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Abstract. The ensemble Gaussian mixture filter combines the simplicity and power of Gaussian4
mixture models with the provable convergence and power of particle filters. The quality of the en-5
semble Gaussian mixture filter heavily depends on the choice of covariance matrix in each Gaussian6
mixture. This work extends the ensemble Gaussian mixture filter to an adaptive choice of covariance7
based on the parameterized estimates of the sample covariance matrix. Through the use of the expec-8
tation maximization algorithm, optimal choices of the covariance matrix parameters are computed9
in an online fashion. Numerical experiments on the Lorenz ’63 equations show that the proposed10
methodology converges to classical results known in particle filtering. Further numerical results with11
more advanced choices of covariance parameterization and the medium-size Lorenz ’96 equations12
show that the proposed approach can perform significantly better than the standard EnGMF, and13
other classical data assimilation algorithms.14
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1. Introduction. Sequential data assimilation [5, 37] aims to perform Bayesian18

inference on the state of some natural process from an inaccurate computational model19

and sparse and noisy observations. Traditionally, particle filter methods have been20

viewed as theoretically nice, but practically useless for inference of high dimensional21

systems. Recent advances in particle filters for high dimensions [43] have challenged22

this view.23

Classical particle filters such as the bootstrap particle filter [37] make and em-24

pirical measure assumption on the prior distribution. Conversely filters such as the25

ensemble Kalman filter [17, 10] make an assumption that the first two moments of the26

empirical distribution are the only ones relevant to performing the inference, similar27

to a Gaussian assumption on the distribution. Gaussian mixture models (GMM) can28

extend the idea of an empirical measure approximation of the prior to a larger set29

of possible prior distributions, that combines the best of both worlds: it is able to30

represent non-Gaussian distributions while still assuming that the only two moments31

that matter to each mixture mode are its mean and covariance. The Gaussian sum32

filter [41] takes advantage of nice properties of GMMs, suffers from needing to prop-33

agate the covariance of each mode, and from requiring the need of many heuristics to34

ensure that the modes do not degenerate [36].35

The ensemble Gaussian mixture filter (EnGMF) [4, 25, 44] and its related cousin36

the adaptive Gaussian mixture filter (AGMF) [42, 43] are sequential data assimilation37

algorithms that make use of the GMM approximation to the prior through the use of38

kernel density estimation (KDE) techniques. The EnGMF is based on the observation39

that Gaussian mixture models, under linear observation assumptions, are closed under40

multiplication [3]. The quality of the inference produced by the EnGMF is directly41
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related to the accuracy of the GMM assumption about the prior distribution. This42

prior distribution is typically determined in whole by Monte Carlo samples through43

choices of the means and covariances of the GMM. While the choice of means is44

readily apparent as that of the Monte Carlo samples, the choice of covariance is less45

straightforward, and is the subject of much of the research surrounding KDE [40, 9].46

The key innovations of this work are as follows: We first provide theoretical47

results that show the convergence of the EnGMF for a certain class of probabilistic48

assumption on the bandwidth parameter in the classical EnGMF algorithm. We next49

generalize the EnGMF by introducing the parameterization of statistical covariance50

matrix estimates from other ensemble-based filters to the EnGMF. We finally show51

how the EnGMF machinery could be used to choose the value of these parameters52

in an optimal adaptive fashion by utilizing the expectation maximization algorithm.53

Thus the sum total of these results is the adaptive Gaussian mixture filter (AEnGMF)54

which utilizes all this machinery for inference.55

This work is organized as follows: we first introduce the data assimilation prob-56

lem and the EnGMF in section 2. We next present the adaptive ensemble Gaussian57

mixture filter in section 3 along with the expectation maximization algorithm in sub-58

section 3.1. Numerical experiments are provided in section 4, and concluding remarks59

in section 5.60

2. Background. Assume that we are given a model that evolves a natural61

process of interest from time index i− 1 to time index i,62

(2.1) xt
i = M(xt

i−1) + ξi,63

with model error ξi. For the remainder of this paper, we assume that the model error64

ξi is always zero, and thus the model (2.1) is exact.65

The goal is to estimate the true state xt of said process given some non-linear66

observation,67

(2.2) yi = H(xt
i) + ηi,68

with observation operator H and an additive error term ηi. Denote with Yi all the69

observations up to and including time index i,70

(2.3) Yi = {y1, y2, ... yi}.71

Given a prior at time index i, namely xb
i = xt

i|Yi−1, we aim to perform Bayesian72

inference on these two sources of information,73

(2.4) p(xb
i |yi) ∝ p(xb

i ) p(yi|xb
i )74

resulting in the ‘analysis’, xa
i = xb

i |yi = xt
i|Yi.75

Remark 2.1 (Model error). All of the derivations and algorithms presented in this76

work do not require the model error in (2.1) to be zero. This assumption is merely77

made for convenience in this work.78

We next describe how a solution to (2.4) can be achieved using Monte Carlo79

sampling and the EnGMF.80

2.1. The Ensemble Gaussian Mixture Filter. Assume that we have a col-81

lection of N particles at time index i that is represented as Xb
i = [xb

i,1, x
b
i,2, . . . , x

b
i,N ]82

and is composed of weighted samples from the prior distribution p(xb
i ) with weights83
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{ui,j}Nj=1. Given non-linear observations of the truth (2.2), our aim is to find a col-84

lection of N particles Xa
i = [xa

i,1, x
a
i,2, . . . x

a
i,N ] containing samples from the posterior85

distribution, such that the posterior is the prior conditioned by the observations,86

(2.5) xa
i = xb

i |yi,87

solving the Bayesian inference problem (2.4).88

As the prior distribution of the particles is unknown, our prior knowledge can be89

used to construct an approximation thereto. From kernel density estimation theory,90

the ensemble Gaussian mixture filter (EnGMF) assumes that the distribution of the91

prior state at time index i, xb
i , is given by the Gaussian mixture,92

(2.6) xb
i ∼

N∑
j=1

ui,j N
(
x̄b
i,j , B

b
i,j

)
,93

where each mean exactly corresponds to one of the particles in the ensemble,94

(2.7) x̄b
i,j := xb

i,j .95

The observation distribution at time index i is given by the Gaussian mixture,96

(2.8) yi|xt
i ∼

M∑
k=1

vi,k N (ȳi,k, Ri,k) ,97

which is a generalization of the typical Gaussian assumptions on the observation error98

made in data assimilation literature.99

The posterior distribution at time index i is defined [4] by the Gaussian mixture,100

(2.9) xa
i ∼

N∑
j=1

M∑
k=1

wi,j,k N
(
x̄a
i,j,k, B

a
i,j,k

)
,101

with the following set of definitions,102

(2.10)

x̄a
i,j,k = x̄b

i,j −Gi,j,k

(
H(x̄b

i,j)− ȳi,k
)
,

Ba
i,j,k =

(
I−Gi,j,kH

T
i,j

)
Bb

i,j ,

Gi,j,k = Bb
i,jH

T
i,j

(
Hi,jB

b
i,jH

T
i,j +Ri,k

)−1

,

wi,j,k ∝ ui,jvi,k N
(
ȳi,k

∣∣∣H(x̄b
i,j), Hi,jB

b
i,jH

T
i,j +Ri,k

)
,

Hi,j =
dH
dx

∣∣∣∣
x=x̄b

i,j

.

