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We consider a repeated game where a player self-reports her usage of a service and is charged 
a payment accordingly by a center. The center observes a partial signal, representing part of the 
player’s true consumption, which is generated from a publicly known distribution. The player 
can report any value that does not contradict the signal and the center issues a payment based on 
the reported information. Such problems find application in net metering billing in the electricity 
market, where a customer’s actual consumption of the electricity network is masked and complete 
verification is impractical. When the underlying true value is relatively constant, we propose 
a penalty mechanism that elicits truthful self-reports. Namely, besides charging the player the 
reported value, the mechanism charges a penalty proportional to her inconsistent reports. We 
show how fear of uncertainty in the future incentivizes the player to be truthful today. For 
Bernoulli distributions, we give the complete analysis and optimal strategies given any penalty. 
Since complete truthfulness is not possible for continuous distributions, we give approximate 
truthful results by a reduction from Bernoulli distributions. We also extend our mechanism to a 
multi-player cost-sharing setting and give equilibrium results.

1. Introduction

Consider the following repeated game where a center owns resources and one or more strategic players pay the center to consume 
the resources. In every round, a player self-reports their usage, which will then be used to determine their payment to the center. 
However, it is not always possible for the center to verify the submitted information from the players. Instead, only part of the actual 
consumption is revealed to the center based on some publicly known distribution. A player can report any value that is at least the 
revealed amount. Without any external interference, a player will naturally report exactly the revealed amount (potentially lower 
than the true consumption) to minimize their payment. The center then needs to determine a payment mechanism such that each 
player is incentivized to report their true value.

The electricity market is facing precisely the described problem. As the number of electricity prosumers increases each year, new 
rate structures are designed to properly calculate the electricity bill for this special type of consumer while ensuring that every 
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Fig. 1.1. Net metering for electricity prosumers.

customer is still paying their fair share of the network costs. Prosumers are those who not only consume energy but also produce 
electricity via distributed energy resources such as rooftop solar panels. Among different rate structures, net metering is a popular 
billing mechanism that is currently adopted in more than 40 states in the US [28]. Net metering charges prosumers a payment 
proportional to their net consumption, i.e., gross consumption minus the production [35], demonstrated in Fig. 1.1. The payment 
includes the electricity usage as well as grid costs that are incurred by using the electricity network.

The controversy in net metering lies in that prosumers fail to pay their share of the grid costs when they do not have local storage 
equipment [12]. In the United States, only 4% of the solar panel owners also own a battery to store the produced solar energy 
[25]. For those who do not own battery storage, the generated power has to be transmitted back to the grid. Accordingly, the daily 
consumption of power by these prosumers also needs to come from the grid instead of directly from the solar panels. In this way, most 
prosumers have under-paid their share of the network costs and become “free-riders” of the electricity grid. The grid is often subject 
to costly line upgrades and net metering unevenly shifts such costs to traditional consumers, who usually come from lower-income 
households [17]. Indeed, previous research works have suggested that prosumers should pay a part of the grid costs proportionally 
to their gross consumption, not net consumption [12,21]. However, the gross consumption is hidden from the utility companies since 
only net consumption can be observed from the meter.1 Meanwhile, there is no incentive for prosumers to voluntarily report their 
true consumption as it will only increase their electricity bills.

Fortunately, the production from solar panels usually follows some pattern while the gross consumption of electricity for a typical 
household stays relatively constant, which is especially true for industrial sites, the major consumers for utilities [31,39]. Thus, the 
observed usage can be assumed to follow some natural distribution and the center is able to detect dishonesty when a player’s report 
differs from their reporting history. With this idea, we propose a simple penalty mechanism, the flux mechanism, that elicits truthful 
reports from players in a repeated game setting when only partial verification is possible. Particularly, a player is charged their 
reported value as well as a penalty due to inconsistency in consecutive reports in each round. The main goal is to ensure that every 
player reports their true values and no penalty payment is collected. We show that the combining effect of (i) the penalty rate and 
(ii) the length of the game is sufficient for inducing truthful behavior from the player for the entire game. As the horizon of the game 
increases, the minimum penalty rate for truth-telling as an optimal strategy decreases. In other words, it is the fear of uncertainty in 
the future that incentivizes the player to be truthful today.

Besides net metering, our mechanism can be used to address dishonest reporting in other public goods or services. For example, 
some individuals or enterprises misrepresent their income or deductions to lower their taxes. While tax fraud is a federal crime, the 
chance of being audited is small compared to the percentage of taxpayers who are not complying with the tax laws [37]. Another 
application of our mechanism is insurance fraud when an insurer exaggerates claims or provides false information to insurance 
companies to receive larger payouts. Such behavior sometimes results in a premium increase for every insurer in the same area, 
including the honest ones. To avoid the erosion of such services and ensure equity among different users, our mechanism presents a 
simple and automated way of identifying dishonesty in a self-reporting system and incentivizes truthfulness via a single parameter.

1.1. Our contribution

We address the problem of eliciting truthful reports when the center is able to observe a part of the player’s private value based on 
some publicly known distribution. The strategic player reports some value that is at least the publicly revealed value and is charged 
a payment accordingly. We propose a truth-eliciting mechanism, flux mechanism, that utilizes the player’s fear of uncertainties to 
achieve truthfulness. In each round, the player is charged a “regular payment” proportional to the consumption they report. Starting 
from the second round, the player is charged an additional “penalty payment”, which is 𝑟 times the (absolute) difference between 
the reports in the current and the previous round, where the penalty rate 𝑟 is set by the center before the game starts.

1 We note that there exist net meters such that both the gross consumption and the solar generation are recorded. We focus on the net metering programs where 
2

the meter only provides the net usage.
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Table 1

Optimal strategy given penalty rate 𝑟 under 𝐵𝑒𝑟(𝑝) distributions.

Bernoulli Prob. Penalty Rate Optimal Strategy

𝑝 ≥ 0.5 𝑟 ≤ 1
2𝑝

lying-till-end

1
2𝑝
< 𝑟 ≤ 1 lying-till-busted

+ lying last round

1 < 𝑟 < 1−(1−𝑝)𝑇

𝑝−𝑝(1−𝑝)𝑇−1
lying-till-busted

𝑟 ≥ 1−(1−𝑝)𝑇

𝑝−𝑝(1−𝑝)𝑇−1
honest-till-end

𝑝 < 0.5 𝑟 ≤ 1 lying-till-end

ℎ(𝑡− 1) < 𝑟 ≤ ℎ(𝑡)
lying-till-end first 𝑡 rounds

+ lying-till-busted for rest

ℎ(𝑇 − 1) < 𝑟 < 1−(1−𝑝)𝑇

𝑝−𝑝(1−𝑝)𝑇−1
lying-till-busted

𝑟 ≥ 1−(1−𝑝)𝑇

𝑝−𝑝(1−𝑝)𝑇−1
honest-till-end

Intuitively, a player can save their regular payment by under-reporting their consumption, but they will then face the uncertainty 
of paying penalties in future rounds due to inconsistent reports. Under most settings, if 𝑟 is set to be infinitely high, the players will 
be completely truthful to avoid any penalty payment. However, a severe punishment rule is undesirable and discourages players 
from participating. Therefore, we want to understand the following question.

What is the minimum penalty rate such that the player is willing to report their true value?

We observe that no finite penalty can achieve complete truthfulness for arbitrary distributions as a player’s true consumption 
may never be revealed exactly. We can, however, obtain approximate truthfulness for a general distribution by analyzing complete 
truthfulness for a corresponding Bernoulli distribution. For 𝐵𝑒𝑟(𝑝), the partial signal equals the true consumption with probability 
𝑝 and 0 with probability 1 − 𝑝 for 𝑝 ∈ (0, 1). We give results for Bernoulli distributions in Main Results 1 and 2. For arbitrary 
distributions, we redefine 𝑝 as the probability of having a partial signal that is at least 𝛼 times the true consumption, for 𝛼 ∈ [0, 1], 
to obtain 𝛼-truthfulness (Main Result 3).

Main Result 1. (Theorem 3.1) For a 𝑇 -round game with Bernoulli distribution 𝐵𝑒𝑟(𝑝), the player is completely truthful if and only if the 
penalty rate is at least

1 − (1 − 𝑝)𝑇

𝑝− 𝑝(1 − 𝑝)𝑇−1
.

