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Abstract—In many scenarios it is desirable for planetary landers
to select or modify their landing sites autonomously during
descent. We present a landing site selection algorithm which is
optimized to work in conjunction with a Simultaneous Localiza-
tion and Mapping system. Our algorithm selects landing sites
based on site slope, roughness, and operator-defined interest.
In addition, we generate guidance commands and approximate
fuel consumption for the highest ranked sites. We validate our
algorithm with LiDAR and inertial data gathered by a vertical
take-off and landing vehicle.
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1. INTRODUCTION
Many of the solar system’s most scientifically interesting
landing sites feature hazards which are poorly characterized
or which are dynamic on the time-scale of a typical interplan-
etary campaign. Environmental factors such as the clouds
of Venus, shadows of the Lunar south pole, and potentially
dynamic crevasses of Europa and Enceladus are coupled with
the high monetary cost and relatively low resolution of orbital
imagery to make a priori hazard map generation difficult. For
these reasons, it is desirable for planetary landers to select
their landing site in real-time during descent.

Such a site would be selected from a map generated through
a process such as Simultaneous Localization and Mapping
(SLAM). SLAM can be used to produce dynamic maps of
variable resolution, which evolve as more measurements are
taken. Existing landing site selection technologies select sites
from static maps which are typically of fixed resolution. In
this work we demonstrate a method for picking landing sites
from a dynamic and variable resolution map with an emphasis
on limiting computational complexity and creating a path
towards real-time performance.

We primarily consider a lander using a Light Detection and
Ranging (LiDAR) measurement system to map the surface
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during descent. We assume this LiDAR system takes range
measurements in a fixed field of view at constant angular in-
crements. As altitude decreases, the lateral distance between
points measured on the terrain shrinks. Thus, it is natural
for portions of the terrain mapped at lower altitudes to be
represented by a higher resolution map. The quadtree data
structure is a variable resolution grid which is well suited
to handling this variable resolution mapping problem. We
leverage the quadtree heavily in this work.

We use a LiDAR inertial SLAM system to produce a localiza-
tion and mapping solution. Our landing site selection (LSS)
algorithm selects landing sites given inputs of the estimated
vehicle pose, LiDAR measurements, and estimated digital
elevation map. The SLAM map is stored in a quadtree due
to the ease with which it represents map areas with disparate
measurement densities. The landing site selected is a function
of the terrain’s slope, roughness, and a priori determined
interest. Fuel consumption requirements for top performing
sites are found. Our system is validated with real LiDAR and
inertial measurements gathered by a rocket powered vertical
take-off and landing system.

The remainder of this paper is organized as follows, Section
2 discusses related work, Section 3 provides an overview of
the SLAM system used, Section 4 documents the specifics
of our algorithm, Section 5 shows how our system performs
with real data, and Section 6 offers some conclusions.

2. RELATED WORK
LSS has a relatively rich treatment in the literature. Johnson
et al document a landing site selection system based on a
scanning LiDAR [1]. Their system uses a plane fitting tech-
nique to estimate surface slope and roughness. They work
directly with the LiDAR-created point cloud and assume that
vehicle position is known. Once a site has been chosen, they
use a guidance module to generate a trajectory towards the
site. Their algorithm is validated in simulation.

Serrano provides another treatment of autonomous landing
site selection [2]. He is able to probabilistically model
the problem using a Bayesian Network given radar, camera,
and LiDAR measurements. Terrain slope and roughness are
characterized by fitting planes to small subsets of the map.
Craters are located in camera images via edge and shadow
detection and matched with an a priori map. Rocks are
modeled from shadow detection and knowledge of the sun
angle. Knowledge of the spacecraft’s performance capa-
bilities and current terrain is used to bound reachable and
marginally reachable terrain. Finally, he also considers a
scientific interest map which has been defined before flight.
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This map allows mission designers to bias the algorithm
towards or away from certain portions of the map according
to their scientific value. These factors are all combined to
provide a landing site value to each map point.

This process is computationally intensive, so Serrano uses
a supervised learning approach to learn to assign landing
site values given a digital elevation map (DEM), hazard map
(craters and rocks), and scientifically interesting map. Later,
Serrano presents a follow-up work which presents essentially
identical results while using fuzzy logic in place of supervised
learning [3].

