
Terrain-Relative Navigation
with Neuro-Inspired Elevation
Encoding

KRISTEN A. MICHAELSON
University of Texas at Austin, Austin, TX

FELIX WANG
Sandia National Laboratories, Albuquerque, NM

RENATO ZANETTI, Senior Member, IEEE
University of Texas at Austin, Austin, TX

Abstract— Terrain-relative navigation (TRN) encompasses a
wide variety of algorithms that perform localization with respect
to the terrain below a flying vehicle. In traditional approaches,
measurements of the terrain are matched to a map carried onboard.
This work presents a terrain-relative navigation filter with a
position measurement inspired by neural activity associated with
positioning in nature. The filter is shown to produce accurate
position measurements that outperform popular optimization and
template matching methods given poor prior knowledge of the
position. The proposed method is also better-suited to distributed
implementation than optimization-based methods.

Index Terms— terrain-relative navigation, inertial navigation,
kalman filter, neuro-inspired

Manuscript received XXXXX 00, 0000; revised XXXXX 00, 0000;
accepted XXXXX 00, 0000.
This article has been authored by an employee of National Technology
& Engineering Solutions of Sandia, LLC under Contract No. DE-
NA0003525 with the U.S. Department of Energy (DOE). The employee
owns all right, title and interest in and to the article and is solely
responsible for its contents. The United States Government retains and
the publisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published
form of this article or allow others to do so, for United States Govern-
ment purposes. The DOE will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access
Plan https://www.energy.gov/downloads/doe-public-access-plan.
This paper describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy
or the United States Government.
Corresponding author: K. Michaelson

Kristen A. Michaelson is with the Department of Aerospace Engineering
& Engineering Mechanics at The University of Texas at Austin, Austin,
TX 78705 USA (e-mail: kmichaelson@utexas.edu). Felix Wang is with
Sandia National Laboratories, Albuquerque, NM 87123 USA (e-mail:
felwang@sandia.gov). Renato Zanetti is with the the Department of
Aerospace Engineering & Engineering Mechanics and the Oden Institute
at The University of Texas at Austin, Austin, TX 78705 USA (e-mail:
renato@utexas.edu).

0018-9251 © 2020 IEEE

I. Introduction

THE task of an autonomous navigation system is to
provide timely, meaningful state estimates through-

out the period of operation. Aided inertial navigation is a
popular choice for autonomous vehicles with difficult-to-
characterize dynamics. During aided inertial navigation,
the state estimates are propagated forward in time using
measurements from high-rate inertial measurements units
(IMUs). Then, at less frequent intervals, they are updated
using observations of the environment from other sensors.
In most existing terrain-relative navigation (TRN) sys-
tems, position is deduced by comparing observations of
the terrain to a terrain map carried onboard. In this work,
we adapt a novel approach to terrain-relative localization
[1] for use in a navigation filter.

Early TRN algorithms were developed for missile
navigation [2], [3]. These methods are similar in prin-
ciple to iterative closest point (ICP), an optimization-
based point cloud matching algorithm [4]. If the terrain
measurements can be represented as depth images, then
image correlation techniques may also be used [5], [6].
In this article, we present an inertial navigation filter with
a neuro-inspired terrain-relative position measurement.
Many recently-introduced TRN algorithms use neural
networks to localize spacecraft relative to craters and
other features on the surface of the moon [7], [8]. Machine
learning methods have also been proposed for hazard
detection and guidance during spacecraft landing [9], [10],
[11].

Instead of a neural network, we use a phase candidate
dictionary built by applying a series of linear trans-
formations to elevation contours on a digital elevation
map (DEM). This representation is inspired by neural
activity associated with positioning in animals [12], [13].
The resulting data structure is smaller than the DEM
and better-suited to implementation on neuromorphic
hardware than optimization-based methods. We improve
on previous work [14] by introducing a novel position
update that significantly reduces the amount of working
memory required to process each terrain measurement.
The new update scheme also includes a more elegant
formulation of the online covariance computation and a
new measurement rejection technique based on a simple
image processing metric. Finally, we relax the assumption
of perfectly-known altitude.

The remainder of this article is organized as follows:
Section II details the biological inspiration behind the pro-
posed approach and outlines the processes for encoding
and decoding elevation values; Section III describes the
inertial navigation filter; Section IV gives the estimation
error results for a simulated trajectory and compares the
positioning performance to two other approaches; and
Section V presents conclusions and future work.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2020 1

mailto:kmichaelson@utexas.edu
mailto:felwang@sandia.gov
mailto:renato@utexas.edu

II. Background

A. Biological Inspiration

Scientists study navigation in animals by measuring
electrical activity in their brains. Activity in the grid
cells, a group of cells in the hippocampus, has been
identified as a key component of self-localization. Fig.
1 shows data collected during three experiments with rats
[12]. In each experiment, the rat roams freely around a
square enclosure. The animal’s path is shown in black.
Spikes in grid cell activity are marked with colored points.
Remarkably, the activity in each cell forms a distinct

Fig. 1: Grid cell activity during experiments with rats.
Adapted from [12] (see Supplementary Information, Fig.
3).

hexagonal grid pattern over the space. Activity peaks at
the center of each cluster and is sparser elsewhere. Figs.
2 and 3 show examples of computational representations
of hexagonal grids.

The brain contains hundreds of grid cells. Each fires
with unique scale, orientation, and x- and y- spatial phase
offsets. The scale is the distance between peaks in activity.
The orientation is the angle of an axis connecting adjacent
peaks with respect to an arbitrarily-defined frame. The
spatial phase offsets define the locations of the peaks in
the space. Because the grid activity is periodic, the spatial
phase offsets are defined on the interval [0, 2π). These
four parameters fully define any hexagonal grid.

(a) Grid scale, λ (b) Grid orientation, θ (c) Phase, (ϕx, ϕy)

Fig. 2: The four grid parameters. The spatial phase offsets
(ϕx, ϕy) ∈ [0, 2π) × [0, 2π) shift the grid along axes
connecting adjacent peaks. The red, blue, and yellow
points in Fig. 2c represent grids with the same scale and
orientation, but different spatial phase offsets.