Main Result 1 gives the minimum penalty rate that guarantees complete truthfulness for 𝐵𝑒𝑟(𝑝) distributions. We also want to 
understand how players would behave if the penalty rate is not as high, which describes the situation when the center is willing to 
sacrifice some degree of truthfulness by lowering the penalty rate. Given any penalty rate, we show that a player’s optimal strategies 
can be described as one or a combination of three basic strategies, lying-till-end, lying-till-busted and honest-till-end. Specifically, with a 
low penalty rate, the player is always untruthful to save regular payment, i.e., lying-till-end is optimal. As the penalty rate increases, 
the player’s optimal strategy gradually moves to lying-till-busted, which is to be untruthful until the partial signal is revealed as the 
true consumption for the first time and then stays truthful for the rest of the game. When the penalty rate is sufficiently high, the 
player would avoid lying completely and reports the truth, i.e., she is honest-till-end.

Main Result 2. (Theorems 3.1 and 3.2) For a 𝑇 -round game with Bernoulli distribution 𝐵𝑒𝑟(𝑝), given any penalty rate 𝑟, the player’s 
optimal strategy is summarized in Table 1, where

ℎ(𝑡) = 1 − (1 − 𝑝)𝑡

2𝑝− 𝑝(1 − 𝑝)𝑡−1
, for 1 ≤ 𝑡 ≤ 𝑇 .

For arbitrary distributions, including uniform distributions, we explain in Section 4 that it is impossible to obtain complete truth-

fulness without setting the penalty to infinity. Main Result 3 gives a reduction from Bernoulli distributions to general distributions 
for approximate truthfulness.

Main Result 3. (Theorem 4.1) Given 𝛼 ∈ [0, 1] and an arbitrary distribution with CDF 𝐹 , if a penalty rate 𝑟 achieves complete truthfulness 
for 𝐵𝑒𝑟(𝑝) where 𝑝 = 1 − 𝐹 (𝛼𝐷) and 𝐷 is the player’s true gross consumption, then the same 𝑟 achieves 𝛼-approximate truthfulness for 
distribution 𝐹 .

Finally, we extend our results to multiple players. We note that if the players are charged independently, applying the flux 
3

mechanism to each individual elicits truthful reports. A more complicated and realistic setting is the cost-sharing problem where 
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the players split an overhead cost based on their submitted reports. We propose the multi-player flux mechanism where the penalty 
payment is the same as before but the regular payment is now a share of some overhead cost. Again, if the penalty rate is sufficiently 
high, the players stay truthful, regardless of others’ behavior, to avoid any penalty payment, i.e., the truthful report profile forms a 
dominant strategy equilibrium. As the penalty rate decreases, the truthfulness of a player may depend on other players’ actions. That 
is, with a lower penalty rate, a truthful report profile forms a Nash equilibrium. For both equilibrium definitions, we are interested in 
the following question.

What is the minimum penalty rate for the truthful report profile to form a dominant strategy or Nash equilibrium?

We give exact penalty thresholds for both truthful equilibria under Bernoulli distributions and use a reduction to obtain approximate 
results under arbitrary distributions in Main Result 4.

Main Result 4. (Theorems 5.1, 5.2, 5.3 and 5.4) For any 𝑇 -round game with distribution 𝐵𝑒𝑟(𝑝), a truthful strategy profile is a dominant 
strategy equilibrium if and only if

𝑟 ≥
𝐶

𝑛𝐷

1 − (1 − 𝑝)𝑛−1

𝑝

1 − (1 − 𝑝)𝑇

𝑝− 𝑝(1 − 𝑝)𝑇−1
,

and a Nash equilibrium if and only if

𝑟 ≥
𝐶

𝑛𝐷

1 − (1 − 𝑝)𝑇

𝑝− 𝑝(1 − 𝑝)𝑇−1
.

Given 𝛼 ∈ [0, 1] and any distribution with cumulative distribution function 𝐹 , let 𝑝 = 1 − 𝐹 (𝛼𝐷), where 𝐷 is the true gross consumption. 
Then 𝛼-approximate truthful profile is a Nash equilibrium if

𝑟 ≥
1
𝛼

𝐶

𝑛𝐷

1 − (1 − 𝑝)𝑇

𝑝− 𝑝(1 − 𝑝)𝑇−1
,

and the 𝛼-approximate truthful profile is a dominant strategy equilibrium if

𝑟 ≥
1
𝛼

𝐶

𝑛𝐷

1 − (1 − 𝑝)𝑛

𝑝

1 − (1 − 𝑝)𝑇

𝑝− 𝑝(1 − 𝑝)𝑇−1
.

1.2. Related works

The economic effect of the net metering policy has been explored for different countries and regions [7,8,41,34,20]. It has been 
observed that net metering can cause inequality issues for traditional energy consumers [17,20,29,9]. Accordingly, alternative pricing 
mechanisms and tariff structures have been proposed to fairly compensate the energy production [36,11,4,12,21]. In particular, 
Gautier et al. [12] and Khodabakhsh et al. [21] proposed that individuals should be charged based on their true consumption, 
not net consumption. Our work is a continuation of [21], where a primitive version of the penalty mechanism is first proposed for 
promoting a fairer electricity rate structure. We formally define the mechanism and provide the corresponding theoretical analysis.

More broadly, fairness for the power grid has become an increasingly popular subject. First, Heylen et al. provided various indices 
to measure fairness and inequality in power system reliability [15]. Fairness is also explored for load shedding plans [16], electric 
vehicle charging schemes [1], demand response [2], etc. Moret and Pinson showed fairness can be improved with a “community-

based electricity market”, where prosumers are allowed to share their production on the community level [26]. Our model, on the 
other hand, addresses the fairness issues by modifying the current electricity structure, which is easier for utility companies to adopt.

Theoretically, our work is related to information elicitation with limited verification ability. Green and Laffont [13] first for-

malized the mechanism design problem with partial verification where a center may detect part of a false response submitted by a 
player. One branch of information elicitation without verification is attributed to crowdsourcing, where the center needs to elicit 
answers from a large crowd on a simple task. Mechanisms proposed for crowdsourcing include peer prediction [27,19,33], Bayesian 
truth serum [32,44], collective revelation [14], output agreement [40,42,24], the disagreement mechanism [22], etc. Many of the 
above mechanisms score a player based on the report from another player, either by using the other player’s report as the reference 
(peer prediction) or by evaluating how close the two reports are to each other (output agreement). It is known that common knowl-

edge is the best a mechanism can do for information elicitation without verification unless there are restrictions on the information 
structure [42]. Such mechanisms are not applicable to the single-player setting in our problem. In the multi-player setting, however, 
it is difficult to justify charging players based on the discrepancies between their reports and those from their peers, because the 
consumption can differ for each player. Another related area is probabilistic verification [6], where the center may catch a lying 
player by a probability specified by her type. In particular, Ball and Kattwinkel considered the trade-off between the benefit of a 
successful misreporting and the risk of being detected for a strategic player [3]. The probabilistic verification takes place as tests by 
the center that a player can either try or skip, which is not applicable for our problem.

Finally, the use of penalty in mechanism design has been widely adopted and proven to be effective in different application areas 
such as supply chain [43,5], performance-based regulations [18], waste recycling [38], etc. It is also suggested that truthful players 
4

are willing to punish “free-riders” [10]. In some cases, a penalty may lead to participation issues and the mechanism needs to satisfy 
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the voluntary participation property such that the players prefer the outcome of joining the game instead of staying out [30,23]. In 
our application, since not participating indicates receiving no electricity, the voluntary participation property is trivially satisfied.

2. Problem statement

In this section, we formally define our problem under the single-player setting and defer the extension to multiple players to 
Section 5. The player has a gross consumption 𝐷 ≥ 0, which is her private information. The game has 𝑇 rounds where 𝑇 > 1 as 
otherwise, the flux mechanism becomes invalid. In each round 𝑡, the center observes a partial signal, 𝑦𝑡 ≤𝐷, which is randomly and 
independently drawn from a distribution 𝐹 supported on [0, 𝐷]. We use 𝑟 ≥ 0 to denote the penalty rate. In a flux mechanism, a 
player cares more about the number of rounds left in the future rather than the number of rounds that have passed. Thus we use 
𝑡 = 𝑇 , 𝑇 − 1, ⋯ , 1 to denote the current round, where 𝑡 means there are 𝑡 rounds left, including the current round. For example, the 
first round is round 𝑇 , the last round is round 1, and the previous round of round 𝑡 is round 𝑡 + 1. For the round 𝑡 ≤ 𝑇 , the flux 
mechanism runs as follows.

• The center observes the player’s net consumption 𝑦𝑡 ∼ 𝐹 .

• The player submits their reported gross consumption which is at least the net consumption, 𝑏𝑡 ≥ 𝑦𝑡. The player may not be 
truthful, i.e., 𝑏𝑡 may not equal 𝐷.