Some of NASA’s most recent investigations into LSS fall
under the Autonomous Landing Hazard Avoidance Technol-
ogy (ALHAT) and Safe and Precise Landing – Integrated
Capabilities Evolution (SPLICE) programs. Cohanim and
Collins describe the ALHAT approach to LSS [4]. Multiple
potential landing sites are selected according to their distance
to the nearest hazard, approximate fuel consumption, and dis-
tance to the nearest point of scientific interest. These metrics
are provided as inputs to the selection algorithm and their
creation is not explicitly explored. One interesting feature
of the algorithm is the ability to control the distance between
the returned landing sites. The authors model the vehicle’s
footprint as a circle as opposed to modeling footpads and
engine bells explicitly. They argue that such modeling may
result in dangerous spacecraft maneuvers and that attempting
to straddle a hazard is not a worthwhile endeavor.

Another investigation under the ALHAT program by Ivanov
and Carson led to a high fidelity probabilistic approach to
LSS [5]. They probabilistically model the likelihood of
safe landings under many different landing orientations while
evaluating sites. The expected navigation uncertainty is
also used to account for the fact that the spacecraft may
inadvertently land on nearby and unsafe terrain.

Cui et al consider many safety factors while selecting the
optimal landing site [6]. They use the classic plane fitting
techniques to quantify slope and roughness. They use a
polynomial guidance law to find fuel consumption to different
points on the map. They also explicitly consider touchdown
performance through simulation with execution error and a
constant wind disturbance. They conduct a traversal search
with a bubble sort to locate the lowest cost landing site.

Luna et al demonstrate the effectiveness of the Simple Safe
Site Selection (S4) algorithm developed by Johnson and
Mandalia [7], [8]. They show results similar in quality to
the algorithms developed through ALHAT. S4’s design is
motivated by computational simplicity. Using a single flash
LiDAR image, it identifies the slope, roughness, and rock
locations. These are used to output a landing safety map. No
other parameters, such as fuel consumption, are considered.

Mango, Opromolla, and Schmitt demonstrate another
LiDAR-based algorithm [9]. They use a much larger DEM
which has been generated from multiple LiDAR images.
They also develop a technique for searching first at a course
resolution to narrow the space for fine resolution searching.

In a relatively unique approach, Jung et al fit constant el-
evation contour lines to a triangular Digital Terrain Map
(DTM) [10]. These lines are used to locate rocks and slope.
The authors identify numerous difficulties which must be
overcome with their method. Most stem from the choice in
step between contours. It is possible for hazards to become

lost between the contours. To avoid this and other issues,
many conditionals must be evaluated, and the algorithm’s
decision tree becomes relatively complex.

Practically, many of the maps which are inputs for landing
site selection would come from a combination of offline
and online mapping. Yang et al consider this explicitly by
bundling LSS with Simultaneous Localization and Mapping
(SLAM) [11]. They take a 3D point cloud and convert it to a
2D DEM. A landing site is selected as a region of the DEM
which is sufficiently flat. This procedure is all performed
online on a UAV. The difference in platform means that
many needs of spacecraft such as fuel consumption are not
considered.

Tomita et al use Semantic Segmentation to locate safe landing
sites [12]. This is a convolutional neural network based ap-
proach. A model is trained given DEM inputs and hazard map
outputs. They show that their trained model can outperform
ALHAT’s system when the DEM is sufficiently noisy.

Schoppmann et al detail a multi resolution landing site detec-
tion algorithm for unmanned aerial vehicles [13]. This system
selects landing sites from a multi-resolution map generated
from an on-board structure-from-motion program. The map
is organized into a Laplacian pyramid which divides terrain
features into layers based on their frequency content. Their
landing site selection system considers slope, roughness, and
mapping quality.

