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SUMMARY

Speech and language play an important role in human vocal communication. Studies have shown
that vocal disorders can result from genetic factors. In the absence of high-quality data on humans,
mouse vocalization experiments in laboratory settings have been proven useful in providing valu-
able insights into mammalian vocal development, including especially the impact of certain genetic
mutations. Such data sets usually consist of categorical syllable sequences along with continuous
intersyllable interval (ISI) times for mice of different genotypes vocalizing under different contexts.
ISIs are of particular importance as increased ISIs can be an indication of possible vocal impair-
ment. Statistical methods for properly analyzing ISIs along with the transition probabilities have
however been lacking. In this article, we propose a class of novel Markov renewal mixed models
that capture the stochastic dynamics of both state transitions and ISI lengths. Specifically, we model
the transition dynamics and the ISIs using Dirichlet and gamma mixtures, respectively, allowing the
mixture probabilities in both cases to vary flexibly with fixed covariate effects as well as random
individual-specific effects. We apply our model to analyze the impact of a mutation in the Foxp2
gene on mouse vocal behavior. We find that genotypes and social contexts significantly affect the
length of ISIs but, compared to previous analyses, the influences of genotype and social context on
the syllable transition dynamics are weaker.

Keywords: Clustering; Dirichlet mixtures; Gamma mixtures; Markov renewal processes; Mixed effects models;
Mouse vocalization experiments.

1. Introduction

Spoken language plays a crucial role in almost every aspect of human life as we use it to share infor-
mation, communicate ideas, and express emotions. However, our vocal behaviors might be restrained
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2 Y. Wu and others

by a wide variety of impairments, some of which are highly inheritable. According to the National
Institute on Deafness and Other Communication Disorders, the prevalence of speech and sound
disorder among young children is 8–9% and the majority of such disorders have no known cause
(NIH-NIDCD Report, 2020). As many speech-related disorders are inheritable (Vargha-Khadem
and others, 1998), it is thus important to study the genetic and evolutionary development of human
vocal communication to identify and remedy vocal disorders.

Since data on human vocalization disorders are not easily available, neither can humans be studied
under experimentally induced impairing conditions, neuroscientists have turned to studying mouse
vocalization systems to gain insights into human vocal communication processes (Jarvis, 2019).
Although unlike speech, the mouse vocalization is mostly innate (Arriaga and Jarvis, 2013; Mooney,
2020), it is a particularly attractive model to study for several reasons. Adult mice “sing” ultrasonic
vocalizations (USVs) to communicate with each other. Being mammals, they are also physiologically
and genetically similar to us humans. The patterns of USVs may be influenced by the mouse geno-
type or environmental factors such as stimulating social contexts (Chabout and others, 2015). Mouse
vocalization data sets thus typically comprise songs sung by mice from different genotypes under
various social contexts. Systematic differences in the syllable dynamics across various genotypes and
social conditions can provide insights into their roles on vocal abilities and behavior (Chabout and
others, 2016).

Our research is motivated by the need for sophisticated statistical methods for analyzing mouse
vocalization syntax generated in laboratory experiments that are conducted to understand the effects
of certain genetic mutations and social contexts on mouse vocal behavior. We introduce a novel class
of Bayesian mixed models for analyzing categorical sequences with continuous interstate interval
times under the influence of multiple exogenous factors. In particular, the values of the exogenous
factors remain fixed throughout the sequence and contributes a fixed group effect. Each sequence is
also associated with an individual that exhibits a random individual effect. We are interested in the
inference of the stochastic dynamics of the sequences, specifically, the transition dynamics of the
discrete states as well as the distribution of the continuous interstate interval times. Statistical meth-
ods for analyzing the syllable dynamics have previously been developed by Holy and Guo (2005)
and Chabout and others (2015, 2016). Sarkar and others (2018) developed a flexible Bayesian mixed
effects Markov model for vocalization syntax incorporating exogenous influences of covariates as
well as random heterogeneity of the sampled mice. While these methods looked in detail into the
systematic differences in the syllable dynamics, they did not properly analyze the intersyllable inter-
vals (ISIs) which can be an additional important indicator of vocal deficits as impaired mice will
tend to remain silent with longer ISIs. To accommodate this effect, the aforementioned methods dis-
cretized large ISIs into one or multiple special “silent” syllables and then treated the songs as Markov
sequences with this appended vocabulary. This practice, however, mixes the influences of covariates
on transition probabilities and ISIs which could result in less accurate scientific conclusions. The
previous methods largely ignore the differences in the distributions of the ISIs from different mice
under various combinations of the covariate values and may miss out important evidence that can
be deduced by properly modeling the ISIs.

Here, we develop an approach to address these concerns by appropriately analyzing the syllable
transition dynamics using a slightly modified version of the mixed Markov model of Sarkar and
others (2018) while separately modeling the distribution of ISIs using a novel flexible mixed model
of gamma mixtures, thereby providing inference for both syllable transitions dynamics and their
ISIs. The method accommodates fixed covariate effects as well as random individual effects in both
the syllable transition dynamics and the ISI distributions. A hierarchical cluster inducing mechanism
for the levels of the covariates allows straightforward, formal tests of their significance. We design an
efficient Markov chain Monte Carlo sampler for fitting our model. We demonstrate the performance
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Markov renewal mixed models for vocalization syntax 3

of our model by analyzing a data set where the mice are either wild-type or carry a mutation on the
Foxp2 gene implicated in causing vocal impairment in humans. Previous analyses of this data set by
Chabout and others (2015, 2016) and Sarkar and others (2018), with large ISIs treated as an artificial
syllable, have shown significant differences in the syllable dynamics between different genotypes and
social contexts. When reanalyzed using our proposed approach, the results suggest that genotype
and context strongly impact the ISIs, but their influences on the syllable transition dynamics are
weaker than what previous analyses had inferred.

Our proposed model is a type of Markov renewal process (MRP) where the state transitions evolve
as a Markov chain while the state durations follow a transition density function that depends on both
the previous and the current state. MRPs were originally introduced by Pyke (1961). MRPs and their
variations, including semi-Markov models (Levy, 1954; Smith, 1955), have found success in a variety
of applications such as in modeling clinical trials (Weiss and Zelen, 1965), sleeping patterns (Yang
and Hursch, 1973), HIV disease occurrences (Foucher and others, 2005), etc. Bayesian methods for
MRPs have also been developed. Phelan (1990) designed an MRP where the prior consisted of a fam-
ily of Dirichlet distributions for transition matrices and a Beta family of Levy processes for state
duration times. Muliere and others (2003) and Bulla and Muliere (2007) developed Bayesian non-
parametric reinforced MRPs. Bayesian MRPs with Weibull distributed interoccurrence times have
been developed for seismic data in Alvarez (2005); Epifani and others (2014). Unlike most classical
MRPs that focus on modeling a single sequence, we jointly model a collection of sequences, each one
associated with an individual as well as a set of time-invariant external covariates, accommodating
fixed effects of the covariates as well as random effects of the subjects for both the transition proba-
bility matrices and the distribution of the ISIs. We also allow the selection of important covariates
for both the state transition dynamics and the ISI distribution via probabilistic partitioning of the
covariate levels. These are in contrast to existing methods on classical MRPs where typically only a
single sequence is modeled and the distribution of state duration depends only on the current state.