103

where x̄a
i,j,k, are the analysis Gaussian mixture means, Ba

i,j,k are the analysis Gauss-104

ian mixture covariances, Gi,j,k is similar to a gain matrix, wi,j,k are the Gaussian105

mixture weights, and Hi,j is the linearization of the observation operator around x̄b
i,j .106

When the observation operator is linear, H(x) = Hx, the posterior GMM (2.9) is ex-107

actly the posterior corresponding to the assumed prior (2.6) and the observation (2.8)108

distributions.109

Each Gaussian distribution in (2.6) has the following probability density function,110

(2.11) N (x|x̄b
i,j ,B

b
i,j) =

∣∣∣2πBb
i,j

∣∣∣− 1
2

e−
1
2 (x−x̄b

i,j)
T
Bb,−1

i,j (x−x̄b
i,j),111

with the other Gaussian distributions in (2.8)–(2.10) having a similar form.112
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Remark 2.2 (Normalization Factors). Note that when either the observation113

operator H is non-linear, or the kernel covariance matrices Bi,j are not identical, extra114

care must be taken when computing the weights wi,j,k in (2.10), as the covariances115

Hi,jB
b
i,jH

T
i,j + Ri,k are not necessarily equal. This means that, the normalization116

factors in each Gaussian term (similar to (2.11)),117

(2.12)
∣∣∣2π (Hi,jB

b
i,jH

T
i,j +Ri,k

)∣∣∣− 1
2

,118

are required to be computed. This can be performed in a computationally efficient119

manner through the use of the Cholesky decomposition and the log-sum-exp trick [7].120

While the transformation of the distribution in (2.9) results in an estimate of the121

posterior distribution, the means x̄a
i,j of this distribution are not actually samples122

from this distribution, thus it is not the case that the posterior samples are equivalent123

to these means,124

(2.13) xa
i,j ̸= x̄a

i,j .125

A resampling procedure is therefore required in order to obtain independently and126

identically distributed (iid) samples from (2.9). What follows is one such procedure.127

Procedure 2.3 (EnGMF resampling). Given the final posterior Gaussian mixture128

distribution in (2.9), it is possible to resample S samples from the posterior GMM129

through the following procedure:130

1. for s = 1, . . . , S, sample the random variable ℓ from the discrete distribution131

defined by the weights {wi,j,k}j,k,132

2. sample Xa
i,s from the Gaussian N

(
x|x̄a

i,ℓ,B
a
i,ℓ

)
,133

enabling samples to be generated from the posterior.134

Remark 2.4 (Arbitrary Sampling of the Posterior). Note, that using Proce-135

dure 2.3 we are able to arbitrarily sample from the posterior distribution. This means136

that the number of posterior samples S could be significantly larger or significantly137

smaller than the original number of samples N used to generate said posterior.138

Remark 2.5 (Independent and Identically Distributed Samples). Note that while139

we make the convenient assumption that the samples generated by Procedure 2.3 are140

iid, this is not actually the case. The parameters of each mode of the GMM are141

actually functions of the prior samples, and are themselves random variables, and142

thus introduce a dependence if two samples come from the same mode. This hidden143

dependence of the particles means that they are merely conditionally independent,144

making them exchangeable, but not independent in general.145

Remark 2.6 (Prior Uniform Weights). If Procedure 2.3 is utilized to re-sample146

the particles at every step of the assimilation, then the prior distribution weights in147

(2.6) are all uniform ui,j =
1
N under the assumption of a uniform transition density.148

Remark 2.7 (Differences Between the EnGMF and the AGMF). Unlike the En-149

GMF, in the AGMF (see [42, 43]), instead of resampling like in Procedure 2.3, the150

weights are scaled by a defensive factor towards uniformity,151

(2.14) wi,j,k = αiwi,j,k + (1− αi)
1

N
,152

with a ‘defensive factor’, αi, which ensures that the weights do not degenerate. The153

new particles are taken to be the means of the candidate posterior distribution (2.9).154

This idea is not explored in this work.155
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The posterior GMM (2.9) is only a good representation of the exact posterior if156

the prior GMM assumption (2.6) is a good approximation of the distribution that157

originated the particles Xb
i . For a finite ensemble N it is possible that the EnGMF158

analysis is a poor representation of the truth. The prior GMM assumption (2.6), in159

the particle limit N → ∞, converges to the exact prior under certain assumption160

on the covariances, Bi,j , which is a known result from kernel density estimation161

literature [40]. We now show that under some assumptions on the covariances, Bi,j ,162

the posterior GMM (2.9) produced by the EnGMF procedure also converges, in the163

particle limit, N → ∞, to a distribution obtained from performing exact Bayesian164

inference.165

Theorem 2.8 (EnGMF convergence). Assuming the observation distribution166

is exact (2.8), if the means x̄b
i,j in the estimated prior distribution GMM (2.6) are167

samples from the underlying exact distribution with weights ui,j, and the prior Kernel168

covariance matrices tend to zero in the limit of ensemble size, limN→∞ Bb
i,j = 0, then169

the EnGMF with the resampling procedure Procedure 2.3 converges to a filter in the170

class of sequential importance resampling (SIR) filters.171

Proof. Given the assumptions above, in the limit of ensemble size, N → ∞, the172

prior distribution GMM converges to the empirical distribution,173

(2.15) p(xb
i ) =

1

N

N∑
j=1

ui,jδxb
i−x̄b

i,j
,174

which converges weakly to the underlying prior distribution. Then as the prior Kernel175

covariance tends towards zero, the posterior GMM estimate defined by (2.9) and (2.10)176

converges to the empirical measure,177

(2.16) p(xa
i ) =

1

N

N∑
j=1

(
M∑
k=1

wi,j,k

)
δxa

i −x̄b
i,j
,178

which converges weakly to the exact posterior distribution. Then, the EnGMF re-179

sampling in Procedure 2.3 makes the EnGMF converge to an SIR filter.180

2.2. EnGMF rate of convergence for scalar parameterization. We now181

motivate the importance of choosing a good parameterization of the covariance matrix182

is more cost effective than simply increasing the number of particles N . In the follow-183

ing, we show that the rate of convergence of the prior GMM estimate of the EnGMF184

is sub-linear under a scalar parameterization. This makes the choice of parameter the185

dominant factor that determines the goodness-of-fit of the distribution.186

The most common paramterization of the prior GMM is a scalar parameterization187

that modifies the scaling of the covariance in a way that is guaranteed to degenerate188

in the limit of ensemble size. In the case of this scalar bandwidth parameterization,189

the prior covariance estimates become190

(2.17) Bb
i,j(β

2
i,N ) = β2

i,NPb
i,N , 1 ≤ j ≤ N,191

where Pb
i is the known (or approximated) covariance of the prior distribution, and β2

