
Internet Appendix for:

“High Aversion to Stochastic Time Preference Shocks and
Counterfactual Long-Run Risk in the Albuquerque et al.

Valuation Risk Model”

A Solution details

This section of the appendix provides details and derivations for results discussed in the

main text of the paper.

A.1 General pricing equations

The representative agent has the augmented Epstein-Zin preferences described by equa-

tion (1):

Ut =

[
λtC

1−1/ψ
t + δ

(
Et

[
U1−γ
t+1

]) 1−1/ψ
1−γ

]1/(1−1/ψ)
.

Optimization is subject to a budget constraint of

Wt+1 = Rw,t+1 (Wt − Ct) (IA.1)

where Wt is wealth at time t and Rw,t+1 is the return on the overall wealth portfolio, which

is a claim to all future consumption.

Albuquerque et al. (2016) use standard techniques from the Epstein-Zin preference lit-

erature to show that the preferences represented by equation (1) imply the log stochastic

discount factor expressed by equation (2):

mt+1 = θ log (δ) + θΛt+1 −
θ

ψ
∆ct+1 + (θ − 1) rw,t+1.

This is the same as the standard Epstein-Zin stochastic discount factor except that discount-

ing is time-varying (i.e., δ λt+1

λt
instead of δ).
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Using 0 = Et [mt+1 + ri,t+1] + 1
2

(σ2
m + σ2

i + 2σmi) (the log version of 1 = Et [Mt+1Ri,t+1]),

the expected return for any asset can be expressed as

Et [ri,t+1] +
1

2
σ2
i = −θ log

(
δ
λt+1

λt

)
+
θ

ψ
Et [∆ct+1] + (1− θ) Et [rw,t+1]

−1

2

(
θ

ψ

)2

σ2
c −

1

2
(1− θ)2 σ2

w +
θ

ψ
(θ − 1)σwc

+
θ

ψ
σic + (1− θ)σiw. (IA.2)

The 1
2
σ2
i on the left hand side of equation (IA.2) is the Jensen’s inequality correction for log

returns.

The resulting risk-free rate is

rf,t+1 = −θ log

(
δ
λt+1

λt

)
+
θ

ψ
Et [∆ct+1] + (1− θ) Et [rw,t+1]

−1

2

(
θ

ψ

)2

σ2
c −

1

2
(1− θ)2 σ2

w +
θ

ψ
(θ − 1)σwc. (IA.3)

Differencing equations (IA.2) and (IA.3) yields the risk premia of equation (6):

Et [ri,t+1]− rf,t+1 +
1

2
σ2
i =

θ

ψ
σic + (1− θ)σiw,

which is exactly the same expression as in standard Epstein-Zin models. Substituting

Et [rw,t+1] into equation (IA.3), yields equation (5):

rf,t+1 = − log (δ)− Λt+1 +
1

ψ
Et [∆ct+1]−

1− θ
2

σ2
w −

θ

2ψ2
σ2
c ,

which is the same as standard Epstein-Zin models except that δ is replaced by δ λt+1

λt
.
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A.2 Intertemporal CAPM

Following Campbell (1993), the budget constraint can be log-linearized to generate equa-

tion (7):

rw,t+1 − Et [rw,t+1] = (Et+1 − Et)
∞∑
j=0

ρj∆ct+1+j − (Et+1 − Et)
∞∑
j=1

ρjrw,t+1+j

where ρ = 1−exp (c− w) is a log-linearization constant (c− w is the average log consumption-

wealth ratio). Rearranging, current consumption shocks can be expressed as

∆ct+1 − Et [∆ct+1] = rw,t+1 − Et [rw,t+1]

+ (Et+1 − Et)
∞∑
j=1

ρjrw,t+1+j

− (Et+1 − Et)
∞∑
j=1

ρj∆ct+1+j. (IA.4)

So far, we have only made use of modified Epstein-Zin preferences and the budget constraint.