• When 𝑡 < 𝑇 , the player’s payment consists of regular payment 𝑏𝑡 and penalty payment 𝑟 ⋅ |𝑏𝑡+1 − 𝑏𝑡|. When 𝑡 = 𝑇 , the player only 
pays the regular payment.

For 𝑡 < 𝑇 , we call 𝑏𝑡+1 the history of round 𝑡.2 In each round 𝑡, the player wants to pay the lowest expected total payment by 
reporting 𝑏𝑡 without knowing the partial signals for future rounds. We call a mechanism truthful if the player reports 𝐷 for all rounds. 
When two reports bring the same expected payment, we break ties in favor of truthfulness.

2.1. Discussions on the value of 𝐷

The assumption that the gross consumption 𝐷 is the same for every round is taken from Khodabakhsh et al. [21], the work that 
inspired our paper. We explain here why this is a valid assumption, especially for the prosumer pricing problem, and discuss an easy 
extension where 𝐷𝑡 is drawn from a known range [𝐷, 𝐷].

According to the U.S. Energy Information Administration, electricity usage typically follows a daily pattern, which means within 
some period (e.g., day, month, or season), the electricity consumption does not vary much [39]. This is especially true for industrial 
sites, which are the major consumers of utilities [31]. Therefore, we can always discretize the time horizon into sub-intervals such 
that the electricity consumption within each interval is relatively constant.

To relax this assumption, let the gross consumption for each round come from a known range, i.e., 𝐷𝑡 ∈ [𝐷, 𝐷]. The center can 
estimate the values of 𝐷 and 𝐷 from historical data but does not necessarily know 𝐷𝑡 for any 𝑡. We show that our results extend 
straightforwardly. Recall that in the analysis of Bernoulli distributions, we compare the basic two strategies and find the penalty 
rate that sets the two expected costs equal. We can find an upper bound for the truthful threshold by bounding the expected cost 
of lying-till-busted and honest-till-end from below and above. Then the resulting penalty rate is simply the original threshold (3.1)

times the ratio 𝐷∕𝐷. A player’s optimal strategy remains the same under the updated penalty rate.

For the reduction from Bernoulli distributions to any arbitrary distribution with cdf 𝐹 , given 𝛼 ∈ [0, 1], we now define 𝑝 =
1 − 𝐹 (𝛼𝐷) and use the same argument to obtain an upper bound of penalty rate that achieves 𝛼-truthfulness. For the multi-player 
model, we add the multiplicative ratio 𝐷∕𝐷 in every expression for an upper bound of the desired penalty rate. This relaxation will 
also help add heterogeneity to the multi-player model.

We note that with this adjustment, the player(s) can be charged a penalty payment although they have been truthful, due to the 
fluctuation of the gross consumption. In this case, we suggest that after the game ends, the center returns such wrongful penalty 
payments to the player(s) as such payments are unrelated to the consumption of the public service and are not supposed to be kept 
by the center. We emphasize that this recommendation is only applicable to penalty payments incurred from the small discrepancies 
in gross consumptions. Penalties collected from lying to the center will not be returned, as otherwise it will break the incentive to 
report truthfully.

2.2. The offline setting

We briefly analyze the offline setting of the flux mechanism, which happens when the player can observe the partial signals, 𝑦𝑡’s, 
for every 𝑡, before the game starts. In this case, we show finding the optimal strategy reduces to solving a linear program. In the 
offline setting, the net consumption for each round 𝑡, 𝑦𝑡, is known at the beginning of the game. To obtain the optimal reports in the 
single-player model, we solve the following mathematical program:

2 The history usually refers to the record from the beginning of the game till the current round. In our mechanism, the history before yesterday does not affect the 
5

player’s action for today. Therefore, the history in round 𝑡 only needs to be the report for the previous day.
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min𝑏1 ,…,𝑏𝑇
∑𝑇
𝑡=1 𝑏𝑡 +

∑𝑇−1
𝑡=1 𝑟 ⋅ |𝑏𝑡+1 − 𝑏𝑡|

subject to 𝑏𝑡 ≥ 𝑦𝑡 ∀𝑡.

The absolute values in the objective function can be linearized with auxiliary variables. The subsequent linear program can be solved 
in polynomial time via the ellipsoid method. The online setting, however, is much more complicated as the objective would be a 
convoluted multi-stage minimization problem. We demonstrate in the following sections how we can tackle the online setting by 
exploiting the properties of the flux mechanism.

3. Bernoulli distributions

We start with the analysis of Bernoulli distribution as we show later a reduction from an arbitrary distribution to a Bernoulli 
distribution. We prove it is only optimal for a player to report zero or their true consumption in each round. The optimal strategies 
can then be characterized by three basic strategies (Definition 3.1). The penalty thresholds are computed by comparing the different 
combinations of the basic strategies.

3.1. Basic strategies

In a Bernoulli distribution setting, in each round 𝑡, the partial signal 𝑦𝑡 is 𝐷 with probability 𝑝 and 0 with probability 1 − 𝑝. When 
the partial signal equals to the private value, i.e., 𝑦𝑡 =𝐷, we say that the player is “busted” in round 𝑡. We first define three basic 
strategies.

Definition 3.1 (Basic Strategies). For Bernoulli distributed net consumption 𝑦𝑡 ∼ 𝐵𝑒𝑟(𝑝), we define the following as the three basic 
strategies:

• lying-till-end: Report 𝑏𝑡 = 0 when 𝑦𝑡 = 0 and 𝑏𝑡 =𝐷 otherwise;

• lying-till-busted: Report 𝑏𝑡 = 0 until 𝑦𝑡 =𝐷 for the first time, then report 𝐷 for all future rounds;

• honest-till-end: Report 𝑏𝑡 =𝐷 for all rounds.

We note that a player’s optimal strategy for a given penalty rate 𝑟 can be solved by backward induction. Let 𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡, 𝑟, 𝑏𝑡+1)
denote the optimal expected cost for a player starting in round 𝑡 with penalty rate 𝑟 and report 𝑏𝑡+1 for the previous round. Then

𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡, 𝑟, 𝑏𝑡+1) = min
𝑏𝑡

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑡, 𝑟, 𝑏𝑡+1, 𝑏𝑡),

where 𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑡, 𝑟, 𝑏𝑡+1, 𝑏𝑡) is the expected cost for the player starting in round 𝑡 and reporting 𝑏𝑡 (if she is allowed to), with penalty 
rate 𝑟 and history 𝑏𝑡+1, i.e.,

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑡, 𝑟, 𝑏𝑡+1, 𝑏𝑡)

= 𝔼𝑦𝑡 [max{𝑦𝑡, 𝑏𝑡} + 𝑟|max{𝑦𝑡, 𝑏𝑡} − 𝑏𝑡+1|+𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡− 1, 𝑟,max{𝑦𝑡, 𝑏𝑡})]

= 𝑝
(
𝐷 + 𝑟(𝐷 − 𝑏𝑡+1) +𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡− 1, 𝑟,𝐷)

)
+ (1 − 𝑝)

(
𝑏𝑡 + 𝑟|𝑏𝑡 − 𝑏𝑡+1|+𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡− 1, 𝑟, 𝑏𝑡)

)
.

The first term on the right-side of the equation above refers to the cost when the partial signal is revealed as 𝐷 and the player has to 
report 𝐷. The second term refers to the cost when the partial signal is 0 and the player chooses to report 𝑏𝑡. Let 𝑂𝑝𝑡𝐶𝑜𝑠𝑡(0, 𝑟, 𝑏1) = 0
for all 𝑏1. When 𝑡 = 𝑇 , i.e., the first round, there is no history 𝑏𝑇+1. Therefore, the player simply wants to minimize the following 
total cost,

𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑇 , 𝑟) = min
𝑏𝑇

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑇 , 𝑟, 𝑏𝑇 )

= 𝑝(𝐷 +𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡− 1, 𝑟,𝐷)) + (1 − 𝑝)(𝑏𝑇 +𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡− 1, 𝑟, 𝑏𝑇 )).

Solving the recursion will give the characterization of optimal strategies in Table 1, as we demonstrate in Appendix A.1. In what 
follows, we discuss a surprisingly simpler and more constructive proof by exploiting the properties of the flux mechanism, which 
may be of independent interest.

3.2. Main theorems

We observe that there are two key elements that influence the decision-making of the player.

(1) The player’s history, 𝑏𝑡+1 for 𝑡 < 𝑇 . The value of 𝑏𝑡+1 directly affects the penalty payment in round 𝑡. Intuitively, a player is more 
reluctant to lie if 𝑏𝑡+1 is high and better off lying if 𝑏𝑡+1 is small.