i192

is a scaling factor yet to be determined. Following the derivations in [40], we provide193

formulations of the error and optimal density for the covariance parameterization194

in (2.17).195
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Given the unknown true prior distribution pxb
i
, and its GMM approximation p̃xb

i
,196

the most common metric for determining the convergence of the latter to the former197

is the mean integral squared error (MISE) at time index i,198

(2.18) MISEi(pxb
i
, p̃xb

i
) = EXb

i

[∫
Ωx

(
pxb

i
(x)− p̃xb

i
(x)
)2

dx

]
,199

Observe that the convergence of the prior GMM estimate is not the same as200

convergence of the posterior GMM estimate. Nevertheless convergence of the prior201

estimate implies convergence of the posterior estimate. It is therefore the case that the202

rate of convergence of the prior estimate is directly related to the rate of convergence203

of the prior estimate.204

The MISE is typically approximated using the dominant terms of its expansion205

into the approximated mean integrated square error (AMISE) given by,206

(2.19) AMISE(pxb
i
, p̃xb

i
) =

1

4
β4
i α

2γi +N−1β−n
i δ,207

where for the GMM approximation of a distribution α and δ,208

(2.20) α = 1, δ =
(
2
√
π
)−n

,209

are known constants that depend on the dimension n, and γi,210

(2.21) γi =

∫
Ωx

tr2
(
∇2

xpxb
i
(x)
)
dx,211

is dependent on the true prior distribution at time index i. As the true prior is212

unknown, a known reference distribution ϕ can be used to compute an approximation213

for (2.21),214

(2.22) γ̃i =

∫
Ωx

tr2
(
∇2

xϕ(x)
)
dx,215

where ϕ is often taken to be the standard Gaussian distribution.216

If our assumed estimate of the parameter γ̃i is correct, the optimal bandwidth217

that minimizes the AMISE in (2.19) is,218

(2.23) β2
i =

(
δn

α2γ̃iN

) 2
n+4

,219

by satisfying the first order optimality conditions of (2.19).220

Plugging (2.23) back into (2.19), the error can now be written as,221

(2.24) AMISE(pxb
i
, p̃xb

i
) =

δ

4

(
nδ

α2

)− n
n+4

︸ ︷︷ ︸
const.

(
4γ̃

n
n+4

i + nγiγ̃
− 4

n+4

i

)
︸ ︷︷ ︸

reference mismatch

N− 4
n+4︸ ︷︷ ︸

conv. rate

222

where the first term is a constant and can be ignored, the second term is dependent on223

the mismatch between the true (2.21) and approximated (2.22) γi terms, and the third224

term determines the rate of convergence in N . Note that rate of coverenge is sublinear225

but close to linear for small state-space dimensions n, and is purely sub-linear for even226

a modestly small n.227

6

This manuscript is for review purposes only.



As the rate of convergence in (2.24) is sub-linear, as determined by the third term,228

the multiplicative terms in front of the rate of converegence play a very dominant role.229

The first term is constant, and thus can be ignored. The second term,230

(2.25) 4γ̃
n

n+4

i + nγiγ̃
− 4

n+4

i ,231

therefore largely determines the error. It is trivial to see that (2.25) is minimized232

when γ̃i = γi, therefore the error is only minimized when the reference distribution ϕ233

in (2.22) matches the true distribution in (2.21).234

Thus, when there is a large discrepancy between the reference distribution ϕ and235

the true distribution, an adaptive choice of the bandwidth parameter (2.23) could236

produce a much more significant decrease in error than simply increasing the ensemble237

size N .238

3. Adaptive ensemble Gaussian Mixture Filter. Following the observa-239

tions provided by Theorem 2.8 and by the discussion in subsection 2.2, we want240

to choose covariance matrices Bi,j found in the prior GMM assumption (2.6) in an241

intelligent and adaptive manner such that the convergence properties are satisfied.242

We additionally attempt to fulfill a desire useful to the practitioner: that practical243

convergence is achieved with as small as possible number of particles.244

To that end, in this work we explore arbitrary parameterized covariance matrices245

in the prior GMM (2.6),246

(3.1) p(xi|θi) =
N∑
j=1

ui,j N
(
xi|xb

i,j ,B
b
i,j(θi)

)
,247

where each covariance Bb
i,j(θi) is a matrix function of some (small number of) param-248

eters θi.249

The aim of the parameterization in (3.1) is to find a set of parameters θi that250

can both be chosen adaptively at each step, and can ensure that the EnGMF does251

not violate the assumptions of Theorem 2.8 and, additionally, possibly attempts to252

minimize the error presented in subsection 2.2.253

We now provide a way by which we can solve for the optimal parameters θi in (3.1)254

through the expectation maximization algorithm.255

3.1. Expectation Maximization. The expectation maximization (EM) algo-256

rithm [8, 6] finds the set of the parameters θi that maximize p(θi|yi) which is the257

conditional distribution of the parameters given the observations , at time index i.258

Given some initial set of parameters θ
(0)
i , the expectation maximization algorithm259

proceeds in an iterative fashion in two steps:260

The expectation step,261

(3.2) E
xb
i |yi,θ

(m)
i

log p(xb
i , yi, θi)262

constructs the function representing the expectation of the joint distribution of the263

prior state, the observations, and the parameters. The joint distribution in (3.2) can264

be written in terms of the prior (2.6), observation (2.8), and parameter distributions265

as,266

(3.3) p(xb
i , yi, θi) = p(yi|xb

i , θi)p(x
b
i |θi)p(θi),267
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and, as the observation GMM (2.8) is not dependent on the parameters, (3.3) can be268

simplified to,269

(3.4) p(xb
i , yi, θi) = p(yi|xb

i )p(x
b
i |θi)p(θi),270

where the prior distribution (3.1) is parameterized in terms of its covariance (3.1),271

and the parameter distribution272

(3.5) p(θi),273

is determined on a case-by-case basis.274

The maximization step aims to find the value of the parameters θi, that maximize275

the log joint distribution (3.4),276

(3.6) θ
(m+1)
i = argmax

θi

E
xb
i |yi,θ

(m)
i

[
log p(xb

i |θi) + log p(θi)
]
,277

where θ
(m)
i are the parameters from the previous step, xb

i |yi, θ
(m)
i are samples from278

the posterior distribution (2.9) given the previous set of parameters θ
(m)
i , and the279

term log p(yi|xb
i ) is constant and thus can be safely ignored due to the fact that it280

does not influence the optimization problem. Recall Remark 2.4 that in the EnGMF,281

it is possible to generate an unlimited number of i.i.d. samples from the posterior282

distribution, thus the maximization step (3.6) can be computed to an arbitrary level283

of accuracy, given some reasonable assumptions on the distribution of the sample284

mean.285

Remark 3.1 (Invertible Covariances). Note that the prior covariance p(xb
i |θi)286

in (3.6) requires that the covariance matrices Bb
i,j(θi) in (3.1) are invertible, which is287

not necessarily required by the standard EnGMF.288

Remark 3.2 (Meaningful Representation of the Prior). Note that the effect of289

the expectation maximization algorithm is to pick a parameterization of the prior290

estimate that best matches the posterior. For arbitrary parameterizations this would291

simply produce another copy of the posterior. The parameterization in (3.1) does292

not allow this to happen, as only the covariance is modified, and the mixture weights293

and means are not. This ensures that for (almost) all choices of the parameters θ,294

the prior estimate is still a useful representation of the prior. This means that the295