We now use assumptions about consumption and time preference innovations. Due to our

homoscedasticity assumption, risk premia do not change over time, and the risk-free rate

only changes in response to time preference and consumption growth innovations. Thus,

innovations to expected returns can be decomposed as

(Et+1 − Et) rw,t+1+j = (Et+1 − Et) rf,t+1+j

= (Et+1 − Et) log

(
λt+j
λt+j+1

)
+

1

ψ
(Et+1 − Et) [∆ct+j+1] (IA.5)

for j ≥ 1. Substituting equation (IA.5) into equation (IA.4) yields

∆ct+1 − Et [∆ct+1] = rw,t+1 − Et [rw,t+1]

−
(

1− 1

ψ

)
(Et+1 − Et)

∞∑
j=1

ρj∆ct+1+j
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+ (Et+1 − Et)
∞∑
j=1

ρj log

(
λt+j
λt+j+1

)
. (IA.6)

Substituting out consumption shock covariance (σic) from equation (6) yields risk premia as

a function of covariance with market returns and innovations to future time preferences and

consumption growth:

Et [ri,t+1]− rf,t+1 +
1

2
σ2
i = γσiw + (γ − 1)

1

ψ
covt

(
ri,t+1, (Et+1 − Et)

∞∑
j=1

ρj∆ct+1+j

)

+
θ

ψ
covt

(
ri,t+1, (Et+1 − Et)

∞∑
j=1

ρj log

(
λt+j
λt+j+1

))
. (IA.7)

This can be alternatively expressed as

Et [ri,t+1]− rf,t+1 +
1

2
σ2
i = γσiw −

γ − 1

ψ − 1
σih(λ) + (γ − 1)σih(c) (IA.8)

where

σih(λ) = covt

(
ri,t+1, (Et+1 − Et)

∞∑
j=1

ρj log

(
λt+j
λt+j+1

))

and

σih(c) =
1

ψ
covt

(
ri,t+1, (Et+1 − Et)

∞∑
j=1

ρj∆ct+1+j

)

are the two different types of risk-free rate news covariance.

Equation (IA.8) is an intertemporal capital asset pricing model (ICAPM) pricing equa-

tion. As in Campbell (1993), risk premia are a function of covariance with the market return

and covariance with shocks to investment opportunities. Market return risk (σiw) is priced

by relative risk aversion (γ) as in other ICAPM models. Also consistent with other ICAPM

models, future interest rate covariance (σih(c) and σih(λ)) is priced only if γ 6= 1. Yet, the

two components of interest rate risk have different prices. Whereas σih(c) is priced by γ − 1,

σih(λ) is priced by − γ−1
ψ−1 . When ψ > 1, the prices have opposite signs, and if ψ is close to

1, time-preference risk is amplified relative to consumption growth risk. The key distinction
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between equation (IA.8) and more standard ICAPM models such as Campbell (1993) is that

equation (IA.8) includes shocks to both consumption growth and time preferences. Because

Campbell (1993) assumes preferences are constant, there is no σih(λ) in his model, and σih is

equivalent to σih(c).

A.3 Extended consumption CAPM

The budget constraint can also be used to substitute out wealth portfolio return covari-

ance (σiw) from equation (6) by rearranging equation (IA.6) and using it to decompose σiw,

thereby yielding equation (9):

Et [ri,t+1]− rf,t+1 +
1

2
σ2
i = γσic + (γψ − 1)σih(c) −

γψ − 1

ψ − 1
σih(λ).