(2) The number of rounds left to play, i.e., 𝑡. The value of 𝑡 indirectly influences the probability and the number of times a player 
6

will be busted in the remaining rounds.
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Via Lemmas 3.1-3.4, we show these are the only two elements that determine a rational player’s action. The following lemma 
shows that it is not optimal for a player to report a value strictly between 0 and 𝐷. Moreover, if a player is untruthful in the previous 
round, it is better to remain untruthful. With this lemma, we largely reduce the strategy space we need to consider.

Lemma 3.1. For any round 𝑡 ≤ 𝑇 , given 𝑦𝑡 = 0, the optimal report in round 𝑡 is 𝑏𝑡 ∈ {0, 𝐷}. Moreover, if 𝑡 < 𝑇 and 𝑏𝑡+1 = 𝑦𝑡 = 0, then the 
optimal report is 𝑏𝑡 = 0.

Proof. To see the first sentence, we can observe that the cost function is a linear function of today’s report 𝑏𝑡 and thus either 0
or 𝐷 achieves the optimality. To see the second sentence, we consider the last round 𝑡 in the optimal strategy such that when 
(𝑏𝑡+1, 𝑦𝑡) = (0, 0) but 𝑏𝑡 > 0. It is obvious if 𝑡 is the last round, and thus we assume 𝑡 > 1. By reporting 𝑏𝑡 in round 𝑡, the expected total 
cost afterward is

𝑟𝑏𝑡 + 𝑏𝑡 +𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑡− 1, 𝑟, 𝑏𝑡, 𝑏𝑡−1)

= 𝔼𝑦𝑡−1 [(𝑟+ 1)𝑏𝑡 + 𝑟|max{𝑦𝑡−1, 𝑏𝑡−1} − 𝑏𝑡−1|+max{𝑦𝑡−1, 𝑏𝑡−1}

+𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡− 2, 𝑟,max{𝑦𝑡−1, 𝑏𝑡−1})]

> 𝔼𝑦𝑡−1 [𝑟max{𝑦𝑡−1, 𝑏𝑡−1} +max{𝑦𝑡−1, 𝑏𝑡−1} +𝑂𝑝𝑡(𝑡− 2, 𝑟,max{𝑦𝑡−1, 𝑏𝑡−1})]

=𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑡− 1, 𝑟,0, 𝑏𝑡−1)

where the inequality is because for any 𝑥 ≥ 0 and 𝑏𝑡 > 0,

(𝑟+ 1)𝑏𝑡 + 𝑟|𝑥− 𝑏𝑡| ≥ (𝑟+ 1)𝑏𝑡 + 𝑟(𝑥− 𝑏𝑡) > 𝑟𝑥.

The last term is exactly the expected total cost by reporting 0 in round 𝑡 but adopting the same strategy with the optimal one 
afterward, which is a contradiction with 𝑏𝑡 > 0 being optimal. Thus we complete the proof of the lemma. □

Next, we prove that in each round, the optimal strategy is determined by a penalty threshold such that a player will be truthful 
if and only if the penalty rate 𝑟 is above the threshold. We call them critical thresholds.

Lemma 3.2 (Critical Thresholds). For 𝑡 = 𝑇 , there is a threshold penalty rate 𝑟(∅)
𝑇

≥ 0 such that reporting 𝐷 is optimal if and only if the 
penalty rate is at least 𝑟(∅)

𝑇
; For 𝑡 < 𝑇 , there is a threshold penalty rate 𝑟(𝑏𝑡+1)

𝑡
≥ 0 such that reporting 𝐷 is optimal for a player in round 𝑡 with 

history 𝑏𝑡+1 if and only if the penalty rate is at least 𝑟(𝑏𝑡+1)
𝑡

.

Proof. Note that by Lemma 3.1, 𝑏𝑡+1 can only be 0 or 𝐷. Moreover, 𝑟(∅)
𝑡

=∞ for any 𝑡 < 𝑇 . Therefore, we only need to show the 
existence of 𝑟(∅)

𝑇
and 𝑟(𝐷)

𝑡
for 𝑡 < 𝑇 . It suffices to show the following claim: For any round 𝑇 ≥ 𝑡 ≥ 1 with 𝑦𝑡 = 0, if the optimal strategy 

is 𝑏𝑡 = 0 given penalty rate 𝑟, then 𝑏𝑡 = 0 is also optimal for any 𝑟′ ≤ 𝑟; if the optimal strategy is 𝑏𝑡 =𝐷 given penalty rate 𝑟, then 
𝑏𝑡 =𝐷 is also optimal for any 𝑟′ ≥ 𝑟.

To prove the claim, we use induction on 𝑡. When 𝑡 = 1, it is easy to see that 𝑟(𝐷)1 exists and is equal to 1. Consider 𝑡 > 1 rounds 
left and the optimal strategy is to report 0 given penalty 𝑟 and 𝑏𝑡+1 =𝐷 (or no history if 𝑡 = 𝑇 ). If we increase penalty 𝑟 to 𝑟′ > 𝑟, by 
induction, the optimal strategy for future rounds either remains the same or switches to 𝐷 from 0. Given history 𝐷 and report 𝐷, 
the payment for this round is independent of the penalty rate 𝑟. Therefore, reporting 𝐷 is still optimal. A similar argument can be 
made for reporting 0. □

Lemmas 3.1 and 3.2 together imply that the optimal strategy can only be one or a combination of the basic strategies. In particular, 
by Lemma 3.1, 𝑟(0)

𝑡
=∞ for any 𝑡. Moreover, since 𝑏𝑡+1 can only be 0 or 𝐷, by Lemma 3.2, we only need to determine the values of 

𝑟
(∅)
𝑇

and 𝑟(𝐷)
𝑡

for 𝑡 < 𝑇 to complete the picture of optimal strategies. In the following two lemmas, we give some properties of these 
thresholds.

Lemma 3.3. 𝑟(∅)
𝑡

≥ 𝑟(𝐷)
𝑡

for 𝑡 ∈ {1, … , 𝑇 }.

Proof. Given the same 𝑡 rounds left, it is straightforward to see that players with a truthful history are more incentivized to lie 
compared to when she has no history. This is because she needs to pay an additional payment of 𝑟𝐷 whenever she has a truthful 
history. Mathematically, let 𝑟 ≥ 𝑟(∅)

𝑡
. Then we have

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑡, 𝑟,𝐷) ≤𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑡, 𝑟,0)

⟹𝐷 +𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡− 1, 𝑟,𝐷) ≤ 𝑝(𝐷 +𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡− 1, 𝑟,𝐷)) + (1 − 𝑝) ⋅𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡− 1, 𝑟,0)
7

⟹𝐷 +𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡− 1, 𝑟,𝐷) ≤𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡− 1, 𝑟,0)
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⟹𝐷 +𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡− 1, 𝑟,𝐷) ≤ 𝑟𝐷 +𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡− 1, 𝑟,0)

⟹𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑡, 𝑟,𝐷,𝐷) ≤𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑡, 𝑟,𝐷,0)

The above inequalities show that when 𝑟 ≥ 𝑟(∅)
𝑡

, the player prefers truth-telling to lying when she has a truthful history, which implies 
𝑟
(𝐷)
𝑡

≤ 𝑟(∅)
𝑡

. □

Given the same 𝑡 rounds left, Lemma 3.3 says a player is more inclined to lie without a history than with a truthful history. This 
is straightforward as lying with a truthful history results in an additional penalty payment.

Lemma 3.4. Given 𝑟(∅)
𝑡

≥ 1
𝑝
, 𝑟(∅)
𝑡

decreases as 𝑡 increases.

Proof. An equivalent statement of Lemma 3.4 is that given a penalty 𝑟 ≥ 1
𝑝
, if a player is truthful when there are 𝑇 rounds left, then 

she is also truthful when there are 𝑇 + 1 rounds left. Let us prove the alternate statement.

Assume 𝑟 ≥ 1
𝑝

and that the player is truthful when there are 𝑇 rounds left. Let 𝑂𝑃𝑇 (∗, 𝑇 ) denote the optimal cost for a player if 
she reports ∗ in the current round and there are 𝑇 rounds left. Since the player is truthful when there are 𝑇 rounds left, we have

𝐷 +𝑂𝑃𝑇 (𝐷,𝑇 − 1) ≤𝑂𝑃𝑇 (0, 𝑇 − 1).

Now assume there are 𝑇 + 1 rounds left and the player is free to lie in the first round. By Lemma 3.1, there are the following two 
cases.

• The player reports 𝐷 in the first round

If the player also reports 𝐷 in the second round, she pays 2𝐷 + 𝑂𝑃𝑇 (𝐷, 𝑇 − 1). Otherwise she pays 𝐷 + 𝑟𝐷 + 𝑂𝑃𝑇 (0, 𝑇 − 1) ≥
2𝐷 + 𝑟𝐷 +𝑂𝑃𝑇 (𝐷, 𝑇 − 1), which is dominated by reporting 𝐷 for both rounds.