EM algorithm merely chooses the prior estimate that is most useful in subsequently296

representing the posterior.297

3.1.1. Stochastic Optimization. The maximization step (3.6) requires the so-298

lution of a stochastic optimization problem. Much of the recent literature on stochastic299

optimization has been focused on machine learning applications [1]. As the number300

of parameters in θi is small, it is possible to take advantage of methods that are301

built for the small parameter size case and that differ from typical machine learning302

optimization methods. Thus, in this work we utilize a variant of Newton’s method.303

We can write the loss in the maximization step (3.6) as,304

(3.7) L(xi, θi) = E
xb
i |yi,θ

(m)
i

[log p(xi|θi) + log p(θi)] ,305

where the posterior can be written as the following,306

(3.8) x
a,(m)
i = xb

i |yi, θ
(m)
i ,307
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which is useful shorthand for the following derivations.308

One algorithm for finding the maximum of the loss function (3.7) is Newton’s309

method,310

(3.9) θ
(m+1,p+1)
i = θ(m+1,p) + αm

(
E
x
a,(m)
i

[∇2
θL(x, θ

(m+1,p)
i )]

)−1

E
x
a,(m)
i

[∇θL(x, θ(m+1,p)
i ))],311

where αm is the step-size (also known as the learning rate in the machine learning312

community), and the initial parameter value for the algorithm is θ
(m+1,1)
i := θ

(m)
i ,313

which is the parameter from the previous maximization step (3.6). As it is challenging314

to compute the expected values in (3.9) analytically, some sort of approximation315

procedure is required.316

As this is a stochastic optimization procedure, the two expected values in (3.9)317

cannot be calculated with the same random samples, as that would introduce unin-318

tended bias and variance into the update. In this work we utilize the sub-sampled319

version of Newton’s method [39] built specifically to handle this scenario. In sub-320

sampled Newton’s method, independent samples of x
a,(m)
i are used to approximate321

the Hessian E
x
a,(m)
i

[∇2
θL(x, θ

(m+1,p)
i )] and the gradient E

x
a,(m)
i

[∇θL(x, θ(m+1,p)
i )]. If322

the number of samples used is identical, then the number of samples required is323

double that of the stochastic gradient descent (SGD) algorithm which only requires324

the computation of E
x
a,(m)
i

[∇θL(x, θ(m+1,p))]. As Newton’s method achieves faster325

convergence than SGD, it is the authors’ belief that for this particular scenario the326

benefits of this approach outweight the additional costs.327

Remark 3.3 (Quasi-Newton Methods). Instead of computing an estimate to the328

Hessian E
x
a,(m)
i

[∇2
θL(x, θ

(m+1,p)
i )] at every step, it is possible to only compute the329

Hessian at the initial step E
x
a,(m)
i

[∇2
θL(x, θ

(m+1,1)
i )] and use this approximation for330

all subsequent steps. This type of computationally efficient computation is a type of331

Quasi-Newton method [30] that is often used in practical applications.332

Remark 3.4 (Alternative Optimization Algorithms). Alternative stochastic opti-333

mization algorithms could also be utilized. The classic stochastic gradient descent334

algorithm [38] is an alternative which would require a smaller step-size αm. Another335

alternative is ADAM [23] which would require to keep track of separate momentum336

and velocity terms.337

Remark 3.5 (Incremental Expectation Maximization). If the expectation maxi-338

mization algorithm is performed online in sequential data assimilation, it is not nec-339

essary to perform many steps of either the expectation maximization algorithm, or340

sub-sampled Newton’s method (3.9). In this work we initialize the parameters ex-341

pectation maximization algorithm subsection 3.1 from the previous time step of the342

data assimilation algorithm. This can be weakly justified as a type of incremental343

expectation maximization [28], and in the authors’ experience significantly increases344

the utility of the proposed approach.345

We now discuss several different strategies for parameterizing the kernel covari-346

ance (3.1).347

3.2. Bandwidth-based covariance. In kernel density estimation, choosing the348

optimal covariance matrices has had considerable research interest [40]. And, as dis-349

cussed in section 2 has a considerable impact on the efficacy of the EnGMF algorithm.350
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From subsection 2.2, recall the covariance parameterization,351

(3.10) Bb
i,j(β

2
i,N ) = β2

i,NPb
i,N , 1 ≤ j ≤ N,352

where β2
i,N is known as the bandwidth parameter [40]. This is one particular case353

of the covariance in the prior GMM (3.1) that is a focus of this work. The samples354

covariance in (3.10)355

(3.11) Pb
i,N =

1

N − 1
Xb

i

(
IN − 1

N
11T

)
Xb,T

i ≈ E
[(
xb
i − E[(xb

i ]
) (

xb
i − E[(xb

i ]
)T ]

,356

is known as the empirical covariance, and is an estimate of the covariance matrix of357

the prior state xb
i . In (3.10), the only parameter is the bandwidth estimate, θi = β2

i,N .358

Remark 3.6 (Stochastic Newton’s for the Bandwidth Parameter). When the sub-359

sampled version of the stochastic Newton’s method (3.9) is applied to the covariance360

parameterized by the bandwidth parameter (3.10), then both the stochastic estimate361

of the gradient and the stochastic estimate of the Hessian are scalars. This enables362

the computation of the maximization step (3.6) to be performed with minimal linear363

system solves.364

The prior kernel covariance estimate in (3.10) takes advantage of the underlying365

covariance of the data, and is thus a type of online estimate however, the resulting366

accuracy of the density estimate is still highly dependent on the bandwidth parameter367

β2
i,N .368

It is known from [40] that if the underlying exact prior distribution of xb in (2.6) is369

Gaussian, that the optimal choice of bandwidth parameter β2 in (3.10) that minimizes370

the mean integrated square error is,371

(3.12) β2
i,N,Gaussian =

(
4

N(n+ 2)

) 2
n+4

,372

which is also known as Silverman’s rule of thumb.373

In practice most probability distributions of interest are not Gaussian, and (3.12)374

can result in a very poor approximation of the underlying density [40], thus a more375

refined choice of the bandwidth parameter is required.376

Theorem 2.8 showed that a sufficient condition for the convergence of the EnGMF377

is that the covariance estimate tends towards zero as N → ∞. We now show a378

condition on the bandwidth parameter that is sufficient for the EnGMF to converge.379

Lemma 3.7. Given the sequence of parameters {β2
i,N}∞N=1 parameterized by the380

particle amount N , a sufficient condition for the covariance estimate (3.10),381