A.4 Augmented consumption

Another way to derive the ICAPM and extended CCAPM pricing equations is to change

notation to consider time preference shocks in the same units as consumption. Specifically,

consider augmented consumption, defined as

C̃t ≡ λ
1/(1−1/ψ)
t Ct. (IA.9)

With this notation change, equation (1) is transformed into standard Epstein-Zin preferences

with respect to augmented consumption. All of Campbell’s (1993) and Bansal and Yaron’s

(2004) results hold with respect to augmented consumption and returns measured in units

of augmented consumption. In particular, the augmented risk-free rate is

r̃f,t+1 = − log (δ) +
1

ψ
Et [∆c̃t+1]−

1− θ
2

σ2
w −

θ

2ψ2
σ2
c (IA.10)
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and the risk premium for any asset is given by

Et [r̃i,t+1]− r̃f,t+1 +
1

2
σ2
i = γσiw + (γ − 1)σih(c̃) (IA.11)

where tildes represent augmented consumption and returns. Using the identities r̃i,t+1 =

ri,t+1 + 1
1−1/ψ log

(
λt+1

λt

)
and ∆c̃t+1 = ∆ct+1 + 1

1−1/ψ log
(
λt+1

λt

)
, equations (IA.10) and (IA.11)

are equivalent to equations (5) and (IA.8).

A.5 Calibrated model solution

Albuquerque et al. (2016) solve the model using log-linear analytical approximations.

Let portfolio w be the overall wealth portfolio, which represents a claim to aggregate con-

sumption. Using Campbell and Shiller’s (1988) approximation for the return on the overall

wealth portfolio the log return to the wealth portfolio can be expressed as

rw,t+1 = κ0 + κ1zt+1 − zt + ∆ct+1 (IA.12)

where zt is the log wealth-consumption ratio at time t. Unknown linearization parameters

κ0 and κ1 are given by

κ1 =
exp (z)

1 + exp (z)
(IA.13)

κ0 = log (1 + exp (z))− κ1z (IA.14)

where z is the unconditional mean of zt. Returns to the market portfolio, which is a claim

to aggregate dividends, can be similarly approximated as

rm,t+1 = κm0 + κm1zm,t+1 − zm,t + ∆dt+1 (IA.15)

with unknown parameters κm0 and κm1 constructed the same way.
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Albuquerque et al. (2016) guess and verify that zt and zm,t linearly depend on state

variables, taking the form

zt = A0 + A1xt + A2ηt+1 + A3σ
2
t + A4∆ct (IA.16)

zm,t = Am0 + Am1xt + Am2ηt+1 + Am3σ
2
t + Am4∆ct + Am5∆dt, (IA.17)

and solve for the unknown coefficients as functions of the model parameters and κ0, κ1, κm0,

and κm1, which are functions of z and zm. Closed-form solutions for these coefficients are

reported in Albuquerque et al.’s internet appendix. One can then numerically iterate to find

fixed points for z and zm. Having solved for all coefficients, market returns in any period are

given by equation (IA.15). To complete the solution, Albuquerque et al. use the stochastic

discount factor (equation (2)), Euler equation, and equation (IA.12) to obtain the risk-free

rate as a function of state variables.

B Valuation risk in the cross section

I analyze cross-sectional valuation risk by sorting stocks based on their past return sen-

sitivity to risk-free rate shocks. Ideally, we would like to separately measure consump-

tion growth and time preference risk-free rate shocks. Given the unobservability of time

preferences and the imprecise and low-frequency nature of consumption data, measuring

aggregate risk-free rate shocks is probably the best we can do. While this does not for-

mally test the model, it assesses whether there is support in the cross section for valuation

risk. If exposure to risk-free rate shocks is not priced in the cross-section, this suggests

that valuation risk is not a major factor for explaining asset prices. The model informs

how we measure risk-free rate shocks. In particular, it highlights that investors care about

shocks to both current and expected future risk-free rates. Thus, instead of considering just

covt (ri,t+1, rf,t+2 − Et [rf,t+2]), I focus on σih = covt

(
ri,t+1, (Et+1 − Et)

∑∞
j=1 ρ

jrw,t+1+j

)
.