• The player reports 0 in the first round

Then the player’s total expected payment is

𝑝(𝐷 + 𝑟𝐷 +𝑂𝑃𝑇 (𝐷,𝑇 − 1)) + (1 − 𝑝)𝑂𝑃𝑇 (0, 𝑇 − 1)

≥𝐷 + 𝑝𝑟𝐷 +𝑂𝑃𝑇 (𝐷,𝑇 − 1) ≥ 2𝐷 +𝑂𝑃𝑇 (𝐷,𝑇 − 1).

Therefore, the optimal strategy is to report 𝐷 in the first two rounds and the rest of the game is exactly the same as when there are 
𝑇 rounds left. □

Lemmas 3.3 and 3.4 together tell us the player is least incentivized to be truthful on the first round and 𝑟(∅)
𝑇

is the penalty 
threshold that ensures truthfulness for the game. We give this important threshold in Theorem 3.1.

Theorem 3.1. The minimum penalty for truthful reporting in a game of 𝑇 rounds with 𝐵𝑒𝑟(𝑝) distribution is

𝑟
(∅)
𝑇

= 1 − (1 − 𝑝)𝑇

𝑝− 𝑝(1 − 𝑝)𝑇−1
. (3.1)

Proof. By the definitions of the thresholds, if the penalty 𝑟 ≥ 𝑟(∅)
𝑇

and 𝑟 ≥ 𝑟(1)
𝑡

for any 𝑡 ≤ 𝑇 , then the player will be truthful. By 
Lemma 3.3 and 3.4, 𝑟(∅)

𝑇
≥ 𝑟(∅)

𝑡
≥ 𝑟(1)

𝑡
, for any 𝑡 ≤ 𝑇 . Therefore, it is only necessary to compute 𝑟(∅)

𝑇
. By Lemma 3.1 and 3.3, it is 

sufficient to compare lying-till-busted and honest-till-end in the first segment:

𝔼[honest] =𝐷 ⋅ 𝔼[# days before busted]

=𝐷 +𝐷
{∑𝑇−2

𝑖=0 𝑖(1 − 𝑝)
𝑖𝑝+ (𝑇 − 1)(1 − 𝑝)𝑇−1

}
=𝐷 +𝐷 ⋅ 1−𝑝

𝑝
(1 − (1 − 𝑝)𝑇−1);

𝔼[lying] = 𝑟𝐷 ⋅ Pr(busted) = 𝑟𝐷(1 − (1 − 𝑝)𝑇−1).

The optimal threshold can be obtained via setting these two expected costs equal,

(∅)
𝐷 +𝐷 1−𝑝

𝑝
(1 − (1 − 𝑝𝑇−1)) 1 − (1 − 𝑝)𝑇
8

𝑟
𝑇

=
𝐷(1 − (1 − 𝑝)𝑇−1)

=
𝑝− 𝑝(1 − 𝑝)𝑇−1

. □
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Fig. 3.1. Critical thresholds for each round under 𝐵𝑒𝑟(0.3) distribution with examples of optimal strategies.

We see 𝑟(∅)
𝑇

→ 1∕𝑝 as 𝑇 →∞ and 𝑟(∅)
𝑇

decreases as 𝑇 increases. This implies the increasing length of the game incentivizes the 
player to speak the truth today, even when they do not have to. To understand Theorem 3.1, we observe that it is sufficient to 
compare lying-till-busted and honest-till-end since 𝑟(∅)

𝑇
ensures the player to stay truthful after being busted. Before the player is 

busted for the first time, it is not optimal to oscillate between lying and truth-telling, as it is strictly dominated by lying completely. 
Therefore, the only viable strategies are lying-till-busted and honest-till-end, and the desired threshold sets the expected cost of these 
two strategies equal.

With a more involved argument, we get the exact values for the truthful threshold given a truthful history, i.e., the 𝑟(𝐷)
𝑡

’s. The 
values of 𝑟(∅)

𝑇
and 𝑟(𝐷)

𝑡
characterize the optimal strategies for a player and are an alternative representation of Table 1.

Theorem 3.2. For 𝑝 ≤ 1
2 , 𝑟(𝐷)

𝑡
= 1−(1−𝑝)𝑡

2𝑝−𝑝(1−𝑝)𝑡−1 . For 𝑝 > 1
2 , 𝑟(𝐷)

𝑡
= 1 for 𝑡 = 1 and 𝑟(𝐷)

𝑡
= 1

2𝑝 for 𝑡 ≥ 2.

Proof. We first show the proof for 𝑝 ≤ 1
2 by induction on 𝑡. Let ℎ(𝑡) = 1−(1−𝑝)𝑡

2𝑝−𝑝(1−𝑝)𝑡−1 . Assume there are 𝑡 rounds left. Note that ℎ(𝑡)
increases in 𝑡, which means that if 𝑟 ≥ ℎ(𝑡), then 𝑟 ≥ ℎ(𝑡′) for 𝑡′ ≤ 𝑡, i.e., the player stays truthful for the rest of the 𝑡 rounds. Similar to 
the argument in Theorem 3.1, we compare the expected payments of the two strategies, namely lying-till-busted (“lying”) and being 
honest, within a segment. Note that the segment now starts with being busted, because the player has a truthful history.

𝔼[honest] =𝐷 ⋅ 𝔼[# days before busted] =𝐷 +𝐷 ⋅ 1−𝑝
𝑝
(1 − (1 − 𝑝)𝑡−1);

𝔼[lying] = 𝑟𝐷 + 𝑟𝐷 ⋅ Pr(busted) = 𝑟𝐷(2 − (1 − 𝑝)𝑡−1).

The penalty that results in truthfulness sets these two payments equal, i.e. 𝑟 = 1−(1−𝑝)𝑡
2𝑝−𝑝(1−𝑝)𝑡−1 = ℎ(𝑡).

The proof for 𝑝 ≥ 1
2 is slightly different. First note that for 𝑡 = 1, it is not hard to see the threshold 𝑟(𝐷)1 = 1 by comparing the 

cost of being honest (i.e., 𝐷) and the cost of lying (i.e., 𝑟𝐷). For 𝑡 > 1 rounds left, we apply the same argument above, with the 
consideration that the player will switch to lying in the very last round if she is allowed to. Therefore, we have

𝔼[honest] =𝐷 ⋅ 𝔼[# days before busted] − (1 − 𝑟)𝐷 ⋅ Pr(not busted in the last day)

=𝐷 +𝐷 ⋅ 1−𝑝
𝑝
(1 − (1 − 𝑝)𝑡−1) − (1 − 𝑟)𝐷(1 − 𝑝)𝑡−1;

𝔼[lying] = 𝑟𝐷 + 𝑟𝐷 ⋅ Pr(busted) = 𝑟𝐷(2 − (1 − 𝑝)𝑡−1).

The penalty that sets the above two expected costs equal is 1
2𝑝 . □

The optimal strategy is visualized in Figs. 3.1 and 3.2 for 𝑝 = 0.3 and 𝑝 = 0.7, respectively. The 𝑥-axis is the number of rounds 
left (𝑡), and the 𝑦-axis is the penalty threshold for truthfulness. We give examples of penalties via the red dashed lines. For the first 
round, the player refers to the blue dot representing 𝑟(∅)

𝑇
and is truthful if and only if the penalty is above the blue dot. Afterward, 

given 𝑡 rounds left and history 𝐷, the player looks at the green curve representing 𝑟(𝐷)
𝑡

and is only truthful if the penalty is above 
the curve. If the history is 0, she remains untruthful and reports 0. Figs. 3.1 and 3.2 visualize the optimal strategies given in Table 1. 
9

Both green curves are closely related to 1
2𝑝 . An intuition is that in any round 𝑡 < 𝑇 , a player pays 𝐷 if she is truthful and roughly 
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Fig. 3.2. Critical thresholds for each round under 𝐵𝑒𝑟(0.7) distribution with examples of optimal strategies.

2𝑝𝑟𝐷 if she lies, where the penalty payment 𝑟𝐷 comes from the previous and the next round, each with probability 𝑝. The penalty 
that sets these two costs equal is 1

2𝑝 . The actual 𝑟(𝐷)
𝑡

thresholds vary upon values of 𝑡 and 𝑝.