It is likely that grid cells fire in response to perceived
environmental features [12]. In this work, we take in-
spiration from biological grid cell activity by associating
distinct hexagonal grids with elevation values on a DEM.
While a single hexagonal grid does not uniquely identify

Fig. 3: Grid overlap for positioning

position, in concert, a number of grids can yield an accu-
rate position estimate [1]. This concept is demonstrated in
Fig. 3. The green grid (left) and the blue grid (center) both
have a number of peaks throughout the navigation space.
Neither provides a singular position estimate. However,
when superimposed, a point of overlap emerges in the
first quadrant (right). This provides evidence that the
navigating agent is located at the intersecting point.

B. Reference Frame Conventions

A DEM is a matrix that encodes elevation values at
regularly-spaced intervals. Fig. 4 shows a DEM of a 400×
400 m section of the University of Texas at Austin campus
[15]. The size of the DEM is 800×800 pixels. Each pixel
in the DEM represents a single elevation value. In this
work, the origin is placed at the top-left corner of the
image. Fig. 5a shows the DEM in the pixel space.

0 250 500 750
x [px]

0

200

400

600

800

y
[p

x]

160

180

200

El
ev

at
io

n
[m

]
Fig. 4: Elevation map of the University of Texas at Austin
campus

Navigation is performed in a local east-north-up
(ENU) frame. The origin of the ENU frame is also placed
at the top left corner of the map. The x-axis points in the
same direction as the x-axis in the pixel space, and the
y-axis points in the opposite direction. Fig. 16 shows the
relationship between the two reference frames employed
in this work.

C. Elevation Encoding

Rather than comparing measured elevations to a DEM,
we use elevation measurements to perform lookups in the
phase candidate dictionary. The phase candidate dictio-
nary encodes the spatial phase offsets (ϕx,g, ϕy,g) that
place a peak of hexagonal grid g at the (x, y) pixel

2 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2020

y
 [

p
x
]

x [px]

(a) Pixel space

z [m]

(b) ENU Frame

Fig. 5: Navigating over a terrain elevation map. The
navigation reference frame is a local east-north-up (ENU)
frame defined with its origin at the top left corner of the
DEM. Points in the navigation frame are expressed in
meters.

location of elevation e on the DEM. Grid g has scale
λg pixels and orientation θ◦g , where g = 1 . . . N and N
is the number of grids in the phase candidate dictionary.
The spatial phase offsets are represented by 50×50 binary
phase candidate matrices. Fig. 6 illustrates the process of
building the phase candidate dictionary. The entire process
occurs offline before flight time; all the steps described
in this section happen only once, and the resulting data
structure is carried onboard instead of the DEM.

First, the DEM is divided into elevation contours.
Next, a erosion-dilation filter is applied to each contour
to remove features with poor spatial correlation. Fig. 6,
Step 1 shows the outcome of this process for for elevation
values between 179 m and 181 m on the map in Fig. 4.
The resulting contour plot captures the flat roof of the
building at the bottom-right corner of the DEM, a few
outer walls, and sections of sloped roofs.

For each pixel on the contour, we determine the spatial
phase offsets (ϕx,g, ϕy,g) that place a peak of grid g at
(x, y) in the pixel space. The spatial phase offsets are
computed using a shear transformation.[

x′

y′

]
=

[
cos(θg) − sin(θg +

π
6)

sin(θg) cos(θg +
π
6)

]−1 [
x
y

]
(1)

ϕx,g =
2π

λg
(x′ mod λg) (2)

ϕy,g =
2π

λg
(y′ mod λg) (3)

This process is repeated for each pixel on the contour.
The spatial phase offsets (ϕx,g, ϕy,g) are discretized into
50 bins of size 2π

50 radians. A phase value between 0 and
1× 2π

50 falls in bin 0, a phase value between 1× 2π
50 and

2× 2π
50 falls in bin 1, and so on. These bins become row-

column indices in the phase candidate matrix. The phase
candidate matrix for grid (λg = 295 px, θg = 2◦) is shown
in Step 3 in Fig. 6. Each value in the phase candidate
matrix is initialized to zero. Then, Eqs. 1-3 are applied
to each pixel on the contour. The resulting spatial phase
offsets are binned. If ϕx,g is placed in bin l, and ϕy,g

is placed in bin k, then a 1 is placed at index (k, l) in

(𝒙, 𝒚)

Draw elevation contour slice. Apply

erosion-dilation filter to remove noise.
1

𝑥′
𝑦′

=
cos 𝜃𝑔 − sin 𝜃𝑔 + Τ𝜋 6

sin 𝜃𝑔 cos 𝜃𝑔 + Τ𝜋 6

−1
𝑥
𝑦

𝝓𝒙,𝒈 =
2𝜋

𝜆𝑔
(𝑥′ mod 𝜆𝑔)

𝝓𝒚,𝒈 =
2𝜋

𝜆𝑔
(𝑦′ mod 𝜆𝑔)

Compute spatial phase offsets (𝝓𝒙,𝒈, 𝝓𝒚,𝒈)

that place a peak of grid 𝒈 at (𝒙, 𝒚)
2

(𝝓𝒙,𝒈, 𝝓𝒚,𝒈)

Fill in phase candidate matrix3

Elevation Map Encoding

Fig. 6: Elevation encoding. Steps 1-3 are repeated for
each elevation contour. Steps 2-3 are repeated for each
grid. If we divide the DEM into M elevation contours
and choose to encode N grids, then the phase candidate
dictionary contains M ×N phase candidate matrices.

the phase candidate matrix. If the value at index (k, l) is
already equal to 1, nothing is changed.