To assess sensitivity to valuation shocks, we need to estimate (Et+1 − Et)
∑∞

j=1 ρ
jrf,t+1+j.
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This estimation has two challenges. First, the focus is on real interest rates. This is the risk-

free rate in the model, and it is the relevant quantity for economic decisions. Unfortunately,

the real risk-free rate is not directly observable. To overcome this challenge, I model expected

Consumer Price Index (CPI) inflation and estimate the monthly real risk-free rates as the

difference between the nominal 1-month Treasury bill yield and expected inflation over the

next month. Baseline estimates focus on the 1983 to 2012 time period because monetary

policy is more consistent and inflation is less volatile during this period than in previous

periods.

A second empirical challenge is that valuation risk involves shocks to expectations. Thus,

we need to estimate interest rate expectations. I do this with a vector autoregression (VAR)

of interest rates, inflation, and other state variables. From the VAR, we extract an estimate

for the time series of (Et+1 − Et)
∑∞

j=1 ρ
jrf,t+1+j innovations, which I then use to estimate

σih for individual stocks.

B.1 Vector autoregression

The VAR model is

Yt = AYt−1 + εt. (IA.18)

Yt is a k×1 vector with the nominal 1-month Treasury bill log yield and seasonally adjusted

log CPI inflation over the past month as its first two elements. The remaining elements of

Yt are state variables useful for forecasting these two variables. The assumption that the

VAR model has only one lag is not restrictive because lagged variables can be included in

Yt. Before estimating the VAR, Yt is demeaned to avoid the need for a constant in equation

(IA.18).

Vector ei is defined to be the ith column of a k× k identity matrix. Using this notation,

expectations and shocks to current and future expectations can be extracted from Yt, A, and

εt. The real risk-free interest rate is estimated as the nominal 1-month Treasury bill yield
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less expected inflation:

r̂f,t+1 = (e1′ − e2′A)Yt. (IA.19)

Similarly, expected future risk-free rates are

Et

[
r̂f,t+j

]
= (e1′ − e2′A)Aj−1Yt. (IA.20)

Shocks to current and expected risk-free rates are

(Et+1 − Et) ̂rf,t+1+j = (e1′ − e2′A)Aj−1εt+1. (IA.21)

Total interest rate news is

Newsh,t+1 = (Et+1 − Et)
∞∑
j=1

ρj ̂rf,t+1+j

= (e1′ − e2′A)
∞∑
j=1

ρjAj−1ωt+1

= (e1′ − e2′A) ρ (I − ρA)−1 ωt+1 (IA.22)

where I is the identity matrix and ρ is a log linearization coefficient equal to 1− exp (c− w)

where c− w is the average log consumption-wealth ratio. I use a monthly coefficient value

of ρ = 0.996 for the analysis.

To select state variables to include in Yt, I first follow Campbell (1996) and include the

relative Treasury bill rate, defined as the difference between the current one-month Treasury

bill yield and the average one-month Treasury bill yield over the previous 12 months. I

also include the relative monthly CPI inflation rate, defined the same way. Next, I include

the yield spread between 10-year Treasury bonds and 3-month Treasury bonds because the

slope of the yield curve is known to predict interest rate changes. Finally, I include the

CRSP value-weighted market return and the log dividend-price ratio (defined as dividends

over the past year divided by current price), which is known to predict market returns.
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These variables are useful to the extent that equity returns are related to expected future

interest rates. Equation (IA.18) can also be estimated with lags of Yt. Because the Bayesian

Information Criteria is insensitive to adding lags, I do not include lagged variables in Yt.

Table IA.2 reports coefficient estimates and standard errors for the elements of A related

to predicting nominal interest rates and inflation. The first two columns report results for

the 1983 to 2012 time period, which is the primary focus. Nominal interest rate shocks

are highly persistent with lag coefficient of 0.96. Inflation shocks are much less persistent

and have a lag coefficient of 0.07. Inflation is increasing in lagged nominal yields. The

VAR explains 95% of the variation in nominal yields over time. Inflation changes are less

predictable with an R-squared of 0.24.

