Abstract

To evaluate the risk of suboptimal response (SR) to osmotic-release oral system methylphenidate (OROS-MPH) in children, we conducted a retrospective cohort study comparing OROS-MPH to lisdexamfetamine dimesylate (LDX). The study included children and adolescents with attention-deficit/hyperactivity disorder (ADHD) aged 6–17 years, excluding those who had received ADHD treatment in the 6 months before the index date. OROS-MPH and LDX were stratified into high, medium, and low-risk subgroups according to descending predicted risk. In the adjusted LDX SR model, “highest risk” children initiated on LDX experienced significantly lower SR rates (7.1%) compared to OROS-MPH (10.6%). However, SR rates were not significantly different in “medium risk” or “lowest risk” groups.

Introduction

Predictive models may help clinicians make better treatment allocation decisions leading to improved patient centered outcomes. However, SR rates were not significantly different in “medium risk” or “lowest risk” groups.

Objectives

- To develop suboptimal response prediction (SRP) models for OROS-MPH and LDX using a modified version of logistic regression.
- To evaluate the risk of SR to OROS-MPH and LDX.

Methods

- **Study Population**: This retrospective database study compared OROS-MPH and LDX therapies among ADHD patients aged 6–17 years. OROS-MPH is indicated for children and adolescents with ADHD in a clinical setting.
- **Statistical Analysis**: Four suboptimal response prediction (SRP) models were developed: 1) OROS-MPH SRP Model in Children, 2) LDX SRP Model in Children, 3) OROS-MPH SRP Model in Adolescents, and 4) LDX SRP Model in Adolescents. The models were developed using a group LASSO procedure, an extension of the Lasso method, to estimate odds ratios of the differences in observed SR rates of OROS-MPH vs. LDX.

Results

- In the adjusted LDX SR model, “highest risk” children initiated on LDX experienced significantly lower SR rates (7.1%) compared to OROS-MPH (10.6%). However, SR rates were not significantly different in “medium risk” or “lowest risk” groups.

Conclusions

- The OROS-MPH predictive models illustrated that both children and adolescents with a high predicted risk for SR with OROS-MPH had significantly better treatment outcomes when initiated on LDX compared to OROS-MPH for ADHD.
- The LDX predictive models illustrated that observed SR treatment outcomes were not significantly different among OROS-MPH and LDX patients with a high predicted risk of SR to LDX. In addition, those with the lowest predicted SR risk to LDX experienced significantly lower SR rates with LDX vs. OROS-MPH.
- Sensitivity analyses focusing on SR outcomes of switching and augmentation suggest that differences in SR in the primary analyses may have been driven by differences in discontinuation rates.
- Future studies are warranted to further identify factors contributing to high SR rates, and include these factors in models that may be useful in individualizing treatment options.

Acknowledgments and Disclosures

No potential conflicts of interest or relationships to disclose.