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MHN-SLAM FOR PLANETARY LANDING

Corey Marcus*, Renato Zanetti†

Simultaneous Localization and Mapping (SLAM) has a strong potential for use in au-
tonomous landing scenarios. It could be used in real-time to identify hazards and potential
landing sites which were unknown a priori during the terminal descent phase. Landers
using SLAM could visit regions which are too hazardous for ones employing existing tech-
nologies. Previous relative navigation work between two on-orbit spacecraft showed that
using the Modified-Half-Normal (MHN) distribution to represent mapping uncertainty in
SLAM provides performance improvements over using the Gaussian distribution. In this
work, we show that SLAM with the MHN distribution also provides effective tracking and
mapping during a simulated autonomous landing scenario.

INTRODUCTION
Many future robotic missions across the solar system will include a landing phase. They will target scien-
tifically interesting sites which are often filled with environmental hazards such as rocks and craters. Light
time delays mandate an autonomous onboard landing system to detect and avoid these hazards. Tradition-
ally, missions to Mars have relied on hazard maps generated before flight from orbital imagery.1 Techniques
such as Terrain Relative Navigation localize the lander with respect to these a priori hazard maps.

Future landers may not have the luxury of a priori hazard maps due to cost constraints, low orbital visibility,
or dynamic terrain. Recent missions to the Moon2 and Mars3 have autonomously identified hazards during
descent using cameras. Future missions may be motivated to go farther and use their cameras to generate a
map of the terrain during descent which can be searched for safe and scientifically interesting landing sites.
A class of algorithms known as Simultaneous Localization and Mapping (SLAM) can produce such maps
and localize the lander with respect to them.

Previous work has developed a monocular SLAM system utilizing the Modified Half Normal (MHN) distri-
bution.4 The MHN distribution is a three parameter distribution for positive random variables. A nonlinear
estimator was derived leveraging the MHN distribution and was shown to provide more accurate Bayesian
updates to an uncertain depth state than an Extended Kalman Filter (EKF). A SLAM system employing
this estimator demonstrated superior performance to one based on an EKF when employed in a spacecraft
proximity operations scenario. In this work, we will demonstrate that the monocular MHN-SLAM system
can also provide tracking and mapping in a simulated landing scenario.
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RELATED WORK
SLAM has a rich history dating back at least to Cheeseman et al. who proposed using an Extended Kalman
Filter (EKF) to estimate the relative position and orientation between an observer and several landmarks in a
2D domain.5 This work quickly evolved into well known EKF-SLAM algorithms which used visual features
extracted from monocular camera images.6 Many authors highlighted consistency and time complexity
issues with EKF-SLAM methods which culminated in the seminal work by Strasdat et al.7 which resulted
in a shift from filtering algorithms to algorithms centered on nonlinear least squares optimization.

These optimization-based approaches often leverage a technique known as Bundle Adjustment where re-
projection errors between feature correspondences are minimized by adjusting camera poses and feature
locations.8 Nonlinear least squares schemes can have their own issues with time-complexity and the inabil-
ity to marginalize previous measurements into a prior.

Our previous work on Modified-Half-Normal SLAM (MHN-SLAM) sought to find a middle ground be-
tween the drawbacks of filter and nonlinear least squares methods.4 We noted that many of the EKF-SLAM
problems were induced by the linearization required for applying Bayes Rule and the possibility of non-
physically realizable negative depths in some map representations. A nonlinear Bayesian estimator was
derived for monocular camera measurements of a feature with a MHN prior on its depth. The MHN distri-
bution had the added benefit of being strictly positive; eliminating the possibility of negative depth estimates.
It was shown that MHN-SLAM provided notable performance improvements over a similar EKF based sys-
tem in a proximity operations scenario using synthetic images of a target spacecraft. In this work we show
that the MHN-SLAM system can also provide benefits for a planetary landing scenario.

SLAM and related algorithms have been applied to landing many times. Setterfield et al. present a loosely
coupled terrain relative navigation (TRN) and mapping system.9 TRN is performed with respect to an a pri-
ori known map using lidar scans. Pose estimates are found by optimizing a graph containing a combination
of TRN and inertial measurements. The lidar scans also update the map but only the a priori version is used
for TRN.

