVE UPDATE FILTERING: A NEW APPROACH

Kristen A. Michaelson*, Andrey A. Popov†, and Renato Zanetti‡

Maintaining an accurate statistical representation of the states and uncertainty in
a dynamical system is a difficult task. For nonlinear systems, it is generally com-
putationally intractable. The Extended Kalman Filter (EKF) assumes a Gaussian
distribution and provides a state estimate and associated covariance. Recursive
extensions to the EKF, such as the Iterated EKF (IEKF) and the Recursive Update
Filter (RUF), improve the accuracy of the EKF with little additional computational
cost. In this article, we present the Bayesian Recursive Update Filter (BRUF), a
variant of the RUF based on Bayesian principles. The main advantage of the BRUF
over the RUF is that it does not require the cross-covariance between the state er-
ror and the measurement noise. The BRUF is demonstrated in two examples. We
show that even with relatively few recursions, the proposed update is significantly
more accurate and consistent than the EKF update.

INTRODUCTION

The Kalman filter is a state estimation algorithm that provides the optimal solution for linear
systems subject to additive Gaussian noise.1, 2 The Extended Kalman Filter (EKF) extends the al-
gorithm to nonlinear applications by using dynamics and measurement Jacobians in lieu of linear
terms in the Kalman filter equations.3 While the EKF is sufficient for numerous practical applica-
tions, severe nonlinearities may lead to divergence. A plethora of nonlinear estimation algorithms
have been developed to mitigate divergence in highly nonlinear systems.4

In practice, designers face a tradeoff between accuracy and computational complexity when
choosing a nonlinear estimator. Algorithms with lower computational complexity are preferred
in autonomous navigation applications, since they are suited to real-time operation.5 The EKF is
very computationally efficient. It performs exactly the same handful of computations every time a
measurement is received. In this work, we detail a novel iterative method based on the EKF: the
Bayesian Recursive Update Filter (BRUF). In general, iterative methods repeat EKF computations
in order to improve the accuracy of the measurement update. If the number of repetitions is low,
then the computational complexity is comparable to that of the EKF.

The Iterated Extended Kalman Filter (IEKF) poses the measurement update as a weighted least
squares problem and computes the solution in an iterative fashion.6 The first measurement update
∆x(1) is equivalent to the EKF update. This update is applied to the prior state estimate, x̂−. Then,
the measurement Jacobian is recomputed using the updated state values x̂−+∆x(1). A second EKF
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update, ∆x(2), is computed using the new measurement Jacobian. This new update is again applied
to the prior state estimate, x̂− + ∆x(2), and the result is used to compute a third measurement
Jacobian, and so on, until there is little change in the updated state values between iterations. This
approach is equivalent to solving the optimization problem with the Gauss-Newton method.7 The
IEKF update is x̂+ = x̂−+∆x(n), where n is the number of iterations it takes to meet the optimality
condition; ultimately, only the final state update is applied.

Instead of applying a single, “optimal” EKF update, the Recursive Update Filter (RUF) applies a
fixed number of Kalman updates for each measurement. These N updates are applied successively.8

The first update ∆x(1) is equivalent to the EKF update reduced by a scaling factor. The new state
estimate is x̂1 = x̂−+∆x(1). Next, ∆x(2) is computed using x̂1 and applied to x̂1. However, since
x̂1 is now acting as the prior state estimate, the measurement noise and state error are correlated.
Therefore, this correlation (while trivial to compute) must be accounted for in the EKF equations.9

Now x̂2 = x̂1 +∆x(2), and so on, such that the measurement Jacobian is recomputed at each step
using the updated state estimate from the previous step. In this way, the state estimate is herded
toward the optimal value. The updated RUF state estimate is x̂+ = x̂N .

The RUF approximates the maximum a posteriori (MAP) estimate using gradient descent opti-
mization.8 The MAP estimate is the state that maximizes the Bayesian posterior distribution; the
product of the prior distribution and the measurement likelihood adjusted by a scaling factor. In the
linear Kalman filter, the updated state is the minimum mean square error (MMSE) state estimate.
The MMSE is mean of the Bayesian posterior distribution. For linear systems with additive Gaus-
sian noise, the MAP estimate and the MMSE estimate coincide. One advantage of the RUF over
the IEKF is the constant number of iterations. The RUF performs N Kalman updates to reach the
MAP approximation each time a measurement is received, making it N times as costly as the EKF.
In contrast, the IEKF continues iterations until a convergence criterion is met.