Besides being directly useful for analyzing mouse vocalization data sets, the methodology pro-
posed in the article can be used for a great variety of applications where MRPs are useful such as
the examples cited above. Our proposed model for the ISIs may also be of independent statistical
interest in developing mixture models for continuous variables with mixed covariate and individual
effects which, to our knowledge, have not been explored much in the literature.

The article is organized as follows. In Section 2, we provide details of the Foxp2 data set and its sci-
entific background and review some previous statistical methods. In Section 3, we present our novel
Bayesian Markov renewal mixed model. In Section 4, we briefly outline our Markov chain Monte
Carlo (MCMC) algorithm to sample from the posterior. We illustrate the results of our method
applied to the Foxp2 data set in Section 5. Section 6 concludes with a discussion.

2. Data set and preliminaries

The Foxp2 (foxhead-box P2) gene is a transcription factor that regulates other genes (Chabout and
others, 2016). It is found in mice and in similar forms in humans (Fisher and Scharff, 2009), and
its mutation has been implicated to cause speech and language deficits in adults (Lai and others,
2001). Previously, Fujita and others (2008) compared the vocalizations for wild-type, heterozygous
Foxp2 and homozygous Foxp2 mice and showed that both heterozygous and homozygous Foxp2
mice have vocal impairment to some extent. Castellucci and others (2016) showed that mice with a
Foxp2 mutation vocalize less and produce shorter syllable sequences. Gaub and others (2016) dis-
covered that compared to wild-type, mice with Foxp2 mutations displayed quantitative differences
in USVs. Other than genotypes, social contexts can also influence mouse vocalization. Chabout and
others (2012) showed that the amount of USVs emitted by male mice is positively correlated with
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(a)

(b)

Fig. 1. Spectral diagrams of mouse vocalizations, reproduced from Chabout and others (2016) with permission.
(a) Syllable types. (b) Part of a song produced by a wild-type male mouse under the urine context (U).

the scale of their social interactions. Gaub and others (2016) studied the USVs of adult mice with
increasing stimulus intensity including water and female urine.

The overall properties of the song syllables provide some information. The sequencing rules of
the syllables provide additional information about song complexity. Research has thus also been
conducted on the vocabulary and structure of the songs, referred to as “syntax” (Holy and Guo,
2005; Moles and others, 2007; Scattoni and others, 2011; Musolf and others, 2015; Gaub and others,
2016). Adopting the vocabulary in Chabout and others (2012, 2015, 2016), the mouse vocalization
syllables can be grouped into four categories based on their spectral features (Figure 1a) as: “s”:
simple syllables without any pitch jumps; “u”: complex syllables with a single upward pitch jump;
“d”: complex syllables with a single downward pitch jump; and “m”: more complex syllables with
a series of multiple pitch jumps. Songs are made of a sequential arrangements of these syllables
(Figure 1b) with ISIs varying mostly between 0 and 250 ms (Table 1a, Figure S1 in Appendix A of
the Supplementary material available at Biostatistics online).

The Foxp2 data set that we analyze here collects the songs produced by mice of wild-type (W )
and mice that have a mutation on the Foxp2 gene (F) under three different social contexts—fresh
female urine on a cotton tip placed inside the male’s cage (U), awake and behaving adult female
placed inside the cage (L), and one anesthetized female placed on the lid of the cage (A). The data
set has 70 818 rows, including 49 songs sung by 18 mice, 10 with the Foxp2 mutation, and 8 wild-
types. Five mice sang 2 songs each (with id 1, 2, 4, 10, and 11), and the rest 13 mice sang 3 songs each.
Each mouse sang the songs under different contexts. Therefore, the combination of covariates and
individuals associated with each song is actually unique. The distribution of songs across different
combinations of covariates is presented in Table 1b (left). There is no missing or censored data.
The empirical distribution of syllable transitions is displayed in Table 1b (right). The number of
transition types stratified by genotypes and social contexts can be found in the Appendix A of the
Supplementary material available at Biostatistics online.

Since the complexity of the four syllables vary, it is reasonable to assume that mice with vocal
impairments will produce songs with fewer transitions to difficult syllables such as m. It is also
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Table 1. Description of the Foxp2 data set
(a) Part of the data set associated with the anesthetized female context (A).

Mouse ID Genotype Syllable ISI (in s)

1 F s 0.082
1 F s 0.017
1 F m 0.114
...

...
...

...
2 W s 1.546
2 W d 0.712
2 W s 0.549

(b) Empirical distributions of the Foxp2 data set: song distribution across different
combinations of covariates (left) and number of transitions for all pairs of syllables (right).

Distribution of songs
Genotype Context No. of songs

F U 8
F L 10
F A 10
W U 6
W L 8
W A 7

Distribution of syllable transitions
current syllable

d m s u

d 2780 964 5980 268
Preceding m 987 983 3187 257

syllable s 5920 3213 42 138 1742
u 305 257 1705 132

(c) The empirical and posterior (in parentheses) means and standard deviations
of the ISIs, grouped by covariate levels.

Mean s.d.

F 0.228 (0.227) 0.433 (0.417)
W 0.161 (0.163) 0.333 (0.320)

Mean s.d.

U 0.257 (0.237) 0.504 (0.424)
L 0.166 (0.168) 0.319 (0.335)
A 0.211 (0.218) 0.426 (0.399)

Mean s.d.

(d,d) 0.134 (0.127) 0.236 (0.241)
(d,m) 0.119 (0.126) 0.261 (0.239)
(d,s) 0.180 (0.181) 0.355 (0.351)
(d,u) 0.172 (0.144) 0.343 (0.300)
(m,d) 0.118 (0.138) 0.234 (0.267)
(m,m) 0.120 (0.129) 0.231 (0.245)
(m,s) 0.145 (0.144) 0.295 (0.301)
(m,u) 0.120 (0.155) 0.228 (0.305)

Mean s.d.

(s,d) 0.168 (0.154) 0.341 (0.303)
(s,m) 0.131 (0.129) 0.253 (0.246)
(s,s) 0.217 (0.221) 0.423 (0.407)
(s,u) 0.167 (0.151) 0.338 (0.294)
(u,d) 0.130 (0.157) 0.290 (0.319)
(u,m) 0.126 (0.130) 0.210 (0.246)
(u,s) 0.165 (0.144) 0.373 (0.303)
(u,u) 0.139 (0.174) 0.294 (0.341)

expected that mice with vocal impairments tend to remain more silent with longer ISIs. Table 1c
shows the empirical distribution of the mean and standard deviation of ISIs grouped by each covari-
ate. We see that mice with the Foxp2 mutation are likely to have longer ISI than that of wild-types,
with a 42% increase in the empirical distribution of ISI mean.