Givens and McMahon implement a square root information filter for SLAM in a planetary landing sce-
nario.10 Their system produces equivalent results to an EKF-SLAM system without explicit marginalization
of old map features to maintain constant-time complexity. Unlike our system, they are able to formulate a
tightly coupled filter for pose and map estimates. However; they continue to use the Gaussian distribution
as opposed to our MHN.

Andert et al. showcase a visual SLAM system for lunar landing which includes a single lidar point measure-
ment to resolve the scale ambiguity.11 In addition to visual features, they detect crater rim ellipses which can
be matched to a catalog for absolute navigation purposes. Mapping and tracking are performed as sequential
sub-problems. Each is solved with a Levenberg-Marquardt optimization scheme to minimize reprojection
error.

Another implementation by Nakath et al. has a SLAM module as one subsystem within a larger guidance,
navigation, and control architecture.12 Their implementation is tailored towards a satellite searching for
landing sites while orbiting a small asteroid. The SLAM consists of a graph which is iteratively optimized
with a g2o framework13 wrapped around an EKF to estimate relative transformations between nodes.
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In the atmospheric domain Yang et al. design a SLAM system for autonomous rotor-craft landing.14 ORB-
SLAM215 forms the basis for their SLAM system. ORB16 features are extracted from monocular camera
images and the SLAM estimates are produced with nonlinear least squares optimization. They apply a 2.5D
grid map to the 3D points in order to search for suitable landing sites.

PRELIMINARIES
Camera Conventions
Every camera image establishes dual sets of coordinates: one in the form of a 3D spatial frame denoted as
C, and the other as a 2D image frame denoted as I. This arrangement is illustrated in Figure 1.
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Figure 1: The coordinate frames used in this work. C defines the camera coordinate frame and has its origin
at the camera aperture. The z axis is aligned with the camera’s boresight. I is a 2D coordinate frame for the
image. Its x and y coordinates increase towards the bottom-right corner.

We use a pinhole camera model in which a camera’s intrinsic parameters are defined by its focal lengths
fx and fy and the principal point coordinates σx and σy. These parameters are modeled in the camera
calibration matrix K:

K =

fx 0 σx
0 fy σy
0 0 1

 . (1)

A feature, r, in C, rC can be transformed to I using the nonlinear mapping pI = π(rC),x′y′
z′

 = KrC → pI = π(rC) =

[
x′/z′

y′/z′

]
. (2)

Multiplicative Extended Kalman Filter
Upon processing the initial image through our system, we establish the SLAM map frame, C1, in which
pose estimates are found. The task of attitude estimation poses challenges due to the absence of a non-
singular three-dimensional representation for rotations. Quaternions provide an alternative approach that
avoids singularity issues, albeit by introducing an extra parameter and adhering to a unit norm restriction.
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Furthermore, complexities arise from the fact that rotations are combined multiplicatively rather than addi-
tively. To tackle these challenges, the Multiplicative Extended Kalman Filter (MEKF)17 was developed. It
accomplishes this by estimating an unconstrained three-vector parameterization denoted as â, representing
the rotation between the true attitude and a reference attitude in the standard EKF update stage. Singular-
ities are circumvented by assuming that the attitude error remains small. Following the Kalman update, â
is utilized to update the reference attitude, and then â is reset to zero prior to the subsequent propagation
phase.

The full state at the ith time-step carried by our MEKF is

xi =


tC1Ci
ai
vC1Ci
ωCiCi/C1

 . (3)

We represent the position of the camera with respect to and expressed in the map frame as tC1Ci . To model the
error quaternion we use twice its vector component and denote the variable ai = 2(δqCi

Ĉi
)v. Outside of our

state estimate, we track a nominal quaternion from the map frame to the estimated camera frame, qĈiC1 . The

true quaternion from map to camera frame is defined as qCiC1 = δqCi
Ĉi
⊗ qĈiC1 where ⊗ is the Shuster quaternion

multiplication.18 Velocity of the camera with respect to and expressed in the map frame is vC1Ci . Finally, we
term the angular velocity of the camera with respect to the map frame in the camera frame as ωCiCi/C1 . Details
on our pose estimation scheme are outlined in our previous work.4 In this implementation our MEKF uses
a constant velocity and angular rate physics model for the time-propagation stage.