Figure IA.1 plots the estimated real risk-free rate from the VAR model along with the

nominal one-month Treasury bill yield and the Federal Reserve Bank of Cleveland’s real

risk-free rate estimate.1 As one would expect in a stable inflation environment, real interest

rates generally follow the same pattern as nominal interest rates. Nonetheless, inflation

expectations do change over time, particularly late in the sample. The VAR real risk-free

rate estimate closely tracks the Federal Reserve Bank of Cleveland’s estimate.

As a robustness check, I also estimate real risk-free rates and real risk-free rate news over

a longer time period, starting in 1927. The methodology for the longer time period is the

same as before except that the CPI is unadjusted because the seasonally adjusted CPI is only

available starting in 1947. Columns (3) and (4) of Table IA.2 report the VAR results. In

the extended time sample, inflation shocks are more persistent (inflation’s lagged coefficient

is 0.78, compared to 0.07 before). The results are otherwise similar to the original VAR.

B.2 Cross-sectional results

To assess whether valuation risk is priced in the cross section, I sort stocks into port-

folios based on past covariance with risk-free rate news. Risk-free rate news covariance,

1The Federal Reserve Bank of Cleveland’s real risk-free rate estimates are described by Haubrich, Pen-
nacchi, and Ritchken (2008, 2012).
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σih = covt

(
ri,t+1, (Et+1 − Et)

∑∞
j=1 ρ

jrw,t+1+j

)
, is estimated on a rolling basis for all NYSE,

AMEX, and NASDAQ common stocks using returns and risk-free rate news over the past

three years, with the requirement that included stocks must have at least two years of histor-

ical data. Value-weighted decile portfolios are formed monthly by sorting stocks according

to those estimates.

Table IA.3 reports market capitalization, average excess returns, and βih = σih
σ2
h

estimates

for each portfolio. The table also reports pricing errors (alphas) relative to the CAPM and

Fama and French (1993) three factor model and factor loadings (betas) for the three factor

model. Panel A reports results for the baseline 1985-2012 time period.2 Risk-free rate news

betas increase across the portfolios, and decile 10’s news beta is a significant 0.58 higher

than decile 1’s news beta. Monthly excess returns are 42 bps lower in the 10th decile than in

the 1st decile, but this return difference is not statistically significant, and there is no clear

pattern to excess returns across the decile portfolios other than a drop in returns in decile 10.

CAPM and 3 Factor alphas follow the same basic pattern. Factor loadings are also similar

across the portfolios. The one exception is that decile 10 has a large negative loading on the

value factor (HML). In short, there is no evidence that valuation risk is priced in the cross

section of stock returns.

Results are similar in the extended 1929-2012 sample, reported in Panel B. Once again,

average excess returns and alpha estimates decrease with interest rate news exposure, but the

differences are not significant. The biggest difference between Panel A and Panel B is that

βih differences across the portfolios are not significant in the extended sample. This suggests

that stock-level valuation risk was not stable over time early in the sample, undercutting our

ability to form valuation risk portfolios.

2Portfolio formation is based on at least two years of historical data, which causes the sample to start
in 1985 instead of 1983.
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C Supplemental tables and figure

Table IA.1. Predictive regression coefficients

Description: This table reports simulated regression coefficients for the predictive regressions summarized
in Table 6. The reported results are from regressing future log excess equity returns (panel A), consumption
growth (panel B), dividend growth (panel C), and real risk-free rates (panel D) on the current log price-
dividend ratio. Regressions in the data are based on 1930–2008 annual historical data from the Bureau of
Economic analysis and CRSP. Simulation regressions are based on 100,000 simulations with time periods
equal to the historical data. The models are simulated monthly and then annualized for comparability
with the historical data. For the simulations, the table reports the median price-dividend ratio regression
coefficient and the % of simulated regression coefficients that are larger than the comparable regression
coefficient in the data. Standard errors are Newey-West with 2*(horizon-1) lags.
Interpretation: Predictive regressions show the extent to which the price-dividend ratios predicts subse-
quent returns, consumption growth, dividend growth, and risk-free rates in the data and model.