The development of sophisticated statistical methods for mouse vocalization syntax started with
Holy and Guo (2005) who analyzed the songs using a Markov model. Chabout and others (2015,
2016) developed statistical tests for accessing global and local syntax differences across genotypes
and social contexts. Sarkar and others (2018) developed a mixed Markov model for the transitions
of four syllables and an extra artificial syllable for large ISIs. In the latter three works, each ISI of
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length greater than 250 ms was treated as a silent state (“x”). Inference was then performed treating
the resulting sequences as Markov chains with five states {d, m, s, u, x}. Though this was done to
achieve significant analytical convenience, the resulting stochastic dynamics also got dominated by
transitions to x. Moreover, the distribution of the ISIs varied greatly between different experimen-
tal conditions and subjects (Figure S1 in Appendix A of the Supplementary material available at
Biostatistics online). Ignoring the ISIs with lengths shorter than 250 ms, as well as treating longer
ISIs as blocks of silent syllables, resulted in loss of important information in addition to diluting
the transition dynamics among the original syllables. In order to obtain a more accurate inference
of the data set, it is important to treat the ISIs differently from the four original syllables and model
them properly as a continuous variable.

Our proposed approach addresses these concerns. We model the ISIs separately instead of treating
it ad hocly as the “silence” syllable. In this way, the ISIs can be used as evidence for vocal impairment
aside from the transitions of the four syllables. Moreover, we allow both the transition probabilities
and the mixture probabilities for the ISIs to be governed by a convex combination of population-level
fixed effects and individual-level random effects.

3. Markov renewal mixed models

Consider a sequence s of Ts syllables. ys,t denotes the syllable at time t for sequence s and is one of
Y = {d,m,s,u} = {1, 2, 3, 4}. The collection of syllables is denoted by {ys,t}s0,Ts

s=1,t=1, where s0 is the

total number of sequences. Within a sequence s, we have Ts − 1 ISI times, denoted by {τs,t}s0,Ts
s=1,t=2,

where τs,t represents the interval time between the (t − 1)th and tth syllable for sequence s. Each
sequence s is generated under two exogenous factors—genotype xs,1 ∈ X1 = {F , W} = {1, 2}, and
social context xs,2 ∈ X2 = {U , L, A} = {1, 2, 3}, as described in Section 2. With some abuse, we
use the same notation to denote the variables as well as their specific values, greatly simplifying the
exposition.

.
Notations for the Foxp2 data set

X1 Set of genotypes, {F , W}
X2 Set of social contexts, {U , L, A}
Y Set of four sound syllables, {d,m,s,u}
ys,t Sound syllable at time t for sequence s, ys,t ∈ Y
τs,t ISI between (t − 1)th and tth syllable of sequence s
xs,1 Covariate 1, genotype, xs,1 ∈ X1

xs,2 Covariate 2, social context, xs,2 ∈ X2

(ys,t−1, ys,t) Covariate 3, the preceding and the current syllable, ys,t−1 ∈ Y , ys,t ∈ Y
Notations for the transition dynamics of the syllables

ztrans,j,xs,j Cluster label of xs,j

C(j)
trans Partition of Xj

ktrans,j Number of clusters of partition C(j)
trans

λtrans,x1,x2 Transition probability vector for covariate x1 and x2

λtrans,h1,h2 Transition probability vector for cluster h1 and h2

λ
(i)
trans Transition probability vector for mouse i

π
(i)
trans,0 State-specific probability of fixed effect of mouse i

π
(i)
trans,1 State-specific probability of random effect of mouse i
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.
Notations for the distributions of the ISIs

zisi,s,t Component label of gamma mixtures
zisi,r,xs,r Cluster label of xs,r

zisi,r,(ys,t−1,ys,t) Cluster label of (ys,t−1, ys,t)

C(r)
isi Partition of Xr/Y

kisi,r Number of clusters of partition C(r)
isi

λisi,x1,x2,(yt−1,yt) Mixture probability vector for covariate x1, x2 and syllables (yt−1, yt)

λisi,g1,g2,g3 Mixture probability vector for cluster g1, g2 and g3

λ
(i)
isi Mixture probability vector for mouse i

π
(i)
isi,0 Component-specific probability of fixed effect of mouse i

π
(i)
isi,1 Component-specific probability of random effect of mouse i

is xs,1 . . . xs,p ys,1 ys,2 ys,t

τs,2 τs,3 τs,t τs,t+1
ys,t

τs,Ts
ys,Ts

Fig. 2. Graphical model showing the data structures: ys,t denotes the observed state at the tth time location in
the sth sequence and τs,t denotes the observed ISIs between the states ys,t−1 and ys,t; each sequence s is also asso-
ciated with an individual is and a set of exogenous time-invariant covariates xs,1, . . . , xs,p. The Markov renewal
mixed model considered in this article analyzes the state transitions ys,t and the ISI lengths τs,t, accommodating
fixed effects of the covariates xs,1, . . . , xs,p and random effects of the individuals is.

We recall that for each sequence s, (y, τ ) is a MRP when we have

p(ys,t, τs,t | ys,t−1, τs,t−1, …, ys,1, τs,1, θ trans, θ isi) = p(ys,t, τs,t | ys,t−1, θ trans, θ isi),

where θ trans and θ isi are the parameters specifying the transition and ISI distributions, respectively.
We further assume that (i) the ISI lengths τs,t’s depend on both the preceding syllable ys,t−1 and the
current syllable ys,t (Figure 2) and (ii) the state transitions and the ISI densities do not share any
parameters, that is, θ trans ∩ θ isi = φ. Then, we can further write

p(ys,t, τs,t | ys,t−1, θ trans, θ isi) = p(ys,t | ys,t−1, θ trans) · p(τs,t | ys,t−1, ys,t, θ isi).

With p0(·) denoting the priors, the joint posterior of (θ trans, θ isi) then also factorizes as

p(θ trans, θ isi | y, τ ) ∝ p(y | θ trans)p(τ | θ isi, y)p0(θ trans)p0(θ isi) ∝ p(θ trans | y)p(θ isi | y, τ ),

Going forward, we thus discuss the models for the syllables and the ISIs separately.

3.1. Model for syllable transitions

We use the Bayesian mixed effects Markov model of Sarkar and others (2018) for syllable transitions.
We describe the model here to keep this article relatively self-contained.

We begin with specifying the transition dynamics as a mixed Markov model as

Pr(ys,t = yt | is = i, xs,1 = x1, xs,2 = x2, ys,t−1 = yt−1) = P(i)
trans,x1,x2

(yt | yt−1),

P(i)
trans,x1,x2

(yt | yt−1) = π
(i)
trans,0(yt−1)λtrans,x1,x2(yt | yt−1) + π

(i)
trans,1(yt−1)λ

(i)
trans(yt | yt−1).