(3.13) Bi,N = β2
i,NPb

i,N ,382

to degenerate in the limit of particle number,383

(3.14) Bi,N
D−→ δ0,384

is that the bandwidth parameter tends towards zero,385

(3.15) lim
N→∞

β2
i,N = 0,386

in the limit of particle number N .387
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Proof. Observe that,388

(3.16)
E[Bi,N ] = β2

i,NE[Pb
i,N ],

Cov[Bi,N ] = β4
i,N Cov[Pb

i,N ],
389

meaning that both the mean and covariance of the random variable tend towards zero390

as N → ∞, as required.391

Corollary 3.8. The sequence {β2
i,N,Gaussian}∞N=1 of bandwidth parameters de-392

fined by Silverman’s rule of thumb (3.12) satisfies the conditions of Lemma 3.7.393

Lemma 3.7 showed that when β2
i,N is a constant, and converges to zero in the limit394

of particle number N → ∞, the EnGMF converges. However, as we have uncertainty395

about the bandwidth parameter, it is natural to think about it as a random variable396

with some distribution. Thus an important choice is that of the distribution of the397

bandwidth parameter. Care must be taken to ensure that this choice is sufficient to398

make the resulting algorithm converge.399

We provide a sufficient condition on the distribution of the bandwidth parameter400

β2
i,N from (3.10), as an extension of Theorem 2.8. We therefore extend Lemma 3.7 to401

bandwidth parameters that are random variables with some prior distribution in the402

expectation maximization algorithm.403

Theorem 3.9. Given the sequence of random variables {β2
i,N}∞N=1 with a se-404

quence of distributions {p(β2
i,N )}∞N=1 parameterized by the particle amount N , a suf-405

ficient condition for the covariance estimate (3.10),406

(3.17) BN = β2
i,NPb

N ,407

to tend towards zero in distribution in the limit of particle number,408

(3.18) BN
D−→ 0,409

is that the distribution of the bandwidth parameter tends towards the delta distribution410

around zero,411

(3.19) lim
N→∞

p(β2
i,N ) = δ0,412

ensuring that β2
i,N almost surely becomes 0.413

Proof. If the distribution of β2
i,N converges to δ0, then the solution to the max-414

imization step in the EM algorithm (3.6) almost surely becomes a constant, namely415

that β2
i,N

a.s.−−→ 0, as required.416

3.2.1. Choosing the bandwidth distribution. One way in which the condi-417

tions of Theorem 3.9 could be satisfied is through an intelligent choice of the proba-418

bility distribution of the bandwidth parameter p(β2
i,N ).419

A common choice in the literature, the principal of maximum entropy (PME) [22]420

could be used to find a good candidate for this distribution. If we assume that the421

expected value of the bandwidth, β2
i,N , is Silverman’s rule of thumb (3.12), and we422

have no other information available, then the distribution that satisfies the PME is423

the exponential distribution,424

(3.20) p(β2
i,N ) = β−2

i,N,Gaussiane
−β−2

i,N,Gaussianβ
2
i,N ,425
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this distribution, however, always has a single mode at zero, thus, from the authors’426

experience, is ill-suited for use in expectation maximization.427

It is possible to perform some slight-of-hand in order to make this assumption428

more tractable. It is more efficient to look at βi,N , the square-root of the bandwidth429

parameter. If (3.20) is the distribution of β2
i,N , then βi,N is distributed according to430

(3.21) p(βi,N ) = 2β−2
i,N,Gaussianβi,Ne−β−2

i,N,Gaussianβ
2
i,N431

which is the Rayleigh distribution [31] with known mode 2−1/2βi,N,Gaussian. We as-432

sume this Rayleigh distribution (3.21) on the bandwidth parameter for the remainder433

of this paper.434

It is also possible to assume a more general distribution around β2
i,N , such as a435

gamma distribution, though this choice would introduce another free parameter into436

the algorithm; an undesirable outcome.437

While the parameterized covariance in (3.10) is well-studied, it has a few limita-438

tions that prevent it from being used in high-dimensional inference, chief among those439

being the fact that the covariance estimate in (3.11) can potentially be low-rank, and440

thus generate a covariance that is not invertible Remark 3.1, thus we can introduce441

covariance matrix estimates that have extra parameters in order to mitigate this issue.442

Remark 3.10. It is important to note that the optimal bandwidth is deterministic,443

but unknown. The uncertainty that transforms our knowledge about the bandwidth444

into a random variable is purely from the point of view of the agent performing the445

inference. For a more in-depth discussion about choosing distributions for parameters446

see [22].447

3.3. Covariance Shrinkage Estimates. Covariance shrinkage [13, 12, 14, 11,448

24] aims to use extra prior information about the covariance of xb
i in (2.6) in order449

to have a more accurate covariance estimate in the case when the number of samples450

is smaller than the dimension of the dynamical system N < n. Covariance shrinkage451

methods have previously been employed for ensemble data assimilation [29, 34] and452

for regularization in particle filtering [35].453

Assume that we have prior information about the covariance structure of xb
i in454

the form of a ‘target’ covariance matrix Ti. The covariance shrinkage estimate of the455

covariance, scaled by the bandwidth, is given by,456

(3.22) Bb
i,j = β2

i,N

[
γiµiTi + (1− γi)P

b
i

]
457

where,458

(3.23) µi = n−1 trCi, Ci = T
− 1

2
i Pb

iT
− 1

2
i459

is a rescaling factor, and γi is the shrinkage factor, which we treat as a parameter.460

Under Gaussian assumptions on the samples, xb
i,j , a good known shrinkage factor461

is,462

(3.24)

γi,RBLW = min

[
N − 2

N(N + 2)
+

(n+ 1)N − 2

N(N + 2)(n− 1)Ûi

, 1

]
,

Ûi =
1

n− 1

(
n trC2

i

tr2 Ci
− 1

)463
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called the Rao-Blackwell Ledoit-Wolf estimator [13].464

One possible choice of the target matrix Ti that does not require any prior knowl-465

edge is the diagonal of the empirical covariance (3.11),466

(3.25) Ti = Pb
i ,467

where the notation of is introduced to signify the matrix consisting of only the468

diagonal of the subsequent term. Observe that,469

(3.26) tr

[(
Pb

i

)− 1
2

Pb
i

(
Pb

i

)− 1
2

]
= n,470

meaning that when the target matrix is defined by (3.25), the scaling factor µi = 1.471

This means that direct calculation the matrix Ci, from (3.23), is only required for the472

calculation of γi,RBLW in (3.24).473

Remark 3.11 (On p(γi)). A commonly made assumption is that parameters are474

independently distributed, therefore the distribution of p(β2
i,N ) can be chosen inde-475

pendently of the distribution p(γi). As there are no requirements that the optimal γi476

is dependent on ensemble size, it is a natural choice to assume a uniform likelihood,477