4. A reduction for arbitrary distributions

As discussed in the introduction, only the infinite penalty rate will guarantee complete truthfulness under arbitrary distributions. 
We use the uniform distribution as an example and let the net consumption 𝑦𝑡 be drawn from a uniform distribution with support 
[0, 𝐷]. As a property of continuous distributions, the probability that 𝑦𝑡 attains a specific value in [0, 𝐷] is zero because there are an 
infinite number of values that 𝑦𝑡 can assume. This implies that there is no chance the player would ever be forced to report their true 
gross consumption 𝐷. The only way to enforce truthful reporting is via an infinite penalty rate 𝑟. To see this, we consider a player 
who reported 𝑏𝑡 < 𝐷 for some round 𝑡. There is a non-zero probability that they will receive a net consumption 𝑦𝑡′ > 𝑏𝑡 at some 
future round 𝑡′. Moreover, they will be forced to report at least 𝑦𝑡′ and pay an infinite penalty. A superior strategy is to be truthful 
and report 𝐷 for all rounds. Since 𝑦𝑡 can never exceed 𝐷, there is zero probability that this strategy would ever yield an infinite 
payment.

Although there is no hope in achieving complete truthfulness, we can still work on obtaining approximate results. The trick is 
to redefine being busted as having a partial signal that is less than 𝛼 times the true consumption, for 𝛼 ∈ [0, 1]. Then any arbitrary 
distribution is reduced to 𝐵𝑒𝑟(𝑝) where 𝑝 is the probability that the partial signal is at least 𝛼𝐷. We address that the value of 𝛼 is 
chosen by the center based on their risk tolerance. Intuitively, there is a trade-off between 𝛼 and the value of the penalty threshold. 
A more stringent center would choose a higher value of 𝛼 which leads to a reporting profile closer to complete truthfulness but a 
higher penalty threshold, which can be less desirable. The parameter 𝛼 provides the center with the flexibility to balance truthfulness 
and the penalty rate.

For approximate truthfulness, we define being 𝛼-truthful as reporting at least 𝛼𝐷. We reuse the arguments of comparing basic 
strategies from Section 3 to determine an upper bound for the penalty rate that guarantees 𝛼-truthfulness. We introduce the notion 
of approximate truthfulness in Definition 4.1 and give the reduction in Theorem 4.1. We demonstrate the reduction with uniform 
distributions in Example 4.1.

Definition 4.1 (𝛼-truthfulness). A reporting 𝒃 is 𝛼-truthful when 𝑏𝑡 ≥ 𝛼𝐷 for all 𝑡 = 1, … , 𝑇 .

Theorem 4.1. Given 𝛼 ∈ [0, 1] and an arbitrary distribution with CDF 𝐹 , if a penalty rate 𝑟 achieves complete truthfulness for 𝐵𝑒𝑟(𝑝) where 
𝑝 = 1 − 𝐹 (𝛼𝐷), then the same 𝑟 achieves 𝛼-approximate truthfulness for distribution 𝐹 .3

Proof. Recall that being “busted” means the player has a 𝐷 realization. For general distributions, given 𝛼 ∈ [0, 1], we redefine being 
busted as having a realization of at least 𝛼𝐷. Then the probability of being busted is 1 − 𝐹 (𝛼𝐷). The proof is essentially the same 
as that of Theorem 3.1 for 𝑝 = 1 − 𝐹 (𝛼𝐷). We analyze the segment between the first day and the day when the player is busted. 
Assume the minimum report from the player during the segment is 𝛽𝐷, 𝛽 < 𝛼. We compare the savings the player gets from using 
this strategy versus reporting 𝛼𝐷 and the corresponding additional penalty that she needs to pay.

3 The reduction depends on the players’ gross consumption, which is private information. In reality, the center can estimate the value of 𝐷 using historical data. 
10

Moreover, if the center has some information on the upper bounds of 𝐷, we are still able to set a penalty rate (which may not be minimum) to obtain truthfulness.
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Fig. 4.1. Penalty thresholds for 𝛼-approximate truthfulness, assuming 𝐷 = 1.

𝔼[savings] ≤ (𝛼 − 𝛽)𝐷 ⋅ 𝔼[# days before busted]

𝔼[penalty] ≥ 𝑟𝐷(𝛼 − 𝛽) ⋅ Pr(busted)

The player will report 𝛼𝐷 every round in the segment when the expected penalty exceeds the expected savings. The (𝛼 − 𝛽) term is 
canceled and the rest calculation is the same as the 𝐵𝑒𝑟(𝑝) case where 𝑝 = 1 − 𝐹 (𝛼𝐷). □

Example 4.1. Assume partial signals follow a uniform distribution 𝑈 (0, 𝐷). Let 𝑟 be the truthful threshold of 𝐵𝑒𝑟(𝑝) where 𝑝 = 1 − 𝛼, 
i.e. 𝑟 = 1−𝛼𝑇

(1−𝛼)(1−𝛼𝑇−1) . Then using 𝑟 ensures 𝛼-truthfulness for 𝑈 (0, 𝐷) by Theorem 4.1. For uniform distributions, it is impossible to 
obtain complete truthfulness unless 𝑟 = ∞, which can be verified by setting 𝛼 = 1. We plot the penalty thresholds that guarantee 
approximate truthfulness for 𝐷 = 1 and different 𝛼’s in Fig. 4.1 for uniform distributions as well as other common distributions like 
truncated normal and truncated exponential. We see that for some distributions, it is not possible to attain 𝛼-truthfulness when 𝛼
exceeds a certain value.

5. Extension: a cost sharing model

If we consider the case when the players are charged independently, we can simply apply the flux mechanism to each individual 
player and elicit truthful reports. However, in a more general setting, the players split an overhead cost based on their individual 
usage of the service. Therefore, we extend the problem to a cost-sharing model for homogeneous players. We formally state the 
problem in Section 5.1 and give the exact equilibrium results in Section 5.2 for Bernoulli-distributed gross consumption. The proofs 
for the main theorems are presented in Section 5.3. In Section 5.4, we extend our results for arbitrary distributions.

5.1. Problem statement

Let 𝑁 be the set of players with 𝑛 = |𝑁| ≥ 1. Each player 𝑖 ∈ 𝑁 has a private value 𝑥𝑖 ≥ 0, and we assume all players are 
symmetric, i.e., 𝑥𝑖 = 𝐷 for all 𝑖 ∈ 𝑁 (see Appendix 2.1 for a relaxation). All players in 𝑁 split an overhead cost 𝐶 , which is at 
least the total gross consumption, i.e., 𝐶 ≥ 𝑛𝐷. The game has 𝑇 rounds in total. Given the penalty rate 𝑟, we analyze the following 
multi-player flux mechanism.

• The center observes a partial signal representing player 𝑖’s net consumption 𝑦𝑖
𝑡
∼ 𝐹 for each player 𝑖 ∈𝑁 ;

• Each player 𝑖 submits their reported gross consumption that is at least their net consumption, 𝑏𝑖
𝑡
≥ 𝑦𝑖

𝑡
;

• If 𝑡 < 𝑇 , player 𝑖’s pays regular payment 𝐶 ⋅
𝑏𝑖
𝑡∑
𝑗 𝑏
𝑗
𝑡

and penalty payment 𝑟 ⋅ |𝑏𝑖
𝑡+1 − 𝑏

𝑖
𝑡
|. If 𝑡 = 𝑇 , the players only pay regular 

payments.

We call 𝑏𝑖
𝑡+1 the history for player 𝑖 in round 𝑡 and 𝒃𝑡+1 the group history. If everyone lies in a round, the overhead cost is split 

evenly among all players. A mechanism is truthful if every player reports 𝐷 for every round. We are interested in computing the 
minimum penalty rates such that truthful reports form a Nash equilibrium (NE) or a dominant strategy equilibrium (DSE). Informally, 
a strategy profile is an NE if no player wants to unilaterally deviate, and it is a DSE if no player wants to deviate no matter what 
the other players do. We show that approximate results for any arbitrary distribution can be deducted from an exact analysis for a 
11

Bernoulli distribution.
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Let 𝝈𝑖 = {𝜎𝑖1, 𝜎
𝑖
2, … , 𝜎𝑖

𝑇
} ∈ 𝚺𝑖 be a strategy profile for player 𝑖 for a game with 𝑇 rounds where 𝚺𝑖 is the space of all strategy 

profiles for player 𝑖. The strategy profile 𝝈𝑖 satisfies the following:

• For 𝑡 < 𝑇 , the strategy profile takes in the history report 𝑏𝑖
𝑡+1 as well as the realization of the current round 𝑦𝑖

𝑡
, and returns the 

report for the current round, i.e., 𝑏𝑖
𝑡
= 𝜎𝑖

𝑡
(𝑏𝑡+1, 𝑦𝑖𝑡);

• For 𝑡 = 𝑇 , since there is no history, the strategy profile takes in just the realization and returns the report 𝜎𝑖
𝑇
(𝑦𝑖
𝑇
).