(3.1)
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The mixed effects transition probabilities P(i)
trans,x1,x2

(yt | yt−1)’s are modeled here as a flexible con-
vex mixture of a baseline fixed effect component λtrans,x1,x2(· | yt−1) for the exogenous covariates,
namely genotype and context, and a random effect component λ

(i)
trans(· | yt−1) for the mouse. The

weights π
(i)
trans,0 and π

(i)
trans,1 = 1 − π

(i)
trans,0 of the two effects are also allowed to be mouse specific.

In Sarkar and others (2018), the coefficient for the convex combination did not vary between the
individuals but was fixed at πtrans,1(yt−1). The population-level model obtained after integrating out
the λ

(i)
trans(yt | yt−1)’s was shown to be able to characterize all possible cases of predictor depen-

dent transition probabilities, including accommodating all order interactions between them, and the
individual-level model could also accommodate deviations from it very flexibly. Our specification
here retains the nonparametric nature of the population-level model but by allowing the coefficients
π

(i)
trans,1(yt−1) to be mouse specific, which accommodates more flexibility in characterizing individual

heterogeneity.
For the fixed effects of each covariate j, we try to further identify its levels that have a similar

effect on the song dynamics. This is done by creating a probabilistic partition C(j)
trans = {C(j)

trans,hj
}ktrans,j

hj=1

of its levels. Given partitions C(1)
trans and C(2)

trans, songs with covariates in the same clusters, say C(1)

trans,h1

and C(2)

trans,h2
, then share the same baseline transition probability λtrans,h1,h2(· | yt−1). The specification

of the probabilistic partition models is facilitated by introducing latent cluster allocation variables
{ztrans,j,�}2,dj

j=1,�=1, with ztrans,j,� indicating the cluster label for the �th level of the jth covariate. Two levels
�1, �2 ∈ Xj = {1, . . . , dj} will be clustered together if and only if ztrans,j,�1 = ztrans,j,�2 . For example,
ztrans,j=2,�=2 = ztrans,j=2,�=3 = 1 means that songs produced under contexts L (j = 2, � = 2) and A
(j = 2, � = 3) belong to cluster C(j=2)

trans,h2=1 of C(j=2)
trans , etc. Importantly, when the levels of a covariate j

are all clustered together, that is, ktrans,j = 1, the transition probabilities do not vary with the levels of
covariate j. The covariate j thus has no effect on the transition dynamics when ktrans,j = 1, allowing us
to easily and formally test its significance based on the posterior probability of the event ktrans,j = 1.

The final transition probability of syllables in a song s produced by a mouse is = i with genotype
xs,1 in cluster h1 and context xs,2 in cluster h2 is given by

P(i)
trans,h1,h2

(· | yt−1) = π
(i)
trans,0(yt−1)λtrans,h1,h2(· | yt−1) + π

(i)
trans,1(yt−1)λ

(i)
trans(· | yt−1).

We assign conditionally conjugate Dirichlet priors to the fixed effect components

λtrans,h1,h2(· | yt−1) ∼ Dir
{
αtrans,0λtrans,0(1 | yt−1), . . . , αtrans,0λtrans,0(4 | yt−1)

}
.

For the random effect distribution, for any yt−1 ∈ Y , we let

λ
(i)
trans(· | yt−1) ∼ Dir

{
α

(0)
transλtrans,0(1 | yt−1), . . . , α(0)

transλtrans,0(4 | yt−1)
}

.

We assign a Beta prior to the mouse-specific coefficient for any yt−1 ∈ Y as π
(i)
trans,0(yt−1) ∼

Beta(atrans,0, atrans,1). Centering both λtrans,h1,h2 and λ
(i)
trans around the same mean vector λtrans,0 facil-

itates posterior computation. The random effects λ
(i)
trans and π

(i)
trans,0 can be easily integrated out to

obtain a closed-form expression for population-level probabilities as

Ptrans,h1,h2(· | yt−1) = πtrans,0λtrans,h1,h2(· | yt−1) + πtrans,1λtrans,0(· | yt−1),

where πtrans,0 = atrans,0
atrans,0+atrans,1

, πtrans,1 = atrans,1
atrans,0+atrans,1

. Some states in Y are naturally preferred regard-

less of the values of the covariates. To capture this, we let λtrans,0 center around a global λtrans,00.
Lastly, the hyperparameters α

(0)
trans and αtrans,0 are given gamma hyperpriors.
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The complete Bayesian hierarchical model for the transitions can be summarized as follows.

(ys,t | ys,t−1 = yt−1, is = i, ztrans,1,xs,1 = h1, ztrans,2,xs,2 = h2) ∼
Mult

{
P(i)

trans,h1,h2
(1 | yt−1), . . . , P(i)

trans,h1,h2
(4 | yt−1)

}
,

P(i)
trans,h1,h2

(· | yt−1) = π
(i)
trans,0(yt−1)λtrans,h1,h2(· | yt−1) + π

(i)
trans,1(yt−1)λ

(i)
trans(· | yt−1),

ztrans,j,� ∼ Mult
{
μtrans,j(1), . . . , μtrans,j(dj)

}
, μtrans,j ∼ Dir(αtrans,j, . . . , αtrans,j),

λ
(i)
trans(· | yt−1) ∼ Dir

{
α

(0)
transλtrans,0(1 | yt−1), . . . , α(0)

transλtrans,0(4 | yt−1)
}

,

λtrans,h1,h2(· | yt−1) ∼ Dir
{
αtrans,0λtrans,0(1 | yt−1), . . . , αtrans,0λtrans,0(4 | yt−1)

}
,

λtrans,0(· | yt−1) ∼ Dir
{
αtrans,00λtrans,00(1), . . . , αtrans,00λtrans,00(4)

}
,

π
(i)
trans,0(yt−1) ∼ Beta(atrans,0, atrans,1), αtrans,0 ∼ Ga(atrans,0, btrans,0), α

(0)
trans ∼ Ga(a(0)

trans, b(0)
trans).

(3.2)

3.2. Model for ISIs

For the ISI times {τs,t}s0,Ts
s=1,t=2, we associate each ISI from song s with three covariates: two exogenous,

namely genotype xs,1 ∈ X1 = {1, 2} and social context xs,2 ∈ X2 = {1, 2, 3}, and one local, namely
the pair of the preceding and the current syllable (ys,t−1, ys,t) ∈ Y × Y = {1, 2, 3, 4} × {1, 2, 3, 4}.
Given the values of these covariates, we model the log-transformed ISI times τ̃s,t = log(τs,t + 1) of
the mouse is = i using mixtures of gamma kernels as

f (̃τs,t | is = i, xs,1 = x1, xs,2 = x2, (ys,t−1, ys,t) = (yt−1, yt))

=
K∑

k=1

P(i)
isi (k | x1, x2, (yt−1, yt))Ga(̃τs,t | αk, βk),

(3.3)

where Ga(· | αk, βk) denotes a gamma mixture kernel with shape αk and rate βk and K is the total
number of mixture components. P(i)

isi (k | x1, x2, (yt−1, yt))’s are mixed effects mixture probabilities
that vary with the associated covariate values and are also specific to the subject. Introducing latent
variables {zisi,s,t} indicating the index of the mixture component, we can write

f (̃τs,t | zisi,s,t = k) ∼ Ga(̃τs,t | αk, βk),

Pr(zisi,s,t = k | is = i, xs,1 = x1, xs,2 = x2, (ys,t−1, ys,t) = (yt−1, yt)) = P(i)
isi (k | x1, x2, (yt−1, yt)).