The LSS implementation of Trawny et al demonstrates real-
time performance on a flight vehicle [14]. As part of the
ALHAT program, they fly a rocket powered vertical take-off
and landing vehicle known as Morpheus. Morpheus is flown
over a man-made terrain containing craters, boulders, and
other features which are reminiscent of a Lunar landscape.
Morpheus uses a gimballed flash LiDAR system to scan
the terrain. After scanning, a landing site is selected and
the vehicle autonomously touches down. We use the same
LiDAR measurements to validate our system in this work.

The Chang’E 3 mission to the moon employed a hazard
detection and avoidance scheme using both camera images
and LiDAR measurements [15]. Camera images and LiDAR
measurements provide independent assessments of hazard
locations. To detect hazards with LiDAR, a least squares
method is used to fit a ground plane to their LiDAR measure-
ments. They then search the ground plane in a spiral pattern,
evaluating sites as a function of their fuel requirements and
the safety indicated by the LiDAR measurements.

Many Martian landers have employed some level of hazard
detection and avoidance. Most recently, the Mars 2020
(Perseverance) rover used terrain relative navigation to select
the best landing site in a predefined hazard map [16]. Camera
images allowed the lander to localize itself with a predefined
hazard map. Then the safest site could be chosen during
descent given the spacecraft’s estimated position and maneu-
vering constraints. The Tianwen-1 lander used a combination
of camera and LiDAR images to define hazards and select
a safe landing site during a hover mode [17]. After hover-
mode, the lander entered a hazard relative navigation phase
where it avoided hazards and maneuvered to the safe landing
site.
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3. SIMULTANEOUS LOCALIZATION AND
MAPPING

The landing site selection algorithm presented in this work
receives its map and localization data from a SLAM sys-
tem. For this we use the LiDAR-inertial SLAM system
developed by Setterfield et al [18]. One critical component
of this system is its map representation, a quadtree. The
quadtree can be thought of as a variable resolution DEM.
The system is initialized with some a priori DEM, and given
new information through LiDAR measurements the estimated
elevation of each cell may be refined. As the measurements
in a given cell become denser, the cell may be divided into
four subdivisions, each with their own elevation estimates.
This process can be repeated until the cells achieve some
predefined maximum resolution. An example quadtree is
shown in Figure 1.

When the SLAM system receives a new LiDAR measurement
of the surface, it associates that measurement with a quadtree
cell. The cell’s elevation estimate is found as the average
elevation of all measurements it contains. When the number
of measurements within a cell reaches a predefined threshold,
it is divided into four children. During division, the measure-
ments are assigned to one of the four children. The divided
cell inherits an elevation estimate which is the average of its
four children’s elevation estimates. This methodology allows
cells at any level in the tree to contain elevation estimates
which are the average of all measurements the cells below
them contain.

While the option exists to form the SLAM map from a fusion
between the a priori DEM and LiDAR measurements, we
form the map from LiDAR measurements alone. This choice
was made for several reasons: it allows us to ensure that the
LSS map is uncorrelated from the truth map; some terrain
modifications were made after the measurement of the truth
map; and it demonstrates that the system is not reliant on the
a priori map for landing site selection (apart for its role in
map relative localization).

Figure 1: An example quadtree structure demonstrating three
levels of depth.

Another critical feature of the SLAM system is its use of
map relative localization (MRL). Most SLAM systems create
maps which are defined with respect to the sensor as they
lack pose measurements with respect to an inertial coordinate
system. This SLAM system uses MRL to match LiDAR

START

Update LSS Quadree

Update Triangular Mesh

Update Hazard Map

Search and Score Sites

Time Delay

Figure 2: A block diagram of the major LSS operations.

measurements with an a priori defined map of the terrain.
Because the a priori map is defined with respect to the
planet-fixed coordinate system, MRL measurements provide
measurements of the vehicle’s pose with respect to that same
planet-fixed coordinate system. This is important for LSS
because mission operators often have some knowledge of
potential landing sites before flight. They may wish to bias
the selection system towards known scientific interests or
away from known hazards which are specified in the planet-
fixed coordinate system. The SLAM system’s pose estimates
with respect to the planet-fixed coordinate system enable this
biasing.

4. APPROACH
Figure 2 provides an overview of the entire LSS algorithm.
The system is divided into four primary operations: quadtree
update, triangular mesh update, hazard map update, and site
searching/scoring.