Fix an arbitrary player 𝑖 and the other players’ strategy 𝝈−𝑖. Let 𝒃−𝑖
𝑡

= 𝝈−𝑖
𝑡
(𝒃𝑡+1, 𝒚−𝑖𝑡 ) denote the reported gross consumption by 

players 𝑗 ≠ 𝑖 with group history 𝒃𝑡+1 and realizations 𝒚−𝑖
𝑡

in round 𝑡. A strategy 𝝈𝑖 is called 𝝈−𝑖 ’s best response if it is the solution of 
the following recursion, i.e.,

𝜎𝑖
𝑡
(𝑏𝑖
𝑡+1, 𝑦

𝑖
𝑡
) = argmin

𝑏𝑖
𝑡

𝐶𝑜𝑠𝑡(𝑡, 𝑟,𝝈−𝑖,𝒃𝑡+1, 𝑏
𝑖
𝑡
),

where the expected cost can be expanded as

𝐶𝑜𝑠𝑡(𝑡, 𝑟,𝝈−𝑖,𝒃𝑡+1, 𝑏
𝑖
𝑡
) =

𝐶 ⋅ 𝑏𝑖
𝑡∑

𝑗 𝑏
𝑗

𝑡

+ 𝑟⋅ ∣ 𝑏𝑖
𝑡
− 𝑏𝑖

𝑡+1 ∣ +𝔼𝒚𝑡−1

[
𝐶𝑜𝑠𝑡

(
𝑡− 1, 𝑟,𝝈−𝑖,𝒃𝑡, 𝜎

𝑖
𝑡−1(𝑏

𝑖
𝑡
, 𝑦𝑖
𝑡−1)
)]
.

The payoff of player 𝑖 is defined as the expected cost from the first round of the game, i.e.,

𝔼𝒚𝑇

[
𝐶𝑜𝑠𝑡(𝑇 , 𝑟,𝝈−𝑖, 𝜎𝑖

𝑇
(𝑦𝑖
𝑇
))

]
.

Given a strategy profile 𝝈, if 𝝈𝑖 is a best response to 𝝈−𝑖 for every player 𝑖, then 𝝈 is called a Nash equilibrium. Mathematically, 𝝈 is 
an NE if

𝔼𝒚𝑇

[
𝐶𝑜𝑠𝑡(𝑇 , 𝑟,𝝈−𝑖, 𝜎𝑖

𝑇
(𝑦𝑖
𝑇
))

]
≥ 𝔼𝒚𝑇

[
𝐶𝑜𝑠𝑡(𝑇 , 𝑟,𝝈−𝑖, �̂�𝑖

𝑇
(𝑦𝑖
𝑇
))

]
, for any �̂�𝑖 ∈ 𝚺𝑖.

If 𝝈𝑖 is a best response to any 𝝈′−𝑖 (not necessarily 𝝈−𝑖) for any player 𝑖, 𝝈𝑖 is then called a dominant strategy equilibrium. 
Mathematically, 𝝈 is a DSE if

𝔼𝒚𝑇

[
𝐶𝑜𝑠𝑡(𝑇 , 𝑟,𝝈−𝑖, 𝜎𝑖

𝑇
(𝑦𝑖
𝑇
))

]
≥ 𝔼𝒚𝑇

[
𝐶𝑜𝑠𝑡(𝑇 , 𝑟,𝝈−𝑖, �̂�𝑖

𝑇
(𝑦𝑖
𝑇
))

]
, for any �̂�𝑖 ∈ 𝚺𝑖,𝝈−𝑖 ∈ 𝚺−𝑖.

5.2. Exact results

Similar to the single-player setting, we avoid solving the recursion by exploiting the properties of the mechanism. Again, we 
start our analysis with 𝐹 being a Bernoulli distribution and provide a reduction for approximate truthfulness when 𝐹 is an arbitrary 
distribution. In the single-player model with Bernoulli-distributed 𝐹 , we have shown that it is only optimal for a player to report 0
or her actual consumption 𝐷. We claim it is the same case for multiple players. Moreover, if a player lied yesterday and also has an 
observed consumption of 0 today, they will report 0 regardless of other players’ actions.

Lemma 5.1. For Bernoulli-distributed 𝐹 , reporting anything strictly between 0 and D is sub-optimal in a multi-player flux mechanism. 
Moreover, if 𝑏𝑖

𝑡+1 = 𝑦
𝑖
𝑡
= 0, it is optimal to report 𝑏𝑖

𝑡
= 0.

Proof. We can use a similar argument in the proof for Lemma 3.1 to prove that if a player lied yesterday, it is better off lying today. 
We consider the last round 𝑡 in the optimal strategy such that when (𝑏𝑖

𝑡+1, 𝑦
𝑖
𝑡
) = (0, 0) but 𝑏𝑖

𝑡
> 0. It is trivially true if 𝑡 is the last round, 

and thus we assume 𝑡 > 1. By reporting 𝑏𝑖
𝑡

in round 𝑡, the expected total cost afterward is

𝑟𝑏𝑖
𝑡
+
𝐶 ⋅ 𝑏𝑖

𝑡∑
𝑗 𝑏
𝑗

𝑡

+ 𝔼𝑦𝑡−1

[
𝐶𝑜𝑠𝑡(𝑡− 1, 𝑟,𝝈−𝑖,𝒃𝑡, 𝜎

𝑖
𝑡−1(𝑏

𝑖
𝑡
, 𝑦𝑖
𝑡−1))

]

=

(
𝑟+ 𝐶∑

𝑗 𝑏
𝑗

𝑡

)
𝑏𝑖
𝑡
+ 𝔼𝑦𝑡−1

{
𝑟 ⋅ |||𝜎𝑖𝑡−1(𝑏𝑖𝑡, 𝑦𝑖𝑡−1) − 𝑏𝑖𝑡|||+ 𝐶 ⋅ 𝜎𝑖

𝑡−1(𝑏
𝑖
𝑡
, 𝑦𝑖
𝑡−1)∑

𝑗≠𝑖 𝜎
𝑗

𝑡
(𝒃𝑡,𝒚

−𝑗
𝑡−1) + 𝜎

𝑖
𝑡−1(𝑏

𝑖
𝑡
, 𝑦𝑖
𝑡−1)

+ 𝔼𝑦𝑡−2
[
𝐶𝑜𝑠𝑡

(
𝑡− 2, 𝑟,𝝈−𝑖,𝝈(𝒃𝑡,𝒚𝑡−1), 𝜎𝑖𝑡−2(𝜎

𝑖
𝑡−1(𝑏

𝑖
𝑡
, 𝑦𝑖
𝑡−1), 𝑡

𝑖
𝑡−2)
)]}

> 𝔼

{
𝑟 ⋅ 𝜎𝑖 (𝑏𝑖, 𝑦𝑖 ) +

𝐶 ⋅ 𝜎𝑖
𝑡−1(𝑏

𝑖
𝑡
, 𝑦𝑖
𝑡−1)
12

𝑦𝑡−1 𝑡−1 𝑡 𝑡−1 ∑
𝑗≠𝑖 𝜎

𝑗

𝑡
(𝒃𝑡,𝒚

−𝑗
𝑡−1) + 𝜎

𝑖
𝑡−1(𝑏

𝑖
𝑡
, 𝑦𝑖
𝑡−1)



Theoretical Computer Science 988 (2024) 114371Y. Wu, A. Khodabakhsh, B. Li et al.

Table 2

Expected payment in every round for each player in 
the multi-player model with 𝑛 = 2.

Player 2

Honest Lying

Player 1
Honest (𝐶∕2, 𝐶∕2) (𝐶,0)
Lying (0, 𝐶) (𝐶∕2, 𝐶∕2)

+ 𝔼𝑦𝑡−2
[
𝐶𝑜𝑠𝑡

(
𝑡− 2, 𝑟,𝝈−𝑖,𝝈(𝒃𝑡,𝒚𝑡−1), 𝜎𝑖𝑡−2(𝜎

𝑖
𝑡−1(𝑏

𝑖
𝑡
, 𝑦𝑖
𝑡−1), 𝑡

𝑖
𝑡−2)
)]}

= 𝔼𝑦𝑡−1
[
𝐶𝑜𝑠𝑡(𝑡− 1, 𝑟,𝝈−𝑖, (𝒃−𝑖

𝑡
,0), 𝜎𝑖

𝑡−1(𝑏
𝑖
𝑡
, 𝑦𝑖
𝑡−1))

]
,

which is the expected total cost by reporting 0 in round 𝑡 but adopting the same strategy with the optimal one afterward. This 
contradicts that 𝑏𝑖

𝑡
> 0 is optimal.