A phase candidate matrix is computed for all the
elevation contours for each grid in the phase candidate
dictionary. Fig. 7 shows a set of phase candidate matrices
for a grid with parameters (λg = 360 px, θg = 18◦).
While the information encoded in the phase candidate
matrices does not translate directly to the physical space,
it is clear that artifacts from the elevation contours are pre-
served. The erosion-dilation filter applied to each contour
(Fig. 6, Step 1) helps avoid saturating the phase candidate
matrices; if all the values in the phase candidate matrix are
1, then it contains no useful information. Phase candidate
matrices are accessed in the phase candidate dictionary

AUTHOR ET AL.: SHORT ARTICLE TITLE 3

using the lookup keys [b, g], where b is the index of an
elevation bin.

Fig. 7: Phase candidate matrices for grid (λg =
360 px, θg = 18◦) corresponding to 2 m elevation bins
between 165 m and 185 m.

D. Decoding Elevation Measurements

The phase candidate dictionary is used to compute
an (x, y) position in the ENU frame from elevation
measurements. Fig. 8 shows an example of a group of
elevation measurements. It contains 254 elevation values.

Fig. 8: A collection of elevation measurements. The
vehicle is located roughly at the center of the points.

The phase candidate dictionary is used to compute
the spatial phase offsets for each grid corresponding to
the position of the vehicle above the map. This process
is outlined in Fig. 9. First, the elevations are placed
into bins using the same discretization as the phase
candidate dictionary. Then, starting with grid g, a lookup
is performed for each observed elevation. This produces
254 phase candidate matrices.

Since the aim is to estimate the location of the vehicle
(not the location of each measured elevation), a roll
operation must be applied to each phase candidate matrix.
If the displacement between the vehicle’s location and the
location of a measured elevation is

[
dx dy

]T
, then the

phase shifts dϕx,g and dϕy,g are computed by applying
Eqs. 1-3 to the vector

[
dx dy

]T
. The phase shifts dϕx,g

and dϕy,g are placed into 2π
50 -length bins; the same used to

build the phase candidate matrices. The bin index of dϕy,g

is used to roll the rows of the phase candidate matrix, and
the bin index of dϕx,g is used to roll the columns.

Fig. 9, Step 1 shows a selection of the phase candidate
matrices produced from the elevation measurements in
Fig. 8 using the roll operation described above. Since

Perform a phase candidate dictionary lookup

for each measured elevation ෤𝒛𝒊 for grid 𝒈
1

Elevation Measurement Decoding

…

Sum the phase candidates to produce

phase measurement (෩𝝓𝒙,𝒈, ෩𝝓𝒚,𝒈)
2

(෩𝝓𝒙,𝒈, ෩𝝓𝒚,𝒈) Σ

Fig. 9: Elevation measurement decoding scheme. Steps
1-2 are repeated for each grid in the phase candidate
dictionary.

many of the measured elevations fall into the same bins,
the phase candidate dictionary lookups produce many
copies of the same phase candidate matrices. However,
since they are shifted in the phase space according to their
displacement relative to the vehicle, most of the phase
candidate matrices in Fig. 9, Step 1 are unique. After the
roll operation is applied to each phase candidate matrix,
the phase candidate matrices are summed to produce a
phase measurement for the grid. This summation opera-
tion produces a bright peak at the phase values common to
each phase candidate matrix; the phase values that place
a peak of grid g at the location of the vehicle in the pixel
space. The phase measurement (ϕ̃x,g, ϕ̃y,g) is the arg
max of the phase candidate sum.

III. Inertial Navigation

In Section IV, we simulate a constant-altitude flight
above the terrain shown in Fig. 4. The navigation filter
carries five states:

x =

rv
θ

 (4)

where r =
[
rx ry

]T
is the x-y position of the vehicle in

the ENU frame, v =
[
vx vy

]T
is the x-y velocity, and

θ is the heading angle. For the purposes of this work, the
ENU frame is taken to be an inertial frame. The sensor

4 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2020

z-axis remains aligned with the ENU z-axis throughout
the flight.

A. Dynamics Propagation

The dynamics are propagated using measurements
from an onboard inertial measurement unit (IMU). The
IMU measures acceleration ã and angular rate ω̃ in the
body frame. The accelerometer measurement is

ã = T b
ea+ ηa (5)

where a =
[
ax ay

]
is the true ENU-frame acceleration,

T b
e is a 2×2 direction cosine matrix that represents the the

transformation from the ENU frame to the body frame,
and ηa is an additive white Gaussian noise with power
spectral density PSDa = 1.361× 10−6 m2/s3 [16].

Similarly, the gyroscope measurement is

ω̃ = ω + ηg (6)

where ω is the true angular rate and ηg is an addi-
tive white Gaussian noise with power spectral density
PSDg = 6.250× 10−6 deg2/s [16].

The state dynamics are ẋ = f(x), where

f(x) =

va
ω

 . (7)

The estimated state is propagated in discrete time at the
IMU rate:

r̄(k + 1) = r̄(k) + v̄(k)∆t+
1

2
â(k)∆t2 (8)

v̄(k + 1) = v̄(k) + â(k)∆t (9)

θ̄(k + 1) = θ̄(k) + ω̃∆t (10)

where
â(k) = T̄ e

b (k)ã (11)

T̄ e
b is a direction cosine matrix computed from the heading

angle estimate θ̄, and ∆t is the time between time step k
and time step k + 1.

The discrete-time covariance propagation is

Pk+1 = ΦPkΦ
T +BQBT , (12)

where Φ = eF∆t, and F is the Jacobian of the continuous-
time error dynamics:

F =


02×2 I2×2 02×1

02×2 02×2

[
0 −1
1 0

]
â(k)

01×2 01×2 0

 . (13)

The skew-symmetric term in Eq. 13 manifests as a result
of the partial derivative of direction cosine matrix T̂ e

b with
respect to the heading angle. B is the Jacobian of the error
dynamics with respect to the noises ηa and ηg:

B =

− 1
2 T̂

e
b ∆t 02×1

−T̂ e
b 02×1

01×2 1

 , (14)

and
Q =

[
PSDaI2×2 02×1

01×2 PSDg

]
∆t. (15)

B. Sensor Measurements

A LIDAR measures range, azimuth, and elevation to
points on the terrain below the vehicle. In this section,
elevation ϵ refers to an angle between the vehicle and a
point on the terrain. The range is measured in meters, and
the azimuth and elevation are measured in radians.