Numerous other iterative update schemes have been proposed. One method applies successive
measurement updates using a weighted Kalman gain, like the RUF.10 An information geometric
optimization method presented in Li et al. (2017) may be thought of as hybrid between the RUF
and the IEKF; the state moves toward the updated state value at each step, but recursions do not
finish until a convergence criterion is met.11 The Adaptable RUF chooses the length of the ith state
update such that it is contained within a region where the linearization assumption is valid.12 A
single EKF update may be chosen if the linearization assumption holds for a state update of small
magnitude.

Another class of methods uses recursive update techniques in sigma point filters, Gaussian mix-
tures, and particle filters.13, 14 In 2003, Hanebeck et al. introduced Progressive Bayes, which
computes the measurement update by minimizing the squared-integral distance between the true
Bayesian posterior and an approximation density.15, 16 In a follow-up to Progressive Bayes, the
Progressive Gaussian Filter (PGF 42), the state estimate also undergoes successive measurement
updates of varying step length.17, 18 PGF 42 represents the prior density using a Dirac mixture. The
“progression schedule” of the update steps is determined by comparing trial forward updates and the
corresponding backward updates. The RUF and the method proposed in this work may be thought
of as single-particle implementations of particle flow; in the sense that the state estimate “flows”
from the prior toward the maximum of the true Bayesian posterior. Wu et al. (2018) presents an
iterative EKF update derived from Daum-Huang particle flow.19–21

We propose a novel Recursive Update Filter, the Bayesian Recursive Update Filter (BRUF),
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which defines the recursion based on Bayesian principles rather than the MAP. The main advantage
of the proposed method over the RUF is that it does not include terms for the cross-covariance be-
tween the state estimate and the measurement noise. We achieve this by re-expressing the Bayesian
posterior distribution as a product of the prior distribution and N likelihood distributions, each with
inflated covariance NR. The new expression obviates the need to compute cross-covariance terms
while maintaining the recursive recomputation of the measurement Jacobian, an attractive quality
of iterative methods. The proposed update equations are a simple modification of the standard EKF
equations. The only term in the new update scheme that does not appear in the EKF equations is N ,
the number of iterations. N is a constant integer parameter chosen by the designer.

PROPOSED METHOD

Assume a measurement has additive Gaussian noise,

y = h(x∗) + η, (1)

where η ∼ N (0, R), and x∗ is the true state. A prior estimate of x∗, x̂−, is available with distribu-
tion p(x). The Bayesian posterior distribution,

p(x|y) ∼ p(x) exp

(
−1

2
(y − h(x))TR−1(y − h(x))

)
, (2)

is proportional to the product of the prior distribution and the measurement likelihood. We would
like to apply the measurement update gradually, keeping the prior distribution the same. To this end,
we re-express Eq. 2 as the product of N likelihood equations:

p(x|y) ∼ p(x)
N∏
i=1

exp

(
− 1

2N
(y − h(x))TR−1(y − h(x))

)
, (3)

which is equivalent to increasing the measurement noise covariance by a factor of N :

p(x|y) ∼ p(x)

N∏
i=1

exp

(
−1

2
(y − h(x))T (NR)−1(y − h(x))

)
. (4)

In a linear Gaussian system, the prior distribution is Gaussian and p(x) ∼ N (x̂−, P ). If the mea-
surement is also linear, then y = Hx∗ + η. The Kalman gain is

K = PHT (HPHT +R)−1. (5)

The updated state is

x̂+ = x̂− +K(y −Hx̂−), (6)

and the updated covariance is

P+ = (I −KH)P. (7)
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For a linear system, Eqs. 6-7 could be “broken up” into any number of smaller Kalman updates
based on the principle demonstrated in Eq. 4.

x̂1 = x̂− + PHT (HPHT +NR)−1(y −Hx̂−)

P1 = (I − PHT (HPHT +NR)−1H)P

x̂2 = x̂1 + P1H
T (HP1H

T +NR)−1(y −Hx̂1)

P2 = (I − P1H
T (HP1H

T +NR)−1H)P1

...

x̂N = x̂N−1 + PN−1H
T (HPN−1H

T +NR)−1(y −Hx̂N−1)

PN = (I − PN−1H
T (HPN−1H

T +NR)−1H)PN−1

(8)

Now, we can set

x̂+ ← x̂N (9)

P+ ← PN . (10)