(3.4)

Model (3.4) is structurally similar to model (3.1) except that we are now modeling the distribution
of a latent categorical variable zisi,s,t as opposed to the observed categorical variable ys,t. The number
of components K in (3.3) is thus also unknown and needs to be inferred from the data, bringing
in significant additional challenges. Nevertheless, we can use similar strategies to model the mixed
effects mixture probabilities P(i)

isi (k | x1, x2, (yt−1, yt)) as

P(i)
isi,x1,x2,(yt−1,yt)

(·) = π
(i)
isi,0(·)λisi,x1,x2,(yt−1,yt)(·) + π

(i)
isi,1(·)λ(i)

isi (·),

where λisi,x1,x2,(yt−1,yt)(·) is the fixed effect component for the associated covariates, namely genotype,
context and the preceding–current syllable pair, and λ

(i)
isi (·) is the random effect component for the
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mouse. The weights π
(i)
isi,0 and π

(i)
isi,1 = 1−π

(i)
isi,0 of the two effects are also allowed to be mouse specific,

as before.
To assess the significance of each covariate r, we induce a clustering C(r)

isi = {C(r)
isi,gr}

kisi,r
gr=1 of its levels

so that ISIs with associated covariates in the same clusters, say g1, g2, and g3, share the same fixed
effect mixture probability component λisi,g1,g2,g3 . This is done via introducing latent cluster allocation
variables {zisi,r,w}3,dr

r=1,w=1, as before, with zisi,r,w indicating the cluster label for the wth level of the rth
covariate. Importantly, as in the case of transition probabilities, when the levels of a covariate r are
all clustered together, that is, kisi,r = 1, the covariate r has no effect on the ISI distribution, allowing
us to easily and formally test its significance based on the posterior probability of the event kisi,r = 1.

The ISI mixture probability in a song s produced by a mouse is = i with genotype xs,1 in cluster
g1 and context xs,2 in cluster g2 and syllable pair (ys,t−1, ys,t) in cluster g3 is given by

P(i)
isi,g1,g2,g3

(·) = π
(i)
isi,0(·)λisi,g1,g2,g3(·) + π

(i)
isi,1(·)λ(i)

isi (·).

As earlier, we assign conditionally conjugate Dirichlet priors to the fixed and random effect
components and give a Beta prior to the mouse-specific coefficient,

λisi,g1,g2,g3(·) ∼ Dir
{
αisi,0λisi,0(1), . . . , αisi,0λisi,0(K)

}
,

λ
(i)
isi (·) ∼ Dir

{
α

(0)
isi λisi,0(1), . . . , α(0)

isi λisi,0(K)
}

, π
(i)
isi,0(k) ∼ Beta(aisi,0, aisi,1).

The random effects λ
(i)
isi and π

(i)
isi,0 can be easily integrated out to obtain the closed-form population-

level mixture probabilities as

Pisi,g1,g2,g3(k) = πisi,0λisi,g1,g2,g3(k) + πisi,1λisi,0(k),

where πisi,0 = aisi,0
aisi,0+aisi,1

and πisi,1 = aisi,1
aisi,0+aisi,1

. Finally, we let λisi,0 center around a global λisi,00 and the

hyperparameters α
(0)
isi and αisi,0 are given gamma hyperpriors.

The complete Bayesian hierarchical model for the ISIs may be summarized as

(̃τs,t | zisi,s,t = k) ∼ Ga(̃τs,t | αk, βk),

(zisi,s,t | is = i, zisi,1,xs,1 = g1, zisi,2,xs,2 = g2, zisi,3,(ys,t−1,ys,t) = g3) ∼
Mult

{
P(i)

isi,g1,g2,g3
(1), . . . , P(i)

isi,g1,g2,g3
(K)

}
,

P(i)
isi,g1,g2,g3

(k) = π
(i)
isi,0(k)λisi,g1,g2,g3(k) + π

(i)
isi,1(k)λ

(i)
isi (k), (3.5)

λ
(i)
isi (·) ∼ Dir

{
α

(0)
isi λisi,0(1), . . . , α(0)

isi λisi,0(K)
}

, α
(0)
isi ∼ Ga(a(0)

isi , b(0)
isi ),

λisi,g1,g2,g3(·) ∼ Dir
{
αisi,0λisi,0(1), . . . , αisi,0λisi,0(K)

}
, αisi,0 ∼ Ga(aisi,0, bisi,0),

λisi,0(·) ∼ Dir
{
αisi,00λisi,00(1), . . . , αisi,00λisi,00(K)

}
,

π
(i)
isi,0(k) ∼ Beta(aisi,0, aisi,1), αk ∼ Ga(aisi,0, bisi,0), βk ∼ Ga(aisi,0, bisi,0.)
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Gamma mixtures, in other forms, have appeared before in Chen (2000), Wiper and others (2001),
Hanson (2006), etc. Such mixtures can approximate a large class of distributions on [0, ∞) (see,
e.g., Theorem 14 in Wu and Ghosal, 2008) and hence allow a flexible nonparametric estimation
of the ISI distributions. The gamma kernel, however, brings in computational challenges which we
address briefly in Section 4 below and then in detail again in Appendix D of the Supplementary
material available at Biostatistics online. There exists some literature on flexible mixture and par-
tition models for conditionally varying densities of continuous random variables in the presence
of covariates (MacEachern, 1999; Chung and Dunson, 2009; Müller and others, 2011, etc.). To our
knowledge, however, flexible mixed effects mixture models of the type proposed here that accommo-
date both fixed effects of covariates as well as random heterogeneity of subjects while also allowing
simultaneous covariate selection have not appeared in the literature before.

4. Prior hyperparameters and posterior inference

The choices of prior hyperparameters, including the choice of the number of mixture components K
in the gamma mixture model (3.3) for which we use predictive model selection criteria, are discussed
in Appendix B of the Supplementary material available at Biostatistics online.

Our posterior inference is based on samples of the model parameters drawn using an MCMC
algorithm. The full conditional posterior distributions are mostly obtained in closed-form and are
easy to sample from. One exception is the sampling of the gamma mixture parameters. The conju-
gate prior for gamma distribution is known to be analytically intractable (Damsleth, 1975; Miller,
1980), posing difficulty in sampling the parameters αk’s and βk’s. We experimented with a number
of ideas and ultimately used the strategy introduced in Miller (2019) which uses a gamma density
function to approximate the full conditional for gamma shape parameters. After sampling the shape
parameters αk’s, the rate parameters βk’s can be easily sampled from their closed-form conjugate
gamma full conditionals. As the results of Sections 5 and Appendix F of the Supplementary mate-
rial available at Biostatistics online will illustrate, this method worked well with real data as well as
in our simulation experiments, converging quickly, mixing well and providing accurate estimates of
the target distributions. Details of the posterior sampling algorithm can be found in Appendix D of
the Supplementary material available at Biostatistics online.