ỹi =

ρiαi

ϵi

+ γi (16)

γi ∼ N
(
03×1,

0.252 0 0
0 (0.01π/180)2 0
0 0 (0.01π/180)2

)
(17)

The field of view (FOV) of the sensor is 20◦. The LIDAR
measurements are first converted to a point cloud in
the body frame. Then they are rotated into the inertial
frame using an onboard magnetometer. The location of
a point in the body frame is computed from the LIDAR
measurement as

r̃i,b =

ρ̃i cos(ϵ̃i) cos(α̃i)
ρ̃i cos(ϵ̃i) sin(α̃i)

ρ̃i sin(ϵ̃i)

 (18)

where ρ̃, ϵ̃, and α̃ are the noisy range, azimuth, and
elevation measurements respectively. The magnetometer
measures the heading of the vehicle in radians. The
magnetometer measurement is [17]:

θ̃ = θ + ξ (19)

ξ ∼ N

(
0,

(
2.5

3
π/180

)2
)

(20)

where θ is the true heading angle. The magnetometer
measurement is not used to update the vehicle heading
directly; rather, it is used to place the LIDAR point cloud
in the inertial frame. The inertial-frame point cloud is
r̃i,e =

[
x̃i,e ỹi,e z̃i,e

]T
, where:

r̃i,e =

[
Re

b(θ̃) 02×1

01×2 1

]
r̃i,b +

00
Ẑ

 (21)

where Re
b(θ̃) is the 2×2 rotation matrix that places points

from the body frame into the ENU frame, and Ẑ is the
estimated altitude of the vehicle (see Sec. D). Note that
Eq. 21 does not compute the x and y values of r̃i,e in the
inertial frame; rather, the pair (x̃i,e, ỹi,e) represents the
inertial-frame offset between the vehicle and the elevation
value z̃i,e. The inertial-frame offsets (x̃i,e, ỹi,e) and the
elevation values z̃i,e are used to estimate phase values
in the manner described in Section D. A pair of phase
measurements (ϕ̃x,g, ϕ̃y,g) is computed for each grid in
the phase candidate dictionary.

C. Measurement Update

The state update is applied in two stages: first, a priori
phase values are computed from the current position esti-
mate. A Kalman update is applied using the measurements

AUTHOR ET AL.: SHORT ARTICLE TITLE 5

(ϕ̃x,g, ϕ̃y,g). Then, the new phase values are combined in
a weighted update scheme to form an a posteriori position
estimate. The new position estimate is used to update the
other filter states.

The relationship between the position of the vehicle
and the corresponding phase values for each grid is linear
and can be computed offline.[

ϕ̄x,g

ϕ̄y,g

]
= Mg

[
r̄x
r̄y

]
mod 2π (22)

The matrix Mg encodes the transformation between the
inertial frame and the phase space of grid g:

Mg =
2π

λgd

[
cos(θg) − sin(θg +

π
6)

sin(θg) cos(θg +
π
6)

]−1 [
1 0
0 −1

]
(23)

where d is the discretization of the DEM in meters per
pixel.

The a priori phase covariance for grid g is

P̄ϕgϕg
= MgP̄rrM

T
g . (24)

The innovation is

νϕg =

([
ϕ̃x,g

ϕ̃y,g

]
−
[
bϕx

bϕy

])
−
[
ϕ̄x,g

ϕ̄y,g

]
(25)

where
[
bϕx

bϕy

]T
is the phase measurement bias, and

the values in νϕg are adjusted to fall within the interval
[−π, π).

The phase measurements are computed in the manner
described in Section D. Given the discretization of the
phase candidate matrices, each measured phase value is an
integer multiple of 2π

50 . This means the phase measurement
error is uniformly distributed over the interval (− 2π

50 , 0]×
(− 2π

50 , 0]. The phase measurements can be modeled as[
ϕ̃x,g

ϕ̃y,g

]
=

[
ϕx,g

ϕy,g

]
+

[
bϕx

bϕy

]
+ ζ (26)

where
[
ϕx,g ϕy,g

]T
are the true phase values, and[
bϕx

bϕy

]
=

[
− π

50
− π

50

]
(27)

is the mean of the uniform distribution. The phase mea-
surement noise ζ can be approximated as zero-mean
Gaussian with the covariance of the uniform distribution.

Rϕϕ =
1

3

(π

50

)2
I2×2 (28)

The phase update is then

W = HP̄ϕgϕg
HT +Rϕϕ (29)

K = P̄ϕgϕgH
TW−1 (30)[

ϕ̂x,g

ϕ̂y,g

]
=

[
ϕ̄x,g

ϕ̄y,g

]
+Kνϕg

(31)

and the updated phase covariance is

P̂ϕgϕg = (I −KH)P̄ϕgϕg (I −KH)T +KRϕϕK
T (32)

where H = I2×2.

The updated phase values form an ensemble of po-
sition estimates in the physical space. The position esti-
mates are[

r̂x,g
r̂y,g

]
= M−1

g

([
ϕ̂x,g

ϕ̂y,g

]
+ 2π

[
nϕx,g

nϕy,g

])
(33)

where the vector
[
nϕx

nϕy

]T
is the vector of divisors

of the modulo operation in (22). The error covariance of
each position estimate is

P̂rr,g = M−1
g P̂ϕgϕg

(M−1
g)T . (34)

Fig. 10a shows an example of grids with updated
phase values (ϕ̂x,g, ϕ̂y,g) superimposed over the map
space. Peaks of each grid form a tight cluster at the true
location of the vehicle. The lack of grid activity in the area
surrounding the cluster is by construction; the minimum
grid scale is 100 m. Fig. 10b shows the cluster in more
detail. Each point

[
r̂x,g r̂y,g

]
is shown with a 1σ error

covariance ellipse computed from P̂rr,g.
The updated position estimate

[
r̂x r̂y

]T
is computed

using a weighted sum of the points
[
r̂x,g r̂y,g

]T
. The

weights are proportional to the likelihoods of the phase
measurements:

wg =
N (νϕg

;02×1, HP̄ϕgϕg
HT +Rϕgϕg

)∑
g∈G N (νϕg

;02×1, HP̄ϕgϕg
HT +Rϕgϕg

)
(35)

where N (x;m, P) represents the evaluation of a Gaussian
with mean m and covariance P at point x, and G is the
set of measured grids (see Section E).