In this work, we propose applying the same steps in an EKF. In general, the measurement is a
nonlinear function of the state (Eq. 1). The measurement Jacobian is H = dy

dx |x=x̂. The pro-
posed approach is summarized in Algorithm 1. Note that Algorithm 1 uses the Joseph form of the
covariance update. The Joseph form is equivalent to Eq. 7 but more numerically stable.22

Algorithm 1 Proposed recursive update

Require: x̂−, the prior state estimate; P , the prior covariance; y, a measurement; R, the measure-
ment covariance; N , the number of steps
x0 ← x̂−

P0 ← P
for i = 1 . . . N do

Hi =
dy
dx |x=x̂i−1

Ki = Pi−1H
T
i (HiPi−1H

T
i +NR)−1

x̂i ← x̂i−1 +Ki(y − h(x̂i−1))
Pi ← (I −KiHi)Pi−1(I −KiHi)

T +Ki(NR)KT
i

end for
return x̂N , PN

In this way, the measurement Jacobian Hi is recomputed at each step. This leads to a more
accurate estimate for a nonlinear system than a single, large step with high Kalman gain. Unlike
in the RUF, there are no weights applied to the Kalman gain. There is also no need to compute the
correlation between the state errors and the measurement noise from step to step, since all the steps
together represent a single Bayesian update. The reduced gain at each step is simply a by-product of
the inflated measurement noise covariance. The BRUF update with a value of N = 1 is equivalent
to the EKF update.
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NUMERICAL RESULTS

We demonstrate the performance of the BRUF in two numerical examples. In the first, we show-
case the performance of the BRUF for different values of N in a scalar system with a highly non-
linear measurement. In the second, we implement the algorithm in a navigation filter.

Cubic measurement

Consider a scalar system with nonlinear measurement model

y = x3 + η (11)

where η ∼ N (0, 0.12). The prior state estimate is x̂− = 2.5, and the true state value is x = 3.5.
The covariance associated with the prior state is P = 0.52. Note that the prior state covariance is
much larger than the covariance of the measurement noise.

Figure 1 shows the results of the EKF update and the BRUF update for this scenario. In the EKF
update, the high Kalman gain value causes the state estimate to overshoot. A value of N = 5 was
chosen for the BRUF. The center plot in Figure 1 shows the state estimate after each recursion step.
The plot on the right shows a detailed view of steps two through five. The first updated state, x̂1, is
close to the value of the EKF update, x̂+EKF , since the Kalman gain K1 is dominated by the large
value of P . Slowly, though, the state estimates sink toward the true state value. The BRUF estimate,
x̂5, is much closer to x than x̂EKF .

Figure 1: Visualization of results for cubic measurement. The curve y = x3 is plotted in gray. Each
state value x̂ is plotted with its corresponding estimated measurement, ŷ. Left: EKF results. Center,
Right: BRUF results with detailed view of state estimate for steps 2 through 5.

Table 1 compares the results of the EKF update with the BRUF update for N = 5, N = 10, and
N = 50. The true Bayesian posterior values were calculated using rejection sampling. The table
shows the mean x̂+ and P+ values computed from 5000 Monte Carlo runs. Each Monte Carlo run
has a different realization of the measurement y = x3 + η, since η is a random noise.

It is clear from Table 1 that the proposed method more accurately captures statistics of the true
posterior distribution than the EKF. Further, note that increasing the number of update steps N
provides diminishing returns. Recall that the EKF update is equivalent to a BRUF update with
N = 1. The improvement in estimation accuracy between N = 1 and N = 5 is much more
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True EKF BRUF (N = 5) BRUF (N = 10) BRUF (N = 50)

x̂+ 3.500 3.953 3.540 3.520 3.504
P+ 7.508× 10−6 2.844× 10−5 7.189× 10−6 7.176× 10−6 7.305× 10−6

Table 1: Numerical results for cubic measurement

significant than the improvement between N = 10 and N = 50. This shows that relatively few
additional computations are necessary to vastly improve on the EKF estimate.