5. Results for the Foxp2 data set

In this section, we discuss the results of the proposed Bayesian Markov renewal mixed model fitted
to the Foxp2 data set. We present the results for syllable transitions and ISIs separately.

5.1. Results for syllable transition

Figure 3a shows the estimated posterior mean of the population-level transition probabilities,
Ptrans,x1,x2(yt | yt−1), given genotype x1 and social context x2. We see that regardless of the covariate
values, the s syllable is predominantly transitioned to and u is the least likely syllable to transition
to across different genotypes and contexts. This is reasonable since the s syllable is presumably the
easiest to pronounce and u is the least pronounced syllable across all sequences.

We evaluate the global impact of covariates by computing the estimated posterior distribution of
ktrans,j for genotype (j = 1) and social context (j = 2) (Figure S3 in Appendix E of the Supplementary
material available at Biostatistics online). The estimated posterior probability that ktrans,1 greater than
1 is approximately 0.56. In contrast to the findings reported previously in Sarkar and others (2018),
the evidence that the mutation on the Foxp2 gene impacts the transition probabilities of the syllables
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(a)

(b)

(c)

Fig. 3. Results for the Foxp2 data set. (a) The estimated posterior mean of the transition probabilities
Ptrans,x1,x2(yt | yt−1) of syllables yt, yt−1 ∈ Y = {d,m,s,u} under different combinations of genotype
x1 ∈ {F , W} and social context x2 ∈ {U , L, A}. (b) Histogram of the transformed ISIs with the estimated
posterior mean (red line) of their marginal gamma mixture density based on MCMC samples after burn-
in and thinning. (c) Histograms of the transformed ISIs for each component of the gamma mixture model
along with the component density (red lines) from the last MCMC iteration. The x-axes are adjusted for better
visualization.

has thus become somewhat weaker. This illustrates that treating ISI as a separate continuous variable
results in less distinctions between the transition dynamics of the two groups. Conforming to the
previous analyses in Sarkar and others (2018), there is, however, very clear evidence of the influence
of social context on the transitions probabilities. Specifically, whenever there were two clusters, the
contexts U and A were clustered together. In Figure 3a, we see that there is strong evidence that
contexts U and A have similar impact across genotypes. Compared to U and A, the L context has
smaller transition probabilities for transitions types d → d and m → d across the two genotypes.
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The decrease in the transition probabilities of d → d and m → d seems to be explained by the
increase in the probabilities of d → s and m → s, suggesting that the mice vocalized short and
simple symbols more often under the L context.

In Sarkar and others (2018), the coefficients (π trans,0, π trans,1) were assumed to be shared between
all mice, whereas here we have allowed them to be mouse specific as (π

(i)
trans,0, π (i)

trans,1). To investigate
the effectiveness of this, we looked at the values for these coefficients for different mice. Given a
preceding syllable yt−1, we compare the coefficient π

(i)
trans,0 for each individual i. We present these

results in Table S3 in Appendix E of the Supplementary material available at Biostatistics online.
From the table, we see that these coefficients differ substantially between different mice, especially
for preceding syllables u and m, justifying our decision of making them mouse specific.

5.2. Results for ISIs

We first transform the observed ISIs to τ̃s,t = log(1 + τs,t). The original τs,t’s have a wide range with
a minimum of 0.01 and a maximum of 258.8 s. This preprocessing step helps shorten the range of
the data and produce better graphical summaries for the results. We add 1 to the original τs,t’s before
taking the log to avoid negative τ̃s,t’s.

Figure 3b shows the histogram of the transformed ISIs along with the posterior mean (red curve)
averaged from samples after burn-ins and thinning. Table 1c in Section 2 shows the empirical and
posterior means and standard deviations of the ISIs side-by-side. We see that our proposed model fits
the ISI data very well, whose two peaks are captured by the mixture gamma distribution. Figure 3c
displays the histogram for each mixture component along with the corresponding gamma densities
with shape and rate parameters taken from the last iteration of the MCMC sampler. It is clear that
components 1 and 3 represent the two peaks we see in Figure 3b whereas components 2 and 4 assign
more probability mass to larger values of the transformed ISIs. The parameters of each component
gamma distribution are presented in the first table in Table 2. The shape and rate parameters for
components 1 and 3 are much larger than those of components 2 and 4, capturing the concentration
of the small values of the transformed ISIs.

Table 2 displays the mixture probabilities taken from the last MCMC iteration for each covariate:
genotype (F and W ), social contexts (U , L, and A), and every preceding–current syllable pair. We
see that mice with the Foxp2 mutation have a smaller mixture probability in the components 1, 3,
and 4 compared to wild-types but have a significantly higher probability for component 2 (+0.08).
Recall that component 2 has the smallest rate parameter, which indicates a higher probability to
have a larger value compared to the other components. A large mixture probability in component
2 indicates a high ISI value. This suggests that the ISI length for mice with the Foxp2 mutation
concentrates on larger values than the ISIs of wild-types, which supports our hypothesis that mice
with such mutation needs a longer ISI before pronouncing a new syllable. One interesting discovery
from Tables 1c and 2 is that male mice in the presence of a live female (L context) tend to have
shorter ISIs than those under the other two contexts since the mixture probability is much higher in
component 3 for the L context compared to the other contexts. This suggests that male mice need
a shorter interval between pronouncing two syllables in the presence of a live female. This finding,
along with the discovery that transitions to the simplest syllable s are more frequent under the L
context, shows that male mice exhibit different vocalization dynamics when there is an awake female
mouse present.

The last two tables in Table 2 show the mixture probabilities associated with each preceding-
current syllable pair. The 16 pairs of syllables have similar weights in the four components except for
(s,s), which has a much larger mixture probability for component 2, indicating a longer ISI between
pronouncing consecutive s syllables. This corresponds to the result in Table 1c where the ISIs are
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Table 2. Results for ISIs for the Foxp2 data set taken from the last MCMC iteration

Estimated gamma shape and
rate parameters

shape.k rate.k

Comp 1 23.47 336.41
Comp 2 1.28 1.69
Comp 3 7.79 423.98
Comp 4 2.89 20.59

Estimated mixture probabilities
for each genotype

F W

Comp 1 0.52 0.57
Comp 2 0.16 0.08
Comp 3 0.08 0.11
Comp 4 0.24 0.25

Estimated mixture probabilities
for each context

U L A

Comp 1 0.56 0.42 0.65
Comp 2 0.15 0.11 0.09
Comp 3 0.05 0.18 0.05
Comp 4 0.23 0.29 0.21

Estimated mixture probabilities for each preceding–current syllable pair
(d,d) (d,m) (d,s) (d,u) (m,d) (m,m) (m,s) (m,u)

Comp 1 0.65 0.65 0.45 0.47 0.65 0.65 0.47 0.55
Comp 2 0.07 0.07 0.16 0.12 0.07 0.07 0.12 0.14
Comp 3 0.05 0.05 0.10 0.17 0.05 0.05 0.17 0.07
Comp 4 0.23 0.23 0.29 0.24 0.23 0.23 0.24 0.24

Estimated mixture probabilities for each preceding–current syllable pair (cont’d)
(s,d) (s,m) (s,s) (s,u) (u,d) (u,m) (u,s) (u,u)

Comp 1 0.56 0.65 0.35 0.55 0.47 0.54 0.47 0.56
Comp 2 0.14 0.07 0.23 0.14 0.12 0.11 0.12 0.14
Comp 3 0.06 0.05 0.11 0.07 0.17 0.11 0.17 0.06
Comp 4 0.24 0.23 0.31 0.24 0.24 0.24 0.24 0.24

usually longer when both the preceding and the current syllable are s, no matter what the genotype
or social context is. Additional results on ISIs, including results of global tests for genotype and
context (Figure S4 in Appendix E of the Supplementary material available at Biostatistics online),
are provided in the supplementary materials.