The updated position estimate is

r̂ =
∑
g∈G

wg r̂g (36)

and the updated covariance is

P̂rr =
∑
g∈G

wg

(
P̂rr,g + r̂g r̂

T
g − r̂r̂T

)
. (37)

The rest of the states are updated using the same up-
date technique as the Q-method EKF [18]. The Q-method
EKF update can be applied when the measurement is
only a function of a handful of states. Since position
is measured directly, we partition the state vector into
x̄1 ≜ r̄ and x̄2 ≜

[
v̄T θ̄

]T
. Then,

x̂2 = x̄2 + P̄21P̄
−1
11 (x̂1 − x̄1) (38)

P̂21 = P̄21P̄
−1
11 P̂11 (39)

P̂22 = P̄22 + P̄21(P̄
−1
11 P̂11P̄

−1
11 − P̄−1

11)P̄12 (40)

where x̂1 = r̂ and P̂11 = P̂rr.

D. Altitude Estimation

In Section B, LIDAR measurements are transformed
from the body frame to the inertial frame. This transfor-
mation requires knowledge of the altitude of the vehicle,
Ẑ, in order to correctly bin the measured elevations z̃i,e
for the phase candidate dictionary lookups (Eq. 21). We

6 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2020

0 50 100 150 200 250 300 350 400
x [m]

400

350

300

250

200

150

100

50

0

y
[m

]

(a) Grids with updated phase values

68 70 72
x [m]

334

333

332

331

330

329

328

y
[m

]

Grid 0
Grid 1
Grid 2
Grid 3
Grid 4
Grid 5
Grid 6
Grid 7
Grid 8
Grid 9
Grid 11
Grid 13
Grid 14
Grid 15
Grid 17
Grid 18
Grid 19
Grid 20
Grid 21
Grid 23
Grid 24

(b) Enhanced view of updated position values
[
r̂x,g r̂y,g

]T
with 1σ covariance ellipses P̂rr,g .

Fig. 10: Updated grids. A tight cluster of activity appears
at the vehicle position in the lower-left corner.

assume the true altitude of the vehicle (Z) is unknown,
but an altitude estimate is available:

Z̃ = Z + δ (41)

where the error δ is modeled as zero-mean Gaussian with
standard deviation σZ .

We process the decoding algorithm (Fig. 9) several
times for different values of Ẑ. We can estimate Z by
subtracting reasonable outcomes of δ from Z̃ and check-
ing whether the resulting phase measurements produce a
distinct cluster of activity near the estimated position of
the vehicle.

Fig 11 shows the result of this process for a vehicle
flying at Z = 500 m given a noisy altitude estimate of
Z̃ = 500.1 m with σZ = 30 cm. Since a range of [−1, 1]
m covers all reasonable outcomes of δ, we plot the full set
of grids in the phase candidate dictionary using the raw
phase measurements (Section D) calculated using Ẑ =

Z = 499.1 m
MSE =3.9

Z = 500.1 m
MSE =0.9

Z = 501.1 m
MSE =37.4

Fig. 11: Grid alignment for three altitude estimates

Z̃−1, Ẑ = Z̃, and Ẑ = Z̃+1. We then compute the mean-
squared error of all grid peaks within a 50 m radius of the
estimated position of the vehicle. The estimate Ẑ with the
smallest MSE is chosen as the altitude estimate, and the
corresponding phase values are used in the measurement
update (Section B).

For higher values of σZ , more altitude estimates must
be tested. However, these will be bounded by the number
of elevation bins on the map; any altitude estimate that
places elevations z̃i,e outside values that exist on the map
need not be considered. A step size of 1 m (or one half
of the elevation bin size) was found to work well for the
navigation scenario in Sec. IV.

E. Measurement Rejection

A phase candidate sum is computed from the LIDAR
measurement for each grid in the phase candidate dictio-
nary. Fig. 12 shows a set of phase candidate sums for the
measurement update in Fig. 10.

g = 1
PSNR = 7.54

g = 8
PSNR = 8.21

g = 19
PSNR = 9.02

g = 23
PSNR = 7.35

(a) Examples of accepted phase candidate sums

g = 10
PSNR = 3.75

g = 12
PSNR = 4.94

g = 16
PSNR = 4.37

g = 22
PSNR = 4.28

(b) Rejected phase candidate sums

Fig. 12: Phase candidate sums for the measurement in Fig.
8. Grids 10, 12, 16, and 22 are rejected based on the crite-
ria in Eq. 42. The corresponding phase candidate sums are
visually noisier and have larger areas of increased activity
than the accepted phase candidate sums.

The four phase candidate sums in Fig. 12a each
have a clear, bright peak. The phase candidate sums in
Fig. 12b are more ambiguous. This means that the set
of elevation values in the LIDAR measurement do not

AUTHOR ET AL.: SHORT ARTICLE TITLE 7

uniquely determine a phase value for the corresponding
grid. Phase candidate sums that do not have a clear
maximum should not be used in the position estimate.

A rejection criterion is defined for phase candidate
sums based on the peak signal-to-noise ratio, a measure
traditionally used to quantify image reconstruction qual-
ity. The peak signal-to-noise ratio is

PSNR = 10 log10

[
max(I)2

1
N2

∑N
i=0

∑N
j=0 I(i, j)− Ĩ(i, j)

]
(42)

where I is an N ×N noise-free image, and Ĩ is its noisy
counterpart. Eq. 42 is evaluated for each phase candidate
sum, where Ĩ is the phase candidate sum itself, and I is an
“ideal” phase candidate sum with the number of elevation
measurements at the (i, j) index of the maximum of
Ĩ and zeros everywhere else. I is ideal in the sense
that it represents perfect evidence for phase measurement[
ϕ̃x,g ϕ̃y,g

]T
. In reality, most phase candidate sums

contain areas of increased activity close to the maximum
(see Fig. 12).