Our system relies heavily on the quadtree map structure for
efficient map searches and data queries. The quadtree update
operation maintains a quadtree structure in memory which
mirrors the structure of the SLAM map. Independence is
maintained between the two structures in order to ease future
parallelization efforts. The LSS system runs periodically dur-
ing flight at a user-defined interval and operates on segments
of the map which are new or have been updated since the last
LSS iteration. This reduces computational complexity and
allows for an incremental LSS solution as the SLAM map is
refined with new measurements.

Many LSS operations require searching the quadtree for the
smallest available cells within a bandwidth tolerance. An
example of cells fitting this criteria is shown in Figure 3. This
search operation provides the system additional flexibility
when searching maps with varying levels of resolution.

LSS operations discussed in this paper occur at different
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Figure 3: An example bandwidth tolerance. A 2D cross-
section of a quadtree with levels 0 to -4 is shown. Red
horizontal lines indicate the upper and lower bounds of the
bandwidth tolerance. The smallest available cells within
bandwidth tolerances are circled and represent the output of
a bandwidth search.

levels within the quadtree. Some example LSS operations are
shown at representative levels in Figure 4. The specifics of
the operations shown will be discussed in a following section.
These operations confined to one level in the Figure, but in
actuality the levels at which they can occur are defined by
bandwidth searches.

Figure 4: An example of the relative levels at which different
operations are performed. In this figure, the triangular mesh
is populated at the highest level, followed by the hazard
detection and site evaluation operations.

Two physical parameters drive landing site evaluation, slope
and roughness. We assume that mission designers have
provided slope, λθ, and roughness, λd, tolerances which a
landing zone must meet. A landing zone radius, lZ , is also
provided which accounts for the lander’s physical size and
any expected differences between the targeted and actual
landing site due to guidance navigation and control uncertain-
ties. The site is considered unsafe when the angle, θ, between
the local terrain’s surface normal, n̂, and the local gravity
vector, g, exceeds λθ. A site is also considered unsafe if
the distance between any portion of the terrain and its planar
approximation exceeds λd within a square landing zone, Z .
The zone’s half-side length, lZ , is chosen as a function of
the vehicle’s size and expected guidance, navigation, and
control uncertainty. Larger vehicles, or those with less precise
landing site targeting, require larger landing zones. A square
zone is chosen over the traditional ellipse because it is more
efficient to search a quadtree in a rectangular domain than a
circular one. We assert that lZ can always be chosen such
that the entire ellipsoidal landing zone is contained within
Z . These slope and roughness tolerances are diagrammed
in Figure 5.

Figure 5: A diagram of the slope, θ, and roughness parame-
ters in 2D. A landing site is represented with the green dot on
the black terrain. The blue line represents a planar estimate of
the local terrain. The landing zone half width, λZ , defines the
plane’s domain. The roughness tolerance, λd has been used
to define two orange planes. The angle between the local
surface normal, n̂, and the gravity vector, g, defines slope. If
θ > λθ or the truth terrain crosses either orange plane the site
would be considered unsafe.

Triangular Mesh

One operation utilizing the bandwidth searches, shown in
Figure 3, is the triangular mesh update. Cells within the
bandwidth constraints become nodes within a 2.5D triangular
mesh. The x and y locations of these nodes are determinis-
tically controlled by the quadtree division structure but the
z location is the cell’s elevation estimate. Figure 6 shows
an example of quadtree cells which have become nodes in
a triangular mesh. The Delaunay triangulation method is
used to generate triangles from the nodes as it minimizes the
occurrence of thin triangles which span large distances in the
x-y plane.

Figure 6: An example quadtree with cells as vertices in
a triangular mesh. Several circles illustrate the primary
constraint of a Delaunay Triangulation. Any circle defined
by the vertices of one triangle may not encompass another
vertex; however, intersection is permitted.