6. Discussion

This article introduced a new class of Bayesian Markov renewal mixed effects models that allows
inference of both state transition probabilities and continuous interstate interval times. On the sta-
tistical side, our main novel contribution is a mixed effects gamma mixture model for the inter-state
intervals. The mixture probabilities build on carefully constructed convex combinations of a fixed
effect component for the associated covariates and a random effect component for the associated
individual, resulting in a highly flexible and computationally tractable model. At the same time,
covariate values that induce similar effects on the response are probabilistically clustered together
and, in the process, significant covariates are identified.

We used the model to reanalyze the Foxp2 data set which comprises a collection of songs sung
by adult male mice with or without a Foxp2 mutation under various social contexts. In contrast
to previous analyses, we found weaker evidence that the transition dynamics of the syllables within
the songs vary with genotype and social context. On the other hand, there is significant evidence
that all three covariates, namely genotypes, social contexts, and preceding–current syllable pairs,
influence the lengths of the ISIs. The important scientific implication is that the vocal impairment
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of the Foxp2 mice is manifested in their having longer ISIs than wild-types, not just in the syllable
transition dynamics as previous analyses suggested.

The mixture gamma model for the ISIs that we proposed here may be of independent interest out-
side the scope of the Foxp2 application. The model is nontrivial and brought in additional statistical
challenges, including posterior computation for unknown gamma parameters and selection of the
unknown number of mixture components. To our knowledge, sophisticated mixed effects mixture
models for continuous variables that also simultaneously allow covariate selection have not been
proposed in the literature before.

Our model is quite generic in nature and hence can be used to analyze other data sets compris-
ing categorical sequences and associated continuous interstate interval times, both of which may
potentially be influenced by various exogenous factors as well as subject-specific heterogeneity. The
field of vocal communication neuroscience constitutes an important area of neuroscience research.
Investigating scientific questions using animal models in controlled laboratory environments is a
standard practice in this field. These researchers often use the standard two-way analysis of vari-
ance (ANOVA) design like the Foxp2 study analyzed in our manuscript. Our method is broadly
applicable to such studies. We also cite below some examples from other application domains that
can benefit from such analyses. In a study of asthma patients, Combescure and others (2003) esti-
mated the control states (optimal, suboptimal or unacceptable) of 371 asthma patients with different
BMI and disease severity over a 4-year period. In an education assessment study, Zhang and others
(2019) recorded sequences of writing states, characterized by keystroke logs, for 257 eighth graders
of various genders, races, and socioeconomic statuses. These works used Cox regression models
to incorporate potential covariate influences but ignored the heterogeneity between the individuals
(Dabrowska and others, 1994; Król and Saint-Pierre, 2015; Guo and others, 2019). To our knowledge,
there exists no other statistical approach that flexibly accommodates population and individual-
level effects in the transition as well as the interstate interval distributions while also selecting the
significant covariates for both.

Finally, in this article, we focused on discrete exogenous factors due to the nature of our motivat-
ing Foxp2 application. A simple but practically effective way to incorporate continuous covariates
into the model is by categorizing them using, for example, their quantiles. Future research could
investigate more principled ways to incorporate continuous covariates in our model. The proposed
model also points to possible directions of research in Markov renewal models that consider differ-
ent aspects of state transitions (transition probabilities, interstate intervals, state durations, etc.) and
help make novel discoveries in important practical applications.

Software

An R package BMRMM implementing our method is available at the Comprehensive R Archive Net-
work (CRAN) and can also be accessed at https://github.com/abhrastat/BMRMM. A “readme” file
is included here that instructs how to use the package to run the specific analysis reported here.

Supplementary material

Supplementary material is available at http://biostatistics.oxfordjournals.org.

Acknowledgments

We thank the associate editor and two anonymous reviewers for their thorough review of our man-
uscript which led to substantial improvements in the substance and exposition of the manuscript.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxac050/6965892 by guest on 03 January 2023

https://github.com/abhrastat/BMRMM
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac050#supplementary-data
http://biostatistics.oxfordjournals.org


16 Y. Wu and others

Conflict of Interest: None declared.

REFERENCES

Alvarez, E. E. (2005). Estimation in stationary Markov renewal processes, with application to earthquake
forecasting in Turkey. Methodology and Computing in Applied Probability 7, 119–130.

Arriaga, G. and Jarvis, E. D. (2013). Mouse vocal communication system: are ultrasounds learned or innate?
Brain and Language 124, 96–116.

Bulla, P. and Muliere, P. (2007). Bayesian nonparametric estimation for reinforced Markov renewal processes.
Statistical Inference for Stochastic Processes 10, 283–303.

Castellucci, G. A., McGinley, M. J. and McCormick, D. A. (2016). Knockout of Foxp2 disrupts vocal
development in mice. Nature Scientific Reports 6, 1–14. doi: 10.1038/srep23305.

Chabout, J., Sarkar, A., Dunson, D. B. and Jarvis, E. D. (2015). Male song syntax depends on contexts and
influences female preferences in mice. Frontiers in Behavioral Neuroscience 9, 1–19.

Chabout, J., Sarkar, A., Patel, S., Raiden, T., Dunson, D. B., Fisher, S. E. and Jarvis, E. D. (2016). A Foxp2
mutation implicated in human speech deficits alters sequencing of ultrasonic vocalizations in adult male
mice. Frontiers in Behavioral Neuroscience 10, 1–18.

Chabout, J., Serreau, P., Ey, E., Bellier, L., Aubin, T., Bourgeron, T. and Granon, S. (2012). Adult male
mice emit context-specific ultrasonic vocalizations that are modulated by prior isolation or group rearing
environment. PLoS One 7, e29401.

Chen, S. X. (2000). Probability density function estimation using gamma kernels. Annals of the Institute of
Statistical Mathematics 52, 471–480.

Chung, Y. and Dunson, D. B. (2009). Nonparametric Bayes conditional distribution modeling with variable
selection. Journal of the American Statistical Association 104, 1646–1660.