A PSNR value of 5.0 was chosen as the acceptance
threshold for the filter in Section IV. Phase candidate
sums with PSNR > 5.0 were used as phase measure-
ments, and phase candidate sums with PSNR ≤ 5.0 were
rejected.

IV. Results

The filter is tested on data from a simulated flight over
a section of the University of Texas at Austin campus (see
Fig. 4). The vehicle flies at an altitude of 500 m with a
constant speed of 10 m/s. As it flies, its heading points in
the direction of the velocity vector. The IMU propagation
rate is 100 Hz. Fig. 13 shows the trajectory.

0 100 200 300
x [m]

0

-100

-200

-300

y
[m

]

160

180

200

El
ev

at
io

n
[m

]

Fig. 13: Trajectory for the simulated flight

The initial uncertainty is 10 m in position, 1 m/s in
velocity, and 5 degrees in heading.

P0 =

102I2×2 0 0
0 1.02I2×2 0
0 0 (5.0 π

180)
2

 (43)

A pair of LIDAR and magnetometer measurements are
recorded every 2 seconds. At each measurement time,

a noisy altitude estimate Z̃ with noise σZ = 30 cm is
available. The altitude Ẑ is predicted using the method
described in Sec. D.

The phase candidate dictionary was built using a DEM
with resolution 0.5 m/px and an elevation bin resolution
of 2 m. It contains 25 grids. The grids have randomly-
generated scales λg between 200 and 400 px (100 and
200 m) and orientations θg between 0◦ and 24◦. Table I
lists the grid parameters used in this study.

Grid λg [px] θg [◦]
0 265 0◦

1 300 1◦

2 295 2◦

3 380 3◦

4 365 4◦

5 240 5◦

6 330 6◦

7 375 7◦

8 320 8◦

9 250 9◦

10 200 10◦

11 315 11◦

12 230 12◦

13 340 13◦

14 245 14◦

15 400 15◦

16 220 16◦

17 395 17◦

18 360 18◦

19 350 19◦

20 290 20◦

21 280 21◦

22 215 22◦

23 305 23◦

24 275 24◦

TABLE I: Table of grid values

Figure 14 shows the set of updated grids for six
LIDAR measurements recorded along the trajectory in
Fig. 13. In each figure, a box indicates the position of
the vehicle. The grids at t = 50 s are a good example
of measurement rejection. The terrain below the vehicle
in that area of the map is mostly vegetation. As a result,
many of the phase candidate sums do not have a clear
maximum. The associated grids are are not included in
the position update (see Section E).

Fig. 14: Grid alignment for points along the trajectory

Figure 15 shows the state estimation error for 100
Monte Carlo runs. The measurement covariance is com-

8 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2020

0 20 40 60 80
25

0
25

x
[m

]

0 20 40 60 80
25

0
25

y
[m

]

0 20 40 60 80
2.5
0.0
2.5

v x
 [m

/s
]

0 20 40 60 80
2.5
0.0
2.5

v y
 [m

/s
]

0 20 40 60 80
Time [s]

10
0

10

Fig. 15: Estimation error results (gray) and mean 3σ
covariance bounds (red)

puted online using the method described in Section C,
and phase measurements are rejected using the criteria in
Section E. While slightly conservative, the filter success-
fully maintains custody of the vehicle. The 3σ position
error after convergence is on the order of 2.5 m. The 3σ
velocity error is on the order of 0.15 m/s, and the 3σ
heading error is on the order of 1◦.

A. Comparison study

We provide context for these results by compar-
ing them to position measurements generated with two
other methods: ICP and image template matching. ICP
computes a six degree-of-freedom transformation that
aligns a measured point cloud to a reference point cloud.
Both point-to-point [4] and point-to-plane [19] registra-
tion were computed using Open3D [20]. Image template
matching was conducted in MATLAB using the 2D fast
Fourier transform (FFT). Depth images were generated at
3× the resolution of the point clouds used in the proposed
approach and ICP; this was the minimum resolution
required to reliably produce matches. Fig. 16a shows an
example of the point cloud measurements used to test ICP
and the proposed approach. Fig. 16b shows an example
depth image.

The sensor measurement noise characteristics were the
same as those used in the filter (see Section B). All four
algorithms were given the true altitude, Z = 500 m, so
the altitude estimation process in Sec. D was not needed
for the proposed approach. Each algorithm was initialized
with a rotation from a noisy magnetometer measurement

(a) ICP (b) FFT

Fig. 16: Data for comparison study

and position estimate

r̃ = r+ ζ (44)

where r is the true (x, y) position of the sensors in the
ENU frame and ζ is a random vector with magnitude 30
m, the 3σ initial position error in the filter (see Eq. 43).

For each point cloud measurement, the proposed ap-
proach was carried out as described in Section C. Given
the same point cloud measurement, a transformation from
the LIDAR point cloud to the DEM was computed using
ICP. Each ICP algorithm was initialized with position
value r̃ and given a 50 m maximum search radius. The
(x, y) values from the ICP transformation result were
taken as the position measurement. Similarly, FFT-based
image template matching was conducted using the depth
image and the DEM. A 50 m search radius was also
enforced for image template matching, even though it is
a global approach.

The position error is ||r− r̂||, where r̂ is the position
estimate computed by each algorithm. Positioning error
was computed for measurements generated from 1000
random positions and heading angles. All four algorithms’
position errors are concentrated near zero. However, for
the very sparse measurement scenario under considera-
tion, the proposed approach vastly outperforms ICP and
image template matching. Fig. 17 shows a zoomed-in
view of the tails of each error distribution. The point-
to-point ICP error distribution has a much thicker tail
than that of the proposed approach. Point-to-plane ICP
actually achieves an error value near zero (< 1 m) at about
the same frequency as the proposed approach, but there
is also a second mode at roughly 15 m of error. These
results highlight a fundamental shortcoming of ICP; poor
initialization can lead to convergence at local minima.