The mesh is formed from cells at a low enough resolution
that the triangle might contain several potential landing sites.
Because the triangles cover a large area relative to the size
of the lander, they form good approximations of the local
surface absent small-scale features. The vertices of each
triangle define a plane which is used as an estimate of the
local ground plane. This plane and its surface normal are
used in several downstream LSS operations.
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Planes, P , in this work are defined by their surface normal, n̂,
and orthogonal distance from the origin, c. Any point, p ∈ P̂
satisfies Equation (1).

pT n̂− c = 0 (1)

We often desire the surface normal at the center of a quadtree
cell for downstream slope and roughness calculations. This
cell may or may not form a vertex in the triangular mesh.
Its center is the 3D point r = [x, y, ẑ]

T composed of a
deterministic x-y position and estimated elevation, ẑ. The
mesh is queried to find the triangle which contains the x-y
coordinates of r. Each triangle has three vertices b, q, s ∈ R3

which correspond to cells in the quadtree. The z component
of these vertices is the estimated elevation of each cell. The
local surface normal, n̂ is found through Equation (2) which
uses the cross-product operator, ×.

n̂ =
(q − b)× (s− b)
‖ (q − b)× (s− b) ‖

(2)

The orthogonal distance to the origin, c, is found with Equa-
tion (3).

c = rT n̂ (3)

The special case in which the surface normal is desired at
boundary or vertex between multiple triangles is handled by
finding the surface normal for each triangle. The surface
normal which has the greatest angle with the local gravity
vector is saved and the others are discarded. Accepting
the worst-case surface serves as a conservative approach to
handling this special case.

Hazard Identification

The LSS system also searches the quadtree to identify cells
which contain hazardous terrain. These target cells are
identified with another bandwidth search. The LiDAR mea-
surements, pi ∈ R3, corresponding to the the cell are queried
from the SLAM quadtree. Note that the SLAM system has
already transformed range and bearing LiDAR measurements
into points in R3. We require that the measurement density
(in measurements per m2) exceed a predefined tolerance, λρ.
When the measurement density is insufficient, we choose the
conservative option of marking the cell hazardous.

If measurement density tolerances are met, the cell is checked
for the presence of hazards. We begin by forming the blue
plane shown in Figure 5 as an approximation of the terrain at
the center of the cell. The triangular mesh is used to produce
a surface normal, n̂, and distance from the origin, d, as shown
in Equations (2) and (3). When the cell lies on the intersection
of two triangles, the surface normal which makes the greater
angle with the local gravity vector is taken.

Two planes are formed using the vehicle’s roughness toler-
ance, λd, as offsets in either direction orthogonal to the plane
defined by n̂ and d. These are defined as P1 and P2 in
Equations (4) and (5). We term points which are not between
the two planes exceptions. The fraction of measurements
which are exceptions is compared to the exception tolerance,
λe. If the fraction exceeds the tolerance, we mark the cell

STARTValid On
Interest Map?

Slope From
Tri. Mesh

Query Landing
Zone

Hazard In
Landing Zone?

Calculate Site
Roughness

Calculate Site
Score

Find Fuel
Requirements

TERMINATE

Yes

No

θ > λθ θ ≤ λθ

Yes

No

Not On
Scoreboard

On
Scoreboard

Figure 7: A block diagram of the operations used for scoring
landing sites.

hazardous. We find λe heuristically to minimize missed haz-
ard detections while keeping false positives to a reasonable
number.

P1 =
{
r ∈ R3 | rT n̂− c− λd = 0

}
(4)

P2 =
{
r ∈ R3 | rT n̂− c+ λd = 0

}
(5)

This hazard criteria considers only the number of exceptions,
and not the amount of deviation from the plane fit to the
center of the cell. The roughness metric discussed later in this
work considers explicitly the magnitude of deviations from
the plane fit of all measurements. This hazard identification
process serves as a check to quickly eliminate portions of the
terrain which appear hazardous.