Data Benchmark model β̂ Extended model β̂

β̂ t R2 Median % > data Median % > data

Panel A. Excess returns
1 year -0.09 -1.80 0.04 -0.04 74.7% -0.04 80.9%
3 years -0.26 -3.23 0.17 -0.13 74.9% -0.12 80.7%
5 years -0.41 -3.78 0.27 -0.21 74.6% -0.20 80.4%

Panel B. Consumption growth
1 year 0.01 1.59 0.06 0.00 9.9% 0.03 97.5%
3 years 0.01 0.59 0.01 0.00 33.6% 0.09 99.5%
5 years 0.00 -0.06 0.00 0.00 51.2% 0.13 99.5%

Panel C. Dividend growth
1 year 0.07 1.98 0.09 0.01 0.5% 0.06 32.7%
3 years 0.11 1.33 0.06 0.01 5.7% 0.19 89.7%
5 years 0.09 1.21 0.04 0.01 19.8% 0.30 96.0%

Panel D. Risk-free rate
1 year 0.01 1.15 0.03 -0.13 0.0% -0.01 19.9%
3 years 0.03 0.82 0.03 -0.34 0.0% -0.02 24.6%
5 years 0.05 1.06 0.05 -0.49 0.0% -0.03 24.1%
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Table IA.2. Vector autoregression results

Description: This table reports results from the vector autoregression (VAR) described by equation (IA.18).
The nominal log yield on a one-month Treasury bill is y1. Inflation is one-month log seasonally-adjusted
CPI inflation. Relative y1 and relative inflation are the difference between current yields and inflation and
average values over the past twelve months. The yield spread between 10-year Treasury bonds and 3-month
Treasury bills is y120 − y3. The excess return of the CRSP value weighted market return over the risk-
free rate is rm − rf . The log dividend-price ratio, d – p, is calculated for the CRSP value-weighted market
index using current prices and average dividends over the past twelve months. Results are for a 1-lag VAR of
demeaned y1, inflation, relative y1, relative inflation, rm−rf , and d – p. Coefficients for dependent variables
y1 and inflation are reported. The other dependent variables are omitted for brevity. Bootstrapped standard
errors are in parentheses. * represents 10% significance, ** represents 5% significance, *** represents 1%
significance.
Interpretation: Nominal interest rate shocks are highly persistent. Inflation shocks are less persistent and
less predictable.

1983–2012 1927–2012

y1 inflation y1 inflation

Lagged Variables
y1 0.9639*** 0.1939* 0.9741*** 0.0631

(0.0202) (0.1003) (0.0116) (0.0773)

inflation 0.0314 0.0737 0.0102* 0.7762***
(0.0297) (0.1734) (0.0062) (0.0709)

relative y1 -0.0976** 0.1295 -0.1752*** 0.5909***
(0.0457) (0.1585) (0.0407) (0.1599)

relative inflation -0.0136 0.3268* -0.003 -0.4554***
(0.0281) (0.1767) (0.0056) (0.0837)

y120− y3 -0.0032 -0.002 -0.0062** 0.0014
(0.0036) (0.0155) (0.0024) (0.0122)

rm − rf 0.0013* 0.0083* 0.0008** 0.0061*
(0.0007) (0.0042) (0.0004) (0.0034)

d – p 0.0001 0.0002 0.0000 -0.0002
(0.0001) (0.0005) (0.0000) (0.0003)

R2 0.95 0.24 0.95 0.32
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Table IA.3. Valuation risk pricing in the cross section of stock returns