(3.27) p(γi) ∝ 1,478

which is a typical assumption in parameter estimation [8].479

3.4. Covariance Localization. In the geosciences, states usually have some480

sort of innate spatial structure. State variables that are spatially far apart are gener-481

ally more weakly correlated than states that are closer together. Taking advantage of482

this fact, covariance localization [5] is a matrix tapering technique which aims to re-483

duce the impact of spurious correlations caused by undersampled (N ≪ n) covariance484

matrix estimates.485

In this work we focus on what is known as the B-localization methodology, and486

combine it with the bandwidth scaling (3.10) in the following manner,487

(3.28) Bb
i,j = β2

i

(
ρ(ri) ◦Pb

i

)
,488

where the matrix ρ(ri) contains a set of decorrelation variables parameterized by the489

localization radius ri, and ◦ is the element-wise Schur product.490

A common choice for ρ is known as Gaussian localization,491

(3.29) ρ(ri)ℓ,q = e
− 1

2
d(ℓ,q)2

r2
i ,492

where d(ℓ, q) represents the spatial distance between the variables at index ℓ and index493

q.494

Remark 3.12 (Choice of Localization Radius ri). The choice of localization ra-495

dius ri in (3.28) can be informed by the temporal covariance of the model of interest496

if the model of interest is Ergodic, however in practice, the best localization radius is497

almost always determined empirically.498

Adaptive-in-time choices for ri have been explored for the ensemble Kalman filter499

in [33].500
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Candidate
Prior

Candidate
Posterior

EnGMF

Expectation Maximization

Fig. 1. An illustration of the outer loop of the AEnGMF algorithm. In this example the candi-
date prior is made up of three distinct Gaussian modes which are plotted separately. The candidate
prior is transformed into the candidate posterior through the standard EnGMF update (2.10). Next
the expectation maximization algorithm (3.2) and (3.6) is performed, and a new candidate prior is
obtained. This procedure repeats until some desired level of convergence is achieved.

3.5. Practical Implementation of the AEnGMF. We are now able to com-501

bine all the elements presented in this section to fully describe the inner-workings of502

the adaptive ensemble Gaussian mixture filter (AEnGMF). The AEnGMF operates503

as follows. First a choice of parameterized covariance is made by the user. This504

choice determines the parameters that are optimized for. Next a choice of parameter505

distribution is required. In this work the bandwidth parameter is assumed to be dis-506

tributed according to the Rayleigh distribution subsection 3.2.1, and the rest of the507

parameters are assumed to be proportional to one, thus of no additional consequence.508

At each step of the algorithm, the previous choice of covariance parameters is509

carried over, θ
(1,1)
i := θi−1. This choice from Remark 3.5 is motivated by incremental510

approaches to expectation maximization, and lends itself particularly well to param-511

eterized covariances that do not depend on their parameters changing a lot from step512

to step.513

Next, M iterations of the expectation-maximization algorithm are performed.514

The expectation maximization algorithm can be treated as the ‘outer-loop’ [30] in515

this optimization procedure.516

The cost function is solved using P loops of sub-sampled Newton’s method (3.9)517

with a constant learning-rate α making this the ‘inner-loop’ algorithm. As it is pos-518

sible to sample from the posterior arbitrarily Remark 2.4, the gradient and Hessian519

calculations can be performed using a different number of samples, S, than that of520

the number of particles N . Specifically, the gradient is computed using S samples521

from the candidate posterior, and the Hessian is computed using S separate samples522

from the candidate posterior, for a total of 2S samples.523

As the AEnGMF is a particle filter, resampling of N particles is performed at the524

end of the algorithm with the EnGMF resampling procedure Procedure 2.3.525

The outer loop of the algorithm is illustrated in Figure 1, and a detailed step-by-526

step look at the algorithm can be seen in Algorithm 3.1.527

Remark 3.13 (Choosing M , P , α, and S). In the authors’ experience, it is much528

more advantageous to perform multiple iterations of the expectation maximization529

algorithm than that of sub-sampled Newton’s method, thus it is advantageous to530

take M ≥ P . It is also advantageous to oversample the gradient and Hessian, thus531

S ≥ N . By far the hardest choice to make is that of the learning-rate α. A learning532

rate that is too large (α ≈ 1) could cause the algorithm to become unstable, thus533
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Algorithm 3.1 The Adaptive Ensemble Gaussian Mixture Filter

Input Initial ensemble Xa
0 , initial estimate for the parameters θ0, outer loop

iteration count M , inner loop iteration count P , learning rate α, and number of
internal samples S.

for i = 1, . . . do
% Propagate the ensemble forward in time through the model
Xb

i = M(Xa
i−1)

% Initialize the parameters θ to the parameters from the previous step

θ
(1,1)
i := θi−1

% Perform the expectation maximization loop M times
for m = 1, . . . ,M do

% Construct loss function
L(x, θ) := E

xb|y,θ(m)
i

[log p(x|θ) + log p(θ)]

% Initialize the inner loop θ parameter

θ
(m+1,1)
i := θ

(m,P+1)
i

% Perform P steps of subsampled Newton’s method.
for p = 1, . . . , P do

% Sample S particles from the candidate posterior.

Xa ∼(S) π(x|y, θ
(m)
i )

% Compute the loss gradient

g := EXa [∇θL(X, θ
(m+1,p)
i )]

% Similarly, compute sample Hessian using different samples

Xa ∼(S) π(x|y, θ
(m)
i )

H := EXa [∇2
θL(X, θ

(m+1,p)
i )]

% Compute new estimate of the parameters

θ
(m+1,p+1)
i := θi + αH−1g

end for
% Set the current θ parameter

θ
(m+1)
i := θ

(m+1,P+1)
i

end for
% Set the θ parameter for the current time index

θi := θ
(M+1)
i

% Sample a new ensemble of N particles with new parameters θi
Xa

i ∼(N) π(x|y, θi)
end for

increasing the cost instead of decreasing it, and thus make it choose parameters θ534

that are worse than the original choices. A learning rate that is too small (α → 0)535

could lead to parameters that react poorly to the changing conditions of the states.536

From the practitioner’s point of view, this is by far the most important parameter537

to choose correctly. Ideally, the parameter α can be chosen through some type of538

line search technique [30] that ensures that steps are always taken in a direction that539

decreases the error, though this is not explored in this work.540

Remark 3.14 (Considerations for the High-dimensional Setting). There are many541

considerations to be made for getting the AEnGMF to work in the high-dimensional542

setting. First is that the computation of the covariance cannot be made explicitly.543
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This can be resolved by utilizing a covariance estimate that does not have to be ex-544

plicitly computed like that of the shrinkage estimate in (3.22). Matrix inverse vector545

products of (3.22) can also be computed without explicit computation of the entire546

matrix. The normalizing factor issue in Remark 2.2 can also be mitigated by this547

covariance matrix estimate. Another problem is the resampling procedure in Pro-548

cedure 2.3, which requires the computation of matrix square root vector products.549