Spacecraft Rendezvous

In this example, we implement the proposed recursive update scheme in a navigation filter. The
filter tracks the relative position and velocity of a chaser spacecraft as it moves toward a target in
the equatorial plane.12 The chaser begins 100 m downrange of the target (+V -bar) and 5 m below
it (+R-bar). After an initial burn (see, e.g., Chapter 3 of “Automated Docking and Rendezvous of
Spacecraft”),23 the motion of each spacecraft is governed by Keplerian two-body dynamics:

r̈ = −µE

r3
r (12)

where r is a position vector expressed in Earth-centered inertial (ECI) coordinates, r is the magni-
tude of r, and µE is Earth’s gravitational parameter. Fig. 2 shows the trajectory in the local-vertical
local-horizontal (LVLH) frame. The origin of the LVLH frame is located on the target spacecraft.
The target spacecraft moves in a circular orbit around Earth at an altitude of 400 km. The rendezvous
maneuver is completed in 1000 seconds.

Figure 2: Rendezvous trajectory in the LVLH frame. The chaser moves from left to right, ending
the maneuver 10 m from the origin.

The filter estimates position and velocity in the LVLH frame. The filter dynamics are governed
by the Clohessy-Wiltshire equations:

ẋ = Ax (13)

where

A =

[
03×3 I3×3

A1 A2

]
(14)
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and

A1 =

0 0 0

0 −n2 0

0 0 3n2

 A2 =

 0 0 2n
0 0 0
−2n 0 0

 . (15)

The Clohessy-Wiltshire equations are a linear approximation of the dynamics of the chaser with
respect to a target in circular orbit. Thus, the filter uses a different dynamics model than the true
dynamics. The orbital rate of the target is n = 0.001131 rad/s.

The filter begins with an initial position uncertainty of 10 m and an initial velocity uncertainty of
0.05 m/s.

P0 =

[
102I3×3 03×3

03×3 0.052I3×3

]
(16)

Every two seconds, the chaser measures its position relative to the target. The distance to the
target is ρ =

√
x(1)2 + x(2)2 + x(3)2. The azimuth is α = tan−1[x(2)/x(1)], and the elevation

is ϵ = sin−1[x(3)/ρ]. The measurement is

y =

ρα
ϵ

+ η (17)

where

η ∼ N
(
03×1,

[
0.12 01×2

02×1 (0.1π/180)2I2×2

] )
. (18)

Figures 3 and 4 show the performance of the EKF and the BRUF respectively. Each figure shows
the estimation error recorded during 100 Monte Carlo runs. A value of N = 10 was chosen for the
BRUF. The EKF performs poorly in the first few hundred seconds. The estimation errors are high,
and the covariance bounds fail to capture them. This means the filter is overconfident. The proposed
approach mitigates these problems and remains consistent from beginning to end.

Figure 3: EKF estimation error and 3σ standard deviation. DR = Downrange, CR = Crossrange, A
= Altitude.
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Figure 4: BRUF estimation error and 3σ standard deviation for N = 10. DR = Downrange, CR =
Crossrange, A = Altitude.

Figure 3 shows a significant bias in the downrange position estimate in the EKF. The BRUF is
able to effectively remove this bias. Figure 5 shows a comparison between the bias in the downrange
position estimate in the EKF and the BRUF for N = 2, N = 5, N = 10, N = 50, and N = 100
during the first 200 seconds of the simulation. Each of the curves in Figure 5 represents the mean
of 500 Monte Carlo runs. The bias in the EKF is highest, followed by N = 2. The bias in the filters
with N = 50 and N = 100 is virtually indistinguishable.

Figure 5: Downrange position error bias Monte Carlo study
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CONCLUSION

This work introduces the Bayesian recursive update filter (BRUF), a novel recursive update filter
based on Bayesian principles. It is an alternative to other EKF extensions such as the iterative
extended Kalman filter (IEKF) and the recursive update filter (RUF). Instead of computing a series
of N small EKF updates like the RUF, the BRUF divides a single EKF update into N small steps.
This subtle difference gives rise to a more elegant algorithm that preserves the main benefit of
iterative methods: the recalculation of the measurement Jacobian at each step. The BRUF is easy to
implement, and its computational cost is an integer multiple of the computational cost of the EKF.
Any EKF can be converted to a BRUF. To our knowledge, there are no drawbacks aside from the
increase in computational complexity.

Designers requiring a highly accurate measurement update may be willing to devote computa-
tion time to more recursions, while those desiring a lower computational cost may delight in the
improvement in estimation accuracy from just a few. We have demonstrated in two examples the
principle of diminishing returns; N = 2 or N = 3 provides a vast improvement over the EKF, while
N = 50 may not provide a noticeable improvement over N = 10. Ultimately, the number of recur-
sions required in an application depends on many factors including the severity of the nonlinearity
in the measurement. Empirical analysis may be employed to select the appropriate value.
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