Description: Value-weighted decile portfolios are formed at the end of each month by sorting stocks based
on covariance with risk-free rate news over the past three years. The table reports betas with respect to risk
free rate news, average size, and average excess returns for each portfolio. The table also reports results for
time series regressions of excess returns on excess market returns (the CAPM regression) and excess market
returns (rmrf), the Fama-French size factor (smb), and the Fama-French value factor (hml) (the 3 Factor
regression). The sample is NYSE, AMEX, and NASDAQ common stocks. Standard errors for the 10-1
portfolio difference are reported in parentheses. * represents 10% significance, ** represents 5% significance,
*** represents 1% significance.
Interpretation: Expected returns do not vary significantly across the decile portfolios.

Panel A. 1985–2012

rf News Market Cap Excess CAPM 3 Factor Factor Loadings (Betas)
Decile Beta ($B) Return Alpha Alpha rmrf smb hml

1 -0.17 0.72 0.63% -0.19% -0.16% 1.27 0.61 -0.06
2 0.07 1.36 0.94% 0.24% 0.30% 1.10 0.22 -0.15
3 -0.04 1.94 0.87% 0.25% 0.23% 1.04 0.07 0.04
4 0.13 2.42 0.65% 0.06% 0.03% 1.00 -0.04 0.09
5 0.00 2.74 0.51% -0.03% -0.05% 0.94 -0.10 0.03
6 0.02 2.76 0.48% -0.06% -0.08% 0.93 -0.14 0.05
7 0.03 2.58 0.54% -0.02% -0.04% 0.97 -0.11 0.03
8 0.15 2.21 0.68% 0.06% 0.08% 1.04 -0.13 -0.07
9 0.14 1.69 0.61% -0.06% -0.04% 1.10 0.01 -0.06
10 0.41 0.85 0.21% -0.62% -0.44% 1.21 0.55 -0.47

10-1 0.58** 0.13** -0.42% -0.42% -0.27% -0.06 -0.07 -0.41***
(0.23) (0.06) (0.33%) (0.34%) (0.34%) (0.08) (0.11) (0.12)

Panel B. 1929–2012

rf News Market Cap Excess CAPM 3 Factor Factor Loadings (Betas)
Decile Beta ($B) Return Alpha Alpha rmrf smb hml

1 -0.01 0.17 0.66% -0.05% -0.12% 1.15 0.52 -0.03
2 0.00 0.48 0.66% 0.04% 0.03% 1.04 0.20 -0.06
3 0.03 0.69 0.70% 0.13% 0.12% 0.99 0.08 -0.01
4 0.06 0.86 0.71% 0.15% 0.15% 0.96 0.02 0.00
5 0.01 0.98 0.60% 0.04% 0.02% 0.97 -0.03 0.06
6 0.03 1.05 0.56% -0.01% -0.03% 0.98 -0.03 0.09
7 0.06 1.08 0.58% -0.01% -0.02% 1.03 -0.08 0.08
8 0.06 1.05 0.56% -0.07% -0.10% 1.08 0.00 0.11
9 0.10 0.83 0.61% -0.07% -0.12% 1.15 0.04 0.17
10 0.11 0.38 0.58% -0.18% -0.27% 1.23 0.50 0.03

10-1 0.13 0.21*** -0.09% -0.13% -0.14% 0.07** -0.02 0.05
(0.09) (0.02) (0.18%) (0.18%) (0.18%) (0.03) (0.06) (0.05)
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Figure IA.1. Risk-free rate, 1983–2012
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Description: This figure plots the monthly nominal and real risk-free rate from 1983 to 2012. The nominal
risk-free rate is the yield on a one-month nominal treasury bill. The real risk-free rate is estimated using
VAR analysis. For comparison purposes, the Federal Reserve Bank of Cleveland’s real risk-free rate estimate
is also plotted.
Interpretation: Real risk-free rate estimates from the VAR model closely track estimates from the Federal
Reserve Bank of Cleveland and generally follow the same pattern as nominal interest rates.
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