Site Evaluation

The final major operation is to find and score potential land-
ing sites. We note that landing sites which are very close
to each other tend to have similar attributes. In addition,
guidance, navigation, and control uncertainties may preclude
targeting sites with high precision. For these reasons, a
bandwidth search is used to find quadtree cells which will be
considered for landing. The lower bound on the bandwidth
has the dual effect of placing a lower bound on the distance
between potential sites and limiting computational complex-
ity. The scoring operation is diagrammed in Figure 7. The
scoring elements are computed roughly in order of compu-
tational complexity. A variety of logic checks are used to
terminate the scoring process should any intermediate metric
fall outside predetermined tolerances. These checks avoid
unnecessary computational expense.
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Interest Score

The first check of the scoring algorithm is to reference the
interest map. The interest map is a fixed resolution dis-
cretization of the x-y map domain where each discretized cell
contains an interest score, I (x, y) ∈ [0, 1]. These interest
scores have been determined prior to flight according to fac-
tors such as scientific interest or known hazards. They could
even reflect more abstract requirements such as expected sky
visibility for orbital communications in mountainous terrain.
A higher score indicates a more desirable location. A score
of zero indicates a cell which cannot be selected for landing.
In this case, the score evaluation is terminated. We label the
interest score of the jth landing site as Ij .

Slope Score

The site slope is using the site’s unit normal, n̂j(x, y), pro-
vided by the triangular mesh. In case the site is found on
the boundary between two or more triangular elements, the
triangle with maximum slope is used. Slope of the jth site,
θj , is defined as the cosine of the angle between n̂j(x, y)
and the normalized gravity vector ĝ, Equation (6). To create
a slope metric, the inner product between n̂j(x, y) and the
normalized gravity field vector is found. We assume a flat
earth gravity model and θj reduces to the z component of
n̂j(x, y). We note that θj ∈ [0, 1] and when θj = 1 the
terrain has no incline. If the slope exceeds the vehicle slope
tolerances, score calculation is terminated and the site is not
considered for landing.

θj = (n̂j)T ĝ (6)

Roughness Score

Roughness score involves consideration of the landing zone
of the jth site, Zj . We search the quadtree to determine if
any of the cells within Zj have been marked hazardous for
insufficient measurement density or fraction of exceptions
greater than λe. If so, site scoring is terminated and the site is
not considered for landing.

If Zj does not contain any hazards, we search the SLAM
quadtree to locate all LiDAR measurements, pi ∈ Zj . We
form a landing plane Pj by using the triangular mesh to find
n̂j and cj as described previously. We find the deviation,
di, for each of the Nm measurements from P according to
Equation (7). These deviations are used to form a roughness
score, Rj , as shown in Equation (8).

di = pTi n̂
j − cj (7)

Rj =

Nm∑
i=1

√
d2i
Nm

(8)

Total Score

At this point, a score, sj , is assigned to the jth potential
landing site as a function of the site’s predefined interest
score, slope, and roughness along with weighting parameters
(αI , αθ, αR) which control the relative importance of each
consideration. These parameters are chosen according to
desired vehicle performance. For example, a high αI leads

to a selection which biases strongly towards scientifically
valuable sites, even if they have higher slope or rougher
terrain than their alternatives. A score of zero is considered
optimal, so sites with the lowest scores represent the best
landing sites. The formulation of sj is shown in Equation
(9).

sj = αI
(
1− Ij

)
+ αθ

(
1− θj

)
+ αRR

j (9)

Scoreboard

The LSS system maintains a scoreboard of the topNs scoring
sites. As each site has its score computed, it is referenced
with the scoreboard to determine if it should be ranked.
Fuel consumption is the final major consideration for the
LSS algorithm. To limit computational complexity, fuel
consumption is found only for sites which are ranked on the
scoreboard. We use the modified Apollo Guidance algorithm
[19] to produce an estimate of fuel consumption.

The Apollo Guidance algorithm represents guidance as a two-
point boundary value problem where the first point is the ve-
hicle’s current state and the second is the targeted landing site.
The algorithm fits a polynomial trajectory in time, t, between
these two points as a function of the touchdown time, T . As
with Apollo, T is chosen to produce a specified maximum
value of jerk and snap. The LSS system approximates fuel
consumption, F , by integrating required acceleration, a(t),
and gravity compensation over the polynomial trajectory as
shown in Equation (10).

F =

∫ T

0

|a(t) + g|dt (10)

5. RESULTS AND DISCUSSION

Figure 8: The Morpheus Vertical Take-off and Landing
Vehicle. Image Credit: NASA.