Methods such as those proposed in [2, 19, 15] could be utilized to solve this issue,550

though this is still an open problem. A final consideration is that the intermediate re-551

sults or approximations of the densities could represent non-physical states, thus spe-552

cial consideration must be given to those problems, especially in the high-dimensional553

setting.554

Remark 3.15 (Computational complexity of the AEnGMF). Take n to be the555

dimension of the full state, m to be the dimension of the observations, q to be the556

dimensions of the parameters θ, and N to be the ensemble size. The dominant terms557

of the EnGMF update involve constructing the covariance, computing the gain matrix558

and updating the covariance, which in the worst case has computational complexity559

O(m3N + m2nN + n2N). The resampling procedure Procedure 2.3 has complexity560

O(n3N). For the AEnGMF, the cost of computing the Hessian in the worst case,561

where the gradients need to be computed by repeat evaluation of the cost function,562

the complexity becomes O(q2n3N). Thus, the total complexity of the AEnGMF is563

(3.30) O
(
MP [CEnGMF + q2n3N ] + CEnGMF

)
,564

where CEnGMF is the complexity of the EnGMF. Thus, the cost of the algorithm has565

to be weighted against the cost of propagating more particles through the forward566

model dynamics.567

4. Numerical Experiments. The aim of the numerical experiments is first to568

demonstrate the viability and convergence of the proposed AEnGMF on small-scale569

problem, and secondly to demonstrate the more complicated covariance parameteri-570

zation approaches on a larger-scale problem.571

4.1. Lorenz ’63. With the first set of experiments we aim to look at a highly572

non-linear system with a non-linear observation operator. We focus on the stan-573

dard EnGMF case of the Kernel covariance parameterized by the bandwidth param-574

eter (3.10).575

We take the the 3-variable Lorenz ’63 equations [26],576

(4.1)

x′ = σ(y − x),

y′ = x(ρ− z),

z′ = xy − βz,

577

with canonical parameters σ = 10, ρ = 28, and β = 8
3 . The time between assimilations578

is taken to be ∆t = 0.5, which allows the system enough time to evolve in a highly579

non-linear manner. The non-linear dynamics are propagated through time with an580

adaptive Runge-Kutta method [16] with absolute and relative tolerances of 10−11 in581

order to simulate a costly forward model calculation.582

It is known [20] that the system (4.1) has three critical points, one at the origin,583
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Fig. 2. RMSE simulation results for the Lorenz ’63 equations for four different data assimi-
lation algorithms. The top plot represents the mean RMSE value across all runs, while the bottom
plot represents three standard deviations of error around the mean. The blue line with circular
marks represents the AEnGMF, the red line with square marks represents the canonical EnGMF
with Silverman’s rule of thumb, the yellow line with x marks represents the EnGMF with a scaled
Silverman’s rule of thumb, and the Raspberry line with diamond marks represents the EnKF. Two
baseline lines, running the EnKF and a particle filter (SIR) for a high particle number are also
provided to provide theoretical bounds.

and in the center of each of the butterfly wings. The first non-zero critical point,584

(4.2)

xc =
√
β(ρ− 1),

yc =
√
β(ρ− 1),

zc = ρ− 1,

585

defines the center of one of the wings of the butterfly, with the other center being586

(−xc,−yc, zc) and the origin being (0, 0, 0). For the non-linear observation operator587
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SNEES = 1
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Fig. 3. SNEES simulation results for the Lorenz ’63 equations for four different data assimi-
lation algorithms. The top plot represents the mean SNEES value across all runs, while the bottom
plot represents three standard deviations of error around the mean. The lines representing the al-
gorithms are identical to those in Figure 2. The dashes lines around the main lines represent three
standard deviations over the samples. The ideal SNEES of one is represented by the constant gray
dashed line.

we measure the distance from the critical point (4.2) to the point being measured,588

(4.3) H (x, y, z) =
√
(x− xc)2 + (y − yc)2 + (z − zc)2,589

as a scalar observation, with Gaussian error with an error variance of R = 1.590

The goal of this experiment is to show that the various variants of the EnGMF591

are superior to the ensemble Kalman filter (EnKF) and converge to exact Bayesian592

inference in the limit of particle number (N → ∞). We therefore calculate two593

reference boundaries for this problem, one using the EnKF for a large ensemble size594

(N = 1000) and for the sequential importance resampling (SIR) particle filter with a595
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large number of particles (N = 1000), specifically the variant found in [37].596

It is known in the literature [40, 21] that Silverman’s rule-of-thumb is usually597

an over-estimate of the optimal bandwidth term. We thus attempt to find a scaling598

factor 0 < s < 1 such that the bandwidth parameter defined by the product,599

(4.4) β2
i,N = sβ2

Gaussian,600

would produce the minimal error for our choice of number of particles. From a quick601

parameter sweep, it was determined that s = 0.3 provides a good factor, that is602

optimal for a high number of particles.603

Thus, we run four different algorithms, the EnKF, the AEnGMF, the EnGMF604

with Silverman’s rule of thumb, and the EnGMF with Silverman’s rule of thumb605

scaled by s = 0.3, for this model setup for various numbers of particles ranging from606

N = 25 to N = 500.607

All experiments were run for 48 independent initial ensembles, with the same truth608

but different observations, for 5500 assimilation steps with the first 500 discarded for609

spinup, meaning that the first 500 steps do not count into the error calculations to610

let the filter reach a steady state. The mean of the spatio-temporal RMSE,611

(4.5) RMSE(x̄, xt) =

√√√√ 1

nT

T∑
i=1

n∑
l=1

(
x̄i,l − xt

i,l

)2
,612

is calculated between the statistical mean x̄ and the truth xt, over the 12 runs and613

is the metric by which the efficacy of the algorithms is determined. In order to check614

the consistency, the mean of the scaled normalized estimated error squared (SNEES)615

metric [44] is utilized,616

(4.6) SNEES(x̄, xt) =
1

nT

T∑
i=1

(
x̄i − xt

i

)T
Pa,−1

i

(
x̄i − xt

i

)
,617

where Pa
i is the estimate of the posterior covariance at time index i. A SNEES of618

one is considered to be ideal, as that means that the error predicted by the filter is619

in line with the actual error of the filter. Additionally, if the SNEES is not one, it620

is better for the filter to be more conservative, meaning the SNEES is less than one,621

that overconfident, meaning a SNEES greater than one.622

For the choices of parameters in Algorithm 3.1, we choose M = 5 loops of the623

expectation maximization algorithm, P = 1 loops of sub-sampled Newton’s method,624

sampling S = N exactly as many samples as there are particles, and a high learning625

rate of α = 1. The previous parameter choices were hand-tuned to balance error and626

time to solution. The Rayleigh distribution with mean of Silverman’s rule-of-thumb627

is chosen for the bandwidth parameter just like in subsection 3.2.1.628

The results of the RMSE experiments are visually demonstrated in Figure 2.629

As can be seen, the AEnGMF is consistently lower in error than the EnGMF with630

bandwidth equivalent to Silverman’s rule-of-thumb, and provides lower error in the631

particle number range of N = 25 to N = 100. The EnGMF with scaling factor s = 0.3632

is the only algorithm to perform worse than the EnKF for N = 25, but also produces633

the lowest error between N = 300 and N = 500. Crucially, almost all algorithms have634

the same error bounds, as shown by the 3-σ plot of the RMSE, except for the The635