To see that partial reporting is optimal, rewrite the payment for the current round as

𝐶 ⋅

(
1 −

∑
𝑗≠𝑖 𝑏

𝑖
𝑡∑

𝑗≠𝑖 𝑏
𝑗

𝑡
+ 𝑏𝑖

𝑡

)
+ 𝑟 ∣ 𝑏𝑖

𝑡+1 − 𝑏
𝑖
𝑡
∣,

whose second derivative is negative with respect to 𝑏𝑖
𝑡
. This means that the payment function is concave in 𝑏𝑖

𝑡
and will take minimum 

at either of the endpoints 0 and 𝐷. □

Starting from this point, we assume that every player reports either 0 or 𝐷. When 𝑛 = 2, we show that the multi-player model 
reduces to the single-player model with a multiplicative factor of 𝐶2𝐷 . The reason for the reduction is that the savings of switching to 
lying from being truthful for a player is always 𝐶2 , regardless of what the other player does.

Lemma 5.2. When 𝑛 = 2, the multi-player model reduces to a single-player model. The truthful penalty threshold is 𝐶2𝐷 times (3.1).

Proof. In the single-player model, if a player switches to lying from being honest, she saves 𝐷 for regular payment and then pays a 
penalty of 𝑟𝐷 if she has a truthful history. Now in the two-player model, since players are symmetric, we fix the action of player 2 
and see what happens with player 1 (see Table 2).

No matter if player 2 is honest or lying, for player 1, switching to lying would save 𝐶∕2 and may cost a penalty payment of 𝑟𝐷. 
By applying the same argument seen in Section 3.1 with the new expected savings and penalties, we get the same penalty threshold, 
except with a 𝐶∕2𝐷 multiplicative factor. □

For general 𝑛, we show it is sufficient to analyze the maximum difference between lying and truth-telling for player 𝑖 in round 𝑡
given group history 𝒃𝑡+1. In a DSE, a player achieves the biggest gain from lying if all players were lying in the previous round. We 
then use 𝒃𝑡+1 = 𝟎 to compare lying and truth-telling for a player.

Theorem 5.1. For the 𝐵𝑒𝑟(𝑝) distribution, a truthful strategy profile forms a dominant strategy equilibrium if and only if

𝑟 ≥
𝐶

𝑛𝐷

1 − (1 − 𝑝)𝑛−1

𝑝

1 − (1 − 𝑝)𝑇

𝑝− 𝑝(1 − 𝑝)𝑇−1
. (5.1)

Proof. See Section 5.3. □

If we slowly lower the penalty from (5.1), we will hit a threshold such that truth-telling is an NE. The difference between the 
truthful NE and the DSE is that now we can assume that every player 𝑗 ≠ 𝑖 is truthful in the first round and show that player 𝑖 would 
not deviate unilaterally. However, we shall not assume that player 𝑗 ≠ 𝑖 remains truthful for the rest of the game. This is because if 
player 𝑖 lies in the first round, player 𝑗 can observe the report of 𝑖 in the second round and deviate from truthful behavior. We first 
show that if 𝑟 ≥ 𝐶

𝑛𝐷

1
𝑝
, players with truthful history stay truthful. Then we can safely assume player 𝑗 ≠ 𝑖 remains truthful throughout 

the game. In this way, truthful NE is reduced to the case where there is one strategic player and 𝑛 − 1 truthful players. It is not hard 
to see the threshold is precisely 𝐶

𝑛𝐷

1−(1−𝑝)𝑇
𝑝−𝑝(1−𝑝)𝑇−1 .

Theorem 5.2. For the 𝐵𝑒𝑟(𝑝) distribution, a truthful strategy profile forms a Nash equilibrium if and only if

𝐶 1 − (1 − 𝑝)𝑇
13

𝑟 ≥
𝑛𝐷 𝑝− 𝑝(1 − 𝑝)𝑇−1

. (5.2)
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Fig. 5.1. Exact penalty thresholds for truthful DSE and NE, given a total number of rounds 𝑇 for 𝐵𝑒𝑟(𝑝) distributions. We assume 𝑛 = 20, 𝐷 = 1 and 𝐶 = 𝑛 ⋅𝐷 = 20.

Proof. See Section 5.3. □

We visualize 𝐵𝑒𝑟(𝑝) penalty thresholds in Fig. 5.1 for different 𝑇 ’s and 𝑝’s. The 𝑥-axis is the total number of rounds for a game 
and the 𝑦-axis is the penalty rate that guarantees the specified equilibrium. The blue and orange lines are penalty thresholds for 𝑝 = 1

3
and 23 , respectively. The solid and dashed lines are thresholds for truthful DSE and NE, respectively. All four thresholds in Fig. 5.1

decrease as 𝑇 increases, suggesting that the increasing length of the game promotes truthful equilibria. From expressions (5.1) and 
(5.2), we see that the DSE and NE thresholds tend to be the same as 𝑝 approaches 1.

5.3. Proofs for the exact results

For general 𝑛 strategic players, we develop an alternative way to compute the penalty thresholds for NE and DSE. Interestingly, 
we only need to make use of the following important definition, Δ𝐸𝐶𝑖

𝑡
(𝒃𝑡+1), to derive a universal framework for equilibrium proofs.

Definition 5.1. Let 𝐸𝐶𝑖
𝑡
(𝒃𝑡+1) denote the expected cost for player 𝑖 with when there are 𝑡 rounds left and the group history is 𝒃𝑡+1. 

Define

Δ𝐸𝐶𝑖
𝑡
(𝒃−𝑖
𝑡+1) ≜𝐸𝐶

𝑖
𝑡
(𝑏𝑖
𝑡+1 =𝐷,𝒃

−𝑖
𝑡+1) −𝐸𝐶

𝑖
𝑡
(𝑏𝑖
𝑡+1 = 0,𝒃−𝑖

𝑡+1)

as the difference in the expected payments by reporting 𝐷 versus 0 for player 𝑖, given 𝑡 rounds left and the reports of other players, 
𝒃−𝑖
𝑡+1.

To simplify the notation, we remove the superscript 𝑖 in the definition and write Δ𝐸𝐶𝑡(𝒃−𝑖𝑡+1). By Lemma 5.1, 𝒃−𝑖
𝑡+1 is a string of 

size 𝑛 − 1 consisting of 0’s and 𝐷’s. We first present a technique to obtain upper bounds of Δ𝐸𝐶𝑡(𝒃−𝑖𝑡+1) given 𝒃−𝑖
𝑡+1.

Lemma 5.3. Some upper bounds of Δ𝐸𝐶𝑡(𝒃−𝑖𝑡+1):

(i) Δ𝐸𝐶𝑡(𝟎)

≤
𝐶

𝑛

1 − (1 − 𝑝)𝑛−1

𝑝

𝑡∑
𝑖=1

(1 − 𝑝)𝑖 − 𝑝𝑟𝐷
𝑡−1∑
𝑖=0

(1 − 𝑝)𝑖

(ii) Δ𝐸𝐶𝑡(𝑏
𝑗

𝑡+1 = 0, 𝒃−𝑖,𝑗
𝑡+1 =𝑫)

≤
𝐶

𝑛− 1

𝑡∑
𝑖=1

(1 − 𝑝)𝑖 − 𝑝𝑟𝐷
𝑡−1∑
𝑖=0

(1 − 𝑝)𝑖

Proof. We prove (i) where 𝒃−𝑖
𝑡+1 = 𝟎 and the proof for (ii) is similar. Let 𝑀 = 𝐶

𝑛

1−(1−𝑝)𝑛−1
𝑝

. We prove this by induction.

Base case. 𝑡 = 1. With probability 𝑝, having a 𝐷 or 0 history pays the same regular payment and the 0 history needs to pay a penalty. 
14

With probability 1 − 𝑝, only the 𝐷 history pays the regular payment.
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Δ𝐸𝐶1 =𝐸𝐶1(𝐷) −𝐸𝐶1(0) = (1 − 𝑝)
𝑛−1∑
𝑘=0

(
𝑛− 1
𝑘

)
𝑝𝑘(1 − 𝑝)𝑛−1−𝑘 𝐶

𝑘+ 1
− (1 − 𝑝)𝑛 𝐶

𝑛
− 𝑝𝑟𝐷

= (1 − 𝑝)𝐶
𝑛

1 − (1 − 𝑝)𝑛−1

𝑝
− 𝑝𝑟𝐷

= (1 − 𝑝)𝑀 − 𝑝𝑟𝐷.

Note that 𝑘 in the second equality represents the number of players being busted in 𝑁 