The proposed approach is more robust to poor initial-
ization, since the only requirement for producing an accu-
rate position measurement is that the values

[
nϕx nϕy

]T
in (33) are correct. This is true as long as the error in the
prior position estimate is no greater than the scale of the
smallest grid in the phase candidate dictionary. In cases
where the initial position estimate is very poor or un-
known, previous works have demonstrated the accuracy of
global position estimation using sums of two-dimensional
sinusoids with peaks placed at the grid peaks [14], [21].
In principle, any ambiguous values

[
nϕx nϕy

]T
could

be computed from a raw phase measurement by plotting

AUTHOR ET AL.: SHORT ARTICLE TITLE 9

0 20 40 60 80
0

20

40

tri

al
s

Proposed

0 20 40 60 80
0

20

40
ICP (Point-to-Point)

0 20 40 60 80
Posn. Err. [m]

0

20

40

tri

al
s

ICP (Point-to-Plane)

0 20 40 60 80
Posn. Err. [m]

0

20

40
FFT

Fig. 17: Position measurement errors

all the grid peaks and finding the tightest cluster (similar
to Sec. D).

The LIDAR measurements are simulated using ele-
vation values on the DEM. This gives ICP and image
template matching an advantage, since they compute
position values by finding a transformation that matches
the two. The DEM contains vegetation and other small
features that may change over time. The proposed ap-
proach provides accurate position values despite the pres-
ence of these features, since they are removed when the
phase candidate dictionary is encoded (see Fig. 6, Step
1). This suggests that the proposed approach may be
more robust to differences between real-world measured
LIDAR point clouds and the DEM than traditional scan-
matching techniques.

Finally, we address the difference in memory require-
ment between the three approaches. The phase candidate
dictionary is made up of 50× 50 binary phase candidate
matrices. The phase candidate matrices are encoded for 25
grids using 31 elevation bins of size 2 m. Therefore, the
size of the phase candidate dictionary is 50×50×25×31
bits, or about 0.24 MB. If the elevation values in the DEM
are encoded at half-precision, then the size of the DEM is
800×800×16 bits, or about 1.25 MB. Thus, the proposed
approach achieves acceptable position accuracy with an
onboard data structure five times smaller than the DEM.

V. Conclusion

This article presents a terrain-relative navigation filter
with a novel position update inspired by navigation in
nature. Instead of matching elevation measurements to
an onboard terrain map, the filter uses simple dictionary
lookups to compute phase values from LIDAR measure-
ments. Due to the linear relationship between the physical
space and the phase space, the position measurement
uncertainty can be computed online at measurement time.
We also introduce an altitude estimation technique for
cases where the true altitude is unknown but the altitude
uncertainty is well-characterized.

This iteration of the work was completed with an
eye toward hardware implementation. The elevation bins
are large; 2 m gives plenty of room for noisy altitude

estimates and large LIDAR range errors. A strict phase
measurement rejection criterion and likelihood weighting
allow the filter to deliver accurate position estimates
despite the relatively small size of the phase candidate
dictionary. Large grid scales make tight clusters of activity
obvious, which allows for robust initialization when there
is little or no prior position information.

One remaining challenge is implementing a full six
degree-of-freedom state estimator. In general, terrain-
aided navigation algorithms that rely on elevation mea-
surements benefit from the range sensor pointing down-
ward at all times; relaxing this assumption and accounting
for the correlation between pitch/roll angles and measured
elevation is left as future work. We would also like to
decrease the field of view of the LIDAR. Like other
TRN methods, the proposed approach suffers when the
measured terrain is insufficiently distinguishable from
other parts of the map. Measurement uniqueness can
always be improved by including more of the terrain;
the challenge is to localize with respect to an image that
represents the smallest distinguishable subregion.

Power considerations are an important factor to adopt-
ing a given onboard navigation approach. One of the main
advantages to adopting a more neuro-inspired approach
to localization is that it becomes a better fit for imple-
mentation on emerging neuromorphic hardware platforms.
As contrasted with more traditional von Neumann ar-
chitectures, neuromorphic platforms are compute accel-
erators developed according to neural design principles
such as distributed event-based processing and processing
in memory architectures [22], [23]. Furthermore, these
platforms have demonstrated significant power efficiency
in accelerating both neural and non-neural algorithms
[24], [25]. Similar to the improved throughput achieved
through other compute accelerators such as GPUs, there
are latency advantages to neuromorphic solutions as well,
where there is an algorithmic tradeoff toward distributed
computation over simpler serial components, as contrasted
with singular complex serial computation.

Acknowledgment

This work was supported by a Sandia National Lab-
oratory grant to the University of Texas at Austin. The
authors would like to thank Kyle Morgenstein for his early
work on the project and Tucker Haydon for his advice on
numerous topics, as well as his care and attention during
the review and approval process.

REFERENCES

[1] F. Wang, C. Teeter, S. Luca, S. Musuvathy, and J. B. Aimone,
“Localization through grid-based encodings on digital elevation
models,” in ICONS, 2022.

[2] J. P. Golden, “Terrain contour matching (tercom): a cruise missile
guidance aid,” in Image processing for missile guidance, vol.
238. SPIE, 1980, pp. 10–18.

[3] L. Hostetler and R. Andreas, “Nonlinear kalman filtering tech-
niques for terrain-aided navigation,” IEEE Transactions on
Automatic Control, vol. 28, no. 3, pp. 315–323, 1983.

10 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2020

[4] P. J. Besl and N. D. McKay, “Method for registration of 3-
d shapes,” in Sensor fusion IV: control paradigms and data
structures, vol. 1611. Spie, 1992, pp. 586–606.