We evaluate our algorithm with the data gathered on a
rocket-powered vertical take-off and landing vehicle shown
in Figure 8. This vehicle, known as Morpheus, measures 3.7
meters in diameter, has a dry mass of 1100 kilograms, and a
propulsion system capable of producing 24,000 Newtons of
thrust. It also has a variety of senors onboard, including a
gimbal-mounted flash LiDAR and inertial measurement unit.
Morpheus test flights were conducted under the ALHAT pro-
gram between 2011 and 2014. One of the final test campaigns
(free flights 10 through 14) involved flying Morpheus over
a simulated lunar hazard field at Kennedy Space Center in
March 2014. We use the data gathered during free flight 14
(FF 14) [14].
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Figure 9: The man-made terrain which was scanned by
Morpheus. Image Credit: NASA.

Table 1: Parameters used for validating the LSS system

Parameter Value
λθ 5.0 deg
λd 0.3 m
λρ 5.0 meas/m2

λe 0.015
λZ 2.5 m
αI 1.0
αR 100.0
αθ 1000.0

FF 14 lasted approximately 96 seconds and included multiple
phases of flight. During a 20 second scanning phase, the
gimbal-mounted LiDAR swept the terrain shown in Figure 9.
We use LiDAR-Inertial measurements during this phase of
flight to produce a landing site solution. The terrain which
was scanned measures 100 by 100 meters and contains a
variety of hazards such as rocks and craters. These hazards
are representative of the lunar surface in size and distribution.
The largest boulders are semi-spherical and approximately
one meter in diameter. The largest craters are approximately
a half meter in depth and five meters in diameter. Our SLAM
system produces localization and map estimates which are
fed into the LSS system. The portion of the Morpheus flight
profile used for LSS can be divided into two components;
scanning and feature lock. During the scanning portion, the
flash LiDAR sweeps through the terrain and gathers mea-
surements over a wide area. During the feature lock portion,
the flash LiDAR focuses on a specific map feature for visual
odometry. As a consequence, no additional measurements
are taken from large portions of the map after the scanning
component ends. At the end of the feature lock segment, the
LiDAR is gimbaled upwards and away from the terrain to
protect its lens from dirt and debris during landing.

Figure 10 shows a truth DEM of the man-made terrain. Mor-
pheus did not scan the entire man-made terrain. Instead, it
scanned only the segment of terrain outlined in red. Notably,
some of the grassy terrain shown in Figure 9 was scanned and
is free of rocks or major hazards. The data-sets obtained for
this work were expressed in the East-North-Up (ENU) coor-
dinate system. To remain consistent, our results throughout
this paper are also presented in the ENU coordinate system.
The man-made terrain was not constructed with this system
in mind, and thus appears rotated in Figure 10 and subsequent
figures.

Table 1 documents the values of all tuning parameters and
tolerances used in the LSS system.

Figure 10: A DEM of the man-made terrain which was
scanned by Morpheus. The red box approximately outlines
the section of the terrain which is scanned with the LiDAR.

Figure 11: Mapping elevation estimates after the scanning
portion of the Morpheus flight.

A detailed discussion of the SLAM system performance is
available in the work presented by Setterfield et al [20].
Figure 11 shows the map estimates and Figure 12 shows the
estimate error. In this and all remaining figures, grey portions
of the image because they have not been scanned or have
insufficient measurement density. In general, mapping errors
are less than 0.5m.

Figure 13 shows LSS slope estimates and Figure 14 shows
estimate error when compared with the truth slope. Slope
truth is generated by forming a triangular mesh with every
cell from a down-sampled the truth DEM with ground sample
distance of 2λZ . Truth surface normals are taken as the
surface normals of this truth mesh. Error is found as the angle
between the truth surface normal and the estimated surface
normal. Across the board we achieve slope errors which are
less than 6 degrees. The highest slope errors occur in the
neighborhood of a relatively large crater.

Figure 15 shows the exception ratio produced by the LSS
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Figure 12: Elevation estimate error after the scanning portion
of the Morpheus flight.