Combescure, C., Chanez, P., Saint-Pierre, P., Daures, J. P., Proudhon, H., Godard, P. and others. (2003).
Assessment of variations in control of asthma over time. European Respiratory Journal 22, 298–304.

Dabrowska, D. M., Sun, G.-W. and Horowitz, M. M. (1994). Cox regression in a Markov renewal model: an
application to the analysis of bone marrow transplant data. Journal of the American Statistical Associa-
tion 89, 867–877.

Damsleth, E. (1975). Conjugate classes for Gamma distributions. Scandinavian Journal of Statistics 2, 80–84.

Epifani, I., Ladelli, L. and Pievatolo, A. (2014). Bayesian estimation for a parametric Markov renewal model
applied to seismic data. Electronic Journal of Statistics 8, 2264–2295.

Fisher, S. E. and Scharff, C. (2009). Foxp2 as a molecular window into speech and language. Trends in
Genetics 25, 166–177.

Foucher, Y., Mathieu, E., Saint-Pierre, P., Durand, J.-F. and Daurès, J.-P. (2005). A semi-Markov model
based on generalized Weibull distribution with an illustration for HIV disease. Biometrical Journal: Journal
of Mathematical Methods in Biosciences 47, 825–833.

Fujita, E., Tanabe, Y., Shiota, A., Ueda, M., Suwa, K., Momoi, M. Y. and Momoi, T. (2008). Ultrasonic
vocalization impairment of Foxp2 (R552H) knockin mice related to speech-language disorder and abnor-
mality of Purkinje cells. Proceedings of the National Academy of Sciences United States of America 105,
3117–3122.

Gaub, S., Fisher, S. E. and Ehret, G. (2016). Ultrasonic vocalizations of adult male Foxp2 mutant mice:
behavioral contexts of arousal and emotion. Genes, Brain and Behavior 15, 243–259.

Guo, H., Zhang, M., Deane, P. and Bennett, R. E. (2019). Writing process differences in subgroups reflected
in keystroke logs. Journal of Educational and Behavioral Statistics 44, 571–596.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxac050/6965892 by guest on 03 January 2023



Markov renewal mixed models for vocalization syntax 17

Hanson, T. E. (2006). Modeling censored lifetime data using a mixture of gammas baseline. Bayesian Analysis 1,
575–594.

Holy, T. E. and Guo, Z. (2005). Ultrasonic songs of male mice. PLoS Biology 3, 2177–2186.

Jarvis, Erich D. (2019). Evolution of vocal learning and spoken language. Science 366, 50–54.

Król, A. and Saint-Pierre, P. (2015). SemiMarkov: an R package for parametric estimation in multi-state
semi-Markov models. Journal of Statistical Software 66, 1–16.

Lai, C. S. L., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F. and Monaco, A. P. (2001). A forkhead-domain
gene is mutated in a severe speech and language disorder. Nature 413, 519–523.

Levy, P. (1954). Processus semi-Markoviens. In: Proceedings of International Congress of Mathematics.

MacEachern, S. N. (1999). Dependent nonparametric processes. In: ASA Proceedings of the Section on
Bayesian Statistical Science. Alexandria, Virginia: American Statistical Association, pp. 50–55.

Miller, J. W. (2019). Fast and accurate approximation of the full conditional for Gamma shape parameters.
Journal of Computational and Graphical Statistics 28, 476–480.

Miller, R. B. (1980). Bayesian analysis of the two-parameter Gamma distribution. Technometrics 22,
65–69.

Moles, A., Costantini, F., Garbugino, L., Zanettini, C. and DÁmato, F. R. (2007). Ultrasonic vocaliza-
tions emitted during dyadic interactions in female mice: a possible index of sociability? Behavioural Brain
Research 182, 223–230.

Mooney, R. (2020). The neurobiology of innate and learned vocalizations in rodents and songbirds. Current
Opinion in Neurobiology 64, 24–31.

Muliere, P., Secchi, P. and Walker, S. G. (2003). Reinforced random processes in continuous time. Stochastic
Processes and Their Applications 104, 117–130.

Müller, P., Quintana, F. and Rosner, G. L. (2011). A product partition model with regression on covariates.
Journal of Computational and Graphical Statistics 20, 260–278.

Musolf, K., Meindl, S., Larsen, A. L., Kalcounis-Rueppell, M. C. and J., Penn D. (2015). Ultrasonic vocal-
izations of male mice differ among species and females show assortative preferences for male calls. PLoS
One 10, e0134123.

NIH-NIDCD Report. (2020). Statistics on voice, speech, and language. https://www.nidcd.nih.gov/health/
statistics/statistics-voice-speech-and-language.

Phelan, M. J. (1990). Bayes estimation from a Markov renewal process. The Annals of Statistics 18, 603–616.

Pyke, R. (1961). Markov renewal processes: definitions and preliminary properties. The Annals of Mathematical
Statistics 32, 1231–1242.

Sarkar, A., Chabout, J., Macopson, J. J., Jarvis, E. D. and Dunson, D. B. (2018). Bayesian semiparametric
mixed effects Markov models with application to vocalization syntax. Journal of the American Statistical
Association 113, 1515–1527.

Scattoni, M. L., Ricceri, L. and Crawley, J. N. (2011). Unusual repertoire of vocalizations in adult BTBR
T+tf/J mice during three types of social encounters. Genes, Brain and Behavior 10, 44–56.

Smith, W. L. (1955). Regenerative stochastic processes. Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences 232, 6–31.

Vargha-Khadem, F., Watkins, K. E., Price, C. J., Ashburner, J., Alcock, K. J., Connelly, A., Frackowiak,
R. S. J., Friston, K. J., Pembrey, M. E., Mishkin, M. and others. (1998). Neural basis of an inherited speech
and language disorder. Proceedings of the National Academy of Sciences United States of America 95, 12695–
12700.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxac050/6965892 by guest on 03 January 2023

https://www.nidcd.nih.gov/health/statistics/statistics-voice-speech-and-language
https://www.nidcd.nih.gov/health/statistics/statistics-voice-speech-and-language


18 Y. Wu and others

Weiss, G. H. and Zelen, M. (1965). A semi-Markov model for clinical trials. Journal of Applied Probability 2,
269–285.

Wiper, M., Insua, D. R. and Ruggeri, F. (2001). Mixtures of gamma distributions with applications. Journal of
Computational and Graphical Statistics 10, 440–454.

Wu, Y. and Ghosal, S. (2008). Kullback–Leibler property of kernel mixture priors in Bayesian density
estimation. Electronic Journal of Statistics 2, 298–331.

Yang, M. C. K. and Hursch, C. J. (1973). The use of a semi-Markov model for describing sleep patterns.
Biometrics 29, 667–676.

Zhang, M., van Rijn, P. W., Deane, P. and Bennett, R. E. (2019). Scenario-based assessments in writing: an
experimental study. Educational Assessment 24, 73–90.

[Received October 29, 2021; revised December 8, 2022; accepted for publication December 14, 2022]

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxac050/6965892 by guest on 03 January 2023