[5] R. A. Hewitt, T. P. Setterfield, and N. Trawny, “Lidar-based
map relative localization performance analysis for landing on
europa,” in 2021 IEEE Aerospace Conference (50100). IEEE,
2021, pp. 1–13.

[6] T. P. Setterfield, R. A. Hewitt, P.-T. Chen, A. T. Espinoza,
N. Trawny, and A. Katake, “Lidar-inertial based navigation
and mapping for precision landing,” in 2021 IEEE Aerospace
Conference (50100). IEEE, 2021, pp. 1–19.

[7] R. E. Gold, S. G. Catalan, B. A. Jones, and R. Zanetti, “Extending
capabilities of crater navigation and timing for autonomous
lunar orbital operations,” in Space Imaging Workshop, 2022.

[8] L. Downes, T. J. Steiner, and J. P. How, “Deep learning crater
detection for lunar terrain relative navigation,” in AIAA SciTech
2020 Forum, 2020, p. 1838.

[9] R. Moghe and R. Zanetti, “A deep learning approach to hazard
detection for autonomous lunar landing,” The Journal of the
Astronautical Sciences, vol. 67, no. 4, pp. 1811–1830, 2020.

[10] Driver, Travis*, Tomita, Kento*, K. Ho, and P. Tsiotras, “Deep
monocular hazard detection for small body landing,” in
AAS/AIAA Space Flight Mechanics Meeting, 2023, pp. 1–17,
*These authors contributed equally to this work.

[11] A. Scorsoglio, A. D’Ambrosio, L. Ghilardi, B. Gaudet, F. Curti,
and R. Furfaro, “Image-based deep reinforcement meta-learning
for autonomous lunar landing,” Journal of Spacecraft and
Rockets, vol. 59, no. 1, pp. 153–165, 2022.

[12] C. Barry, R. Hayman, N. Burgess, and K. J. Jeffery, “Experience-
dependent rescaling of entorhinal grids,” Nature neuroscience,
vol. 10, no. 6, pp. 682–684, 2007.

[13] W. Dorrell, P. E. Latham, T. E. Behrens, and J. C. Whittington,
“Actionable neural representations: Grid cells from minimal
constraints,” arXiv preprint arXiv:2209.15563, 2022.

[14] K. Michaelson, F. Wang, and R. Zanetti, “Terrain-relative naviga-
tion with neuro-inspired elevation encoding,” in ION PLANS,
2023.

[15] P. Passalacqua, “Austin, TX, rapid response, 2015 airborne li-
dar survey,” National Center for Airborne Laser Mapping
(NCALM), 2015.

[16] Ultra-high performance inertial measurement unit (IMU):
STIM300 Product Brief, Sensonor, Aug 2017.

[17] Data sheet: BMM150, Bosch, Apr 2020, rev. 1.4.
[18] T. Ainscough, R. Zanetti, J. Christian, and P. D. Spanos, “Q-

method extended kalman filter,” Journal of Guidance, Control,
and Dynamics, vol. 38, no. 4, pp. 752–760, 2015.

[19] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp
algorithm,” in Proceedings third international conference on
3-D digital imaging and modeling. IEEE, 2001, pp. 145–152.

[20] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library
for 3D data processing,” arXiv:1801.09847, 2018.

[21] T. Solstad, E. I. Moser, and G. T. Einevoll, “From grid cells to place
cells: a mathematical model,” Hippocampus, vol. 16, no. 12, pp.
1026–1031, 2006.

[22] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E.
Dean, G. S. Rose, and J. S. Plank, “A survey of neuromorphic
computing and neural networks in hardware,” arXiv preprint
arXiv:1705.06963, 2017.

[23] J. B. Aimone, “Neural algorithms and computing beyond moore’s
law,” Communications of the ACM, vol. 62, no. 4, pp. 110–110,
2019.

[24] M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. F.
Guerra, P. Joshi, P. Plank, and S. R. Risbud, “Advancing
neuromorphic computing with loihi: A survey of results and
outlook,” Proceedings of the IEEE, vol. 109, no. 5, pp. 911–
934, 2021.

[25] J. D. Smith, A. J. Hill, L. E. Reeder, B. C. Franke, R. B. Lehoucq,
O. Parekh, W. Severa, and J. B. Aimone, “Neuromorphic scaling

advantages for energy-efficient random walk computations,”
Nature Electronics, vol. 5, no. 2, pp. 102–112, 2022.

Kristen A. Michaelson obtained a B.S. in Me-
chanical Engineering from Brown University in
2016 and an M.S. in Aerospace Engineering
from the University of Texas at Austin in
2020. She is currently a Ph.D. student in Dr.
Zanetti’s Nonlinear Estimation and Autonomy
Research group. Kristen’s research interests in-
clude nonlinear estimation, terrain-relative nav-
igation, and particle filers.

Felix Wang Felix Wang is a Senior Member
of Technical Staff in the Cognitive and Emerg-
ing Computing Department at Sandia National
Laboratories. Prior to Sandia, he obtained a
PhD in Electrical and Computer Engineering
from the University of Illinois at Urbana-
Champaign in 2018, with a focus in signal
processing. Felix’s research interests include
biologically inspired algorithms, neuromorphic
and neural computing, representation learning,

and distributed computation.

Renato Zanetti (Senior Member, IEEE) is an
Assistant Professor of Aerospace Engineering
at The University of Texas at Austin. Prior to
joining UT he worked as an engineer at the
NASA Johnson Space Center and at Draper
Laboratory. Renato’s research interests include
nonlinear estimation, onboard navigation, and
autonomous aerospace vehicles.

AUTHOR ET AL.: SHORT ARTICLE TITLE 11

	Introduction
	Background
	Biological Inspiration
	Reference Frame Conventions
	Elevation Encoding
	Decoding Elevation Measurements

	Inertial Navigation
	Dynamics Propagation
	Sensor Measurements
	Measurement Update
	Altitude Estimation
	Measurement Rejection

	Results
	Comparison study

	Conclusion
	REFERENCES
	Biographies
	Kristen A. Michaelson
	Felix Wang
	Renato Zanetti