MHN Distribution
We heavily leverage the modified half normal (MHN) probability distribution in this work. It is a three
parameter continuous distribution for strictly positive random variables.19 Its three parameters are α, β, and
γ. They have allowable values of α > 0, β > 0, and γ ∈ R.

pMHN(x|α, β, γ) =
2βα/2xα−1e−βx

2+γx

Ψ[α2 ,
γ
β ]

∀x > 0 (4)

Ψ[α2 , z] is shorthand for a specific case of the Fox-Wright Psi function.20, 21

Ψ[
α

2
, z] = 1Ψ1

[
(α/2, 1/2)

(1, 0)
; z

]
(5)

Expressions for the mean and variance of an MHN distributed random variable x are shown below

E[x] =
Ψ[α+1

2 , γ√
β

]
√
βΨ[α2 ,

γ√
β

]
(6)

E[(x− E[x])2] =
α

2β
+ E[x]

(
γ

2β
− E[x]

)
. (7)
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MHN UPDATE
The MHN update was originally derived in our previous work.4 We present the results of the derivation
here. Figure 2 outlines our measurement model and the various coordinate systems used in this work. We
use F to represent a feature imaged twice from different vantage points. Each camera image defines two
coordinate systems, and we have an estimate of the relative pose between the camera images.
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Figure 1

Figure 2: The physical setup for a stereo comparison. F is observed from two vantage points. The two im-
ages define coordinate systems C1 and C2. We locate the point in each image I1 and I2. Its pixel coordinates
are defined as pI1 and pI2 . Relative pose between the vantage points is represented with the position tC1C2 and
quaternion qC2C1 .

Our measurement is pixel disparity

λ =

√∑
j=x, y

(
pI2j − p

I1
j

)2
. (8)

Our previous work outlines how uncertainty in the depth of F with respect to C1, d, can be represented with
an MHN distribution.4 The parameters of the distribution are updated with each measurement λ according
to Equations (9)-(11). A recursive, nonlinear, Bayesian estimator was formulated using these update laws.

α̂ = α+ 2 (9)

β̂ = β + β′λ2 (10)

γ̂ = γ + γ′λ. (11)

The parameters β′ and γ′ can be found numerically by solving the following nonlinear system of equations.

2ΣΓ + µ2
x + µ2

y =
1

β′
+

γ′

2β′

Ψ[3
2 ,

γ′√
β′ ]

√
β′Ψ[2

2 ,
γ′√
β′ ]

(12)

√
ΣΓπ

2
L1/2

(
−
µ2
x + µ2

y

2ΣΓ

)
=

Ψ[3
2 ,

γ′√
β′ ]

√
β′Ψ[2

2 ,
γ′√
β′ ]

(13)
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Here, L1/2(·) is the Laguerre Polynomial of order 1/2. The parameters µx, µy, and ΣΓ are scalar constants
related to the predicted value of pI2 given the MHN prior on d. Precise details are available in our previous
work.

Filter Initialization
We use new measurements to update our estimate of feature depth. Filter initialization requires us to choose
the initial MHN parameters, (α0, β0, γ0). We will choose these parameters such to satisfy a desired ini-
tial mean, µ, and variance, Σ. This system is under-constrained and has multiple solutions. Choosing
α0 = 1 reduces the number of remaining solutions to one. To find the other two parameters we use a
Levenberg-Marquardt optimization routine to choose β0 and γ0 such that the mean and variance of our
initial distribution match µ and Σ.

SLAM
We have developed a monocular SLAM system utilizing our MHN filter. SLAM is performed in a simulation
of spacecraft descent onto a planetary surface while operating a monocular camera. We assume perfect frame
to frame feature tracking is available through some algorithm such as ORB.16 Using these camera images,
the system estimates terrain structure, terrain relative pose, velocity, and angular rates.

System Initialization
Figure 3 provides an overview of our SLAM system. The system can be roughly divided into a tracking
and mapping module. A tracking estimate is provided for each new image which the system acquires using
features which are identified in the image as well as the system’s map estimate. Afterwards, the mapping
module uses the tracking estimate to update the map.

Image
Acquisition

Feature
Identification

Tracking
Module

Mapping
Module

Figure 3: Our SLAM system. We assume that accurate feature identification has been performed by some
external algorithm. Tracking estimates are found by comparing new images to the existing map. The map
is further refined with these estimates.

SLAM begins when the first image arrives. This image forms the basis of the SLAM coordinate frame, C1,
according to the conventions in Figure 1. We assume that a feature tracking algorithm has provided a set of
features which correspond to the terrain. We also assume availability of ground plane estimate.