Figure 13: Slope estimates produced by the LSS system.

system. We overlay the hazard on the truth elevation in
Figure 16. The hazard boundaries occasionally lie in areas
without measurements due to the discretization size of the
hazard map. Almost all rocks and craters are successfully
identified. However, the lower left region shows a large safe
area which was erroneously declared hazardous. This area
was scanned before MRL lock occurred. Since no locks were
established concurrently with these measurements, their re-
projection is subject to inertial measurement unit (IMU) drift.
This results in many points lying outside of the roughness
tolerances and the cells being marked hazardous. No portion
of any site’s landing zone, Z , is allowed to overlap with any
terrain marked hazardous.

To further validate our results, we generate a truth hazard
map using the previously discussed truth mesh. We find
the orthogonal distance between each element of the full
resolution truth DEM and the truth mesh. If this distance
exceeds roughness tolerances, we mark that cell as unsafe

Figure 14: The slope estimate error. High slope errors are
seen in the presence of a crater.

Figure 15: The exception ratio for the scanned terrain. Cells
with an exception ratio > λe are outlined in black.

on the truth hazard map. We compare our hazard map with
the truth hazard map in Figure 17. We note that only a
couple decimeter scale hazardous areas have been marked
safe by our system. These areas could possibly be categorized
correctly with denser LiDAR scans. Relatively large amounts
of safe terrain has been incorrectly marked hazardous. One
potential pitfall would be that the system is too conservative
in marking territory hazardous and there is no remaining
area large enough for the lander. Our algorithm accurately
classifies enough safe terrain that this is not an issue.

Figure 18 shows the landing sites overlaid on the truth hazard
map at the end of the scanning phase of flight. None of
the landing zones contain true hazards, indicating that our
algorithm successfully avoids them.

Figure 19 shows the LSS quadtree after 13 seconds of flight.
Portions of the map with a fine resolution have been scanned
by the LiDAR. Portions without scans remain at a course

8



Figure 16: The estimated hazards overlaid on truth elevation.
Black boxes outline cells which have been identified as haz-
ardous.

Figure 17: The hazard identification error. Blue regions
have correctly been identified. Green regions are estimated
hazardous but in truth safe. Red regions are estimated safe
but in truth hazardous.

resolution to reflect their uncertainty. Figure 20 shows the
quadtree at 20 seconds of flight. At this point, Morpheus has
completed its scan.

Figure 21 shows the LSS outputs at 13 seconds overlaid onto
the truth elevation terrain. Each of these sites has also had
its fuel consumption estimated. Note that Morpheus is still
scanning the terrain at this time. The sites produced are the
current best estimated sites given the current data. Looking
ahead to 20 seconds, Morpheus has finished its scanning and
is now in the feature lock segment of flight. Figure 22 shows
the LSS output overlaid onto the truth elevation terrain at 20
seconds. Some of the landing sites remain in the same place
but the optimal one is located in an area of the map which had
not yet been scanned at 13 seconds.

Figure 18: The truth hazard map with landing sites after
scanning has been completed. Blue regions are safe while
red ones are hazardous.

Figure 19: LSS quadtree after 13 seconds. Lines indicated
the division between quadtree cells. Divisions after the 8th

are not illustrated due to sizing limitations. Note the high
grid resolution in the portions of terrain which were scanned
by the LiDAR.

Fuel consumption is relatively constant among the sites. This
is because the distances between the vehicle and sites is much
greater than the distances between the sites themselves.

The final consideration for site selection is the predefined
interest metric. A map of this metric was created and shown
in Figure 23. All sites are located on higher interest regions of
the map. None are able to select the highest interest regions
because of the presence of hazards.

6. CONCLUSION
We have presented a landing site selection algorithm which
is optimized for searching a SLAM generated quadtree map.
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Figure 20: LSS quadtree after 20 seconds

Figure 21: The truth elevation map with selected landing
sites after 13 seconds. Black boxes around each site denote
the landing zone, Z . Dark black lines indicate regions which
are estimated to be hazardous. The legend details the score of
each site and its estimated fuel cost.

The algorithm considers slope, roughness, and previously
defined interest in weighting sites. The most promising candi-
dates have a rudimentary fuel consumption metric calculated.
We show that our system performs with real data gathered
from a rocket powered lander.
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