EnGMF with scaling factor s = 0.3, which has a significantly higher error standard636

deviation. This means that the AEnGMF lowers the error without sacrificing stability.637
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For the SNEES of the experiments, demonstrated in Figure 3, the AEnGMF lies638

between the EnGMF and the EnGMF with scaling facotr s = 0.3, both in terms639

of raw SNEES value and in terms of standard deviation. As both algorithms are640

conservative for higher particle numbers, this is not a particularly surprising result.641

It can be seen that the EnGMF family of methods converges to the SIR limit642

very slowly, driven by the sublinear rate of convergence. The practical use of the643

Rayleigh distribution subsection 3.2.1 for achieving this effect can be questioned as644

the convergence is clearly sub-optimal. A better choice of the distribution of the645

bandwidth parameter is required.646

Finally, we report the practical computational time increase of the AEnGMF over647

the EnGMF. For the full forecast-analysis loop a 1.2 to 1.7 times increase in compu-648

tational cost was observed, meaning that when the computational time is dominated649

by the forward model runs, the cost of the AEnGMF is not an overly significant650

computational burden.651

4.2. Lorenz ’96. For the next set of experiments, we look at the case of an un-652

dersampled (N ≪ n) estimate of the prior distribution. We look at two different types653

of covariance matrix parameterizations: one based on covariance shrinkage (3.22)654

with the target matrix being the diagonal of the statistical covariance (3.25), and a655

localization-based covariance matrix estimate (3.28).656

For the model of interest we take the 40-variable Lorenz ’96 equations [27],657

(4.7) x′
k = −xk−1(xk−2 − xk+1)− xk + F . . . , k = 1, . . . , 40,658

with cyclic boundary conditions, and the forcing factor F = 8. For the time between659

assimilations we take one day of model time which is equivalent to a ∆t = 0.2, leading660

to a high level of non-linearity in the system. The non-linear dynamics are propagated661

through time with an adaptive Runge-Kutta method [16] with absolute and relative662

tolerances of 10−6.663

We want to compare the AEnGMF approach of adaptively choosing the param-664

eters of the Kernel covariance with that of the more classic EnGMF approach where665

the parameters are determined by a known good heuristic. We also want to compare666

with a base-line state-of-the-art algorithm, the localized ensemble Kalman filter. To667

that end, we perform experiments on the following set of filters:668

1. the shrinkage-based AEnGMF (Shr-AEnGMF), with parameters of β2
i for669

the bandwidth and ζi = tanh−1 γi, for an unbounded transformation of the670

shrinkage parameter 0 < γi < 1,671

2. the shrinkage-based EnGMF (Shr-EnGMF) with bandwidth defined by Silver-672

man’s rule-of-thumb (3.12), β2
i = β2

i,Gaussian and the RBLW (3.24) shrinkage673

parameter γi = γi,RBLW,674

3. the localized AEnGMF (LAEnGMF) with parameters of β2
i for the bandwidth675

and ζi =
√
ri for an unbounded transformation of the localization radius676

0 < ri,677

4. the localized EnGMF (LEnGMF) with bandwidth defined by Silverman’s678

rule-of-thumb (3.12), β2
i = β2

i,Gaussian and a fixed radius of ri = 4,679

5. and the localized EnKF (LEnKF) with fixed radius ri = 4 for a useful com-680

parison with a state-of-the-art filter.681

For the non-linear observation operator, we take the point-wise non-linear operator,682

(4.8) H(xi) =
xi

2

[
1 +

(
|xi|
10

)ω−1
]
,683
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Fig. 4. Simulation results for the Lorenz ’96 equations for five different data assimilation
algorithms. The dark blue line with circle marks represents the AEnGMF with a shrinkage-based
estimate to the covariance , with the light red line with square represents the standard EnGMF with
a shrinkage-based estimate to the covariance, the yellow line with x marks represents a localized
AEnGMF, the light-blue line with plus marks represents a localized EnGMF, and the raspberry line
with diamond marks represnts the localized EnKF.

as found in [5], with ω = 5 for a medium level of non-linearity, with the observation684

covariance matrix being set to R = 1
4I40. The number of particles is taken to range685

from as little as N = 5 to as high as N = 40.686

All experiments were run for 48 independent initial ensembles, with the same truth687

but different observations, for 5500 assimilation steps with the first 500 discarded for688

spinup, meaning that the first 500 steps do not count into the error calculations to let689

the filter reach a steady state. For our error metric we again take the spatio-temporal690

RMSE (4.5).691

For the choices of parameters in Algorithm 3.1, we choose M = 1 loops of the692
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expectation maximization algorithm, P = 1 loops of sub-sampled Newton’s method,693

sampling S = 100 to sample in the excess, and a low learning rate of α = 1e −694

2. The Rayleigh distribution with mean of Silverman’s rule-of-thumb is chosen for695

the bandwidth parameter just like in subsection 3.2.1, with both the radius r and696

shrinkage parameter γ having distributions proportional to one along all of their697

support as they are not required for convergence.698

The results for this round of experiments can be seen in figure Figure 4. At around699

N = 30 particles, all algorithms perform roughly the same, thus the interesting be-700

havior occurs when there are fewer particles. Both versions of the EnGMF without701

adaptive covariance estimates (Shr-EnGMF and LEnGMF) perform worse than the702

localized EnKF. The adaptive versions of the same algorithms (Shr-AEnGMF and703

LAEnGMF) perform significantly better than all other tested algorithms. The the704

LAEnGMF practically converges for N = 10 particles, and the Shr-AEnGMF practi-705

cally converges for N = 20 particles. Additionally the Shr-AEnGMF and LAEnGMF706

have tighter error bounds than all the other tested algorithms, potentially signifying707

that the adapative nature of the algorithm is better able to handle outlier scenar-708

ios. These results highlight the need and utility of the adaptive covariance estimate709

approach in the EnGMF presented in this paper.710

5. Conclusions. By leveraging parameterized sample covariance estimates and711

the expectation maximization algorithm, this work introduced the adaptive ensem-712

ble Gaussian mixture filter (AEnGMF) as an extension of the ensemble Gaussian713

mixture filter (EnGMF). Theoretical results about the convergence properties of this714

filter were derived by making assumptions about the distribution of the kernel band-715

width. Numerical results have verified the theoretical convergence properties of the716

AEnGMF, and have shown that for a certain set of parameters the AEnGMF has717

superior convergence to that of the EnGMF.718

Future work could extend the AEnGMF to a smoothing [37] framework, a hybrid719

filtering [18] framework, and to a multifidelity filtering [32] framework. An active720

research direction is in applying the AEnGMF to a real-world orbit tracking prob-721

lem [44]. Work exploring practical consideration on choosing the parameters discussed722

in Remark 3.13 is also of independent interest.723
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