All tracking is performed with respect to the SLAM coordinate frame defined by the first camera image.
This means the initial tracking estimates are for zero rotation and zero translation. Each feature in C1 forms
a ray which we intersect with the ground plane estimate. We corrupt the depth of this intersection point
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with Gaussian noise and use the corrupted point as our initial depth estimate. MHN depth estimates are
initialized as described previously.

Tracking
Tracking is performed with an MEKF. We generate measurements of relative position, rCiC1→Ci , and the error
quaternion parameterization, a. This is done by projecting the estimated map into the predicted camera
frame and choosing rCiC1→C2 and a to minimize reprojection error between all matched features.

These measurements are fused with the prior to produce an estimate of camera pose, velocity, and body rates
using the MEKF formulation outlined previously.

Mapping
The mapping system is used to estimate the depth, d, or z component of each feature in C1. We assume that
a feature tracking algorithm identifies map features in each new camera image. To compare performance we
may either represent depth estimates with a Gaussian or an MHN distribution. Gaussian depth estimates are
updated with a simple EKF. We use Equations (9-11) to update MHN depth estimates. Many filters include
a prediction phase where the estimate is propagated through uncertain dynamics in time. Since terrain is
typically static during a terminal descent we do not use a prediction phase.

RESULTS
We simulate a spacecraft approaching a lunar terrain containing a variety of boulders and craters. We assume
trackable visual features are randomly distributed on the surface of these environmental features and that
some feature extraction and matching algorithm has provided their locations in each image to the SLAM
system. The terrain is shown in Figure 4. The simulated visual features are shown in Figure 5.

Our spacecrafts approach trajectory along with the simulated terrain is shown in Figure 6. The spacecraft is
initially moving in a direction orthogonal to the terrain bearing for better depth observability. After several
images a 90 degree turn is performed and the spacecraft moves towards the terrain.

Absolute scale is not observable in monocular SLAM. To accurately judge our system’s performance we
find an estimate of scale, ŝ, as the average ratio between the true and observed feature depths after each
image is processed. We generate a combined metric of mapping and localization error by comparing the
true and estimated map with respect to the camera frame after each image is processed. Each map point is
transformed into the Ci frame using the SLAM estimated pose and post-process estimated scale.

F̂ Ci = q̂CiC1 ◦ ŝ
(
F̂ C1 − t̂C1Ci

)
(14)

Errors in the estimates ŝ, q̂CiC1 , F̂ C1 , and t̂C1Ci contribute to errors in F̂ Ci .

We perform 100 run Monte Carlo for our SLAM system twice; once with MHN depth map updates and
again with EKF map updates. For all instances and all map points we find the error in F̂ Ci . At each image,
we find the RMS of this error. These RMS errors are averaged across Monte Carlo runs and the averages
are plotted in Figure 7. We note that the average RMS error for the MHN system is significantly lower than
the EKF system, indicating superior SLAM performance.

Figure 8 shows an example SLAM map created by an MHN system. The map’s x and y axes represent the
pixel coordinates at which the map feature is first observed. Color signifies estimated depth.
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Figure 4: An elevation map of the simulated lunar terrain containing a collection of rocks and craters.

Figure 8 shows an example trajectory created by the MHN system in the terrain’s coordinate frame. The
system is generally able to capture the direction of camera motion but inertial drift errors quickly become
significant. Future work is needed to address this drift so that the system may provide consistent localization
estimates.
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Figure 5: The point cloud of simulated visual features which are randomly and uniformly distributed across
the rocks and craters of the lunar terrain.

Figure 6: The true vehicle trajectory and terrain features which it observes.
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Figure 7: Average RMS mapping error across all Monte Carlo runs for each system configuration.
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Figure 8: A representative estimated map created by the MHN-SLAM system during one Monte Carlo run.
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Figure 9: A representative estimated trajectory created by the MHN-SLAM system during one Monte Carlo
run.
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CONCLUSION
In this work we have presented preliminary results showing superior SLAM performance when using an
MHN depth representation in a planetary landing scenario. Our simulation uses simulated images with
perfect feature tracking while previous work has demonstrated efficacy with feature matching and artificial
images of a target spacecraft in an on-orbit relative navigation scenario. Future work is needed to show
MHN-SLAM can be effective in a planetary landing scenario when real images and feature tracking are
incorporated.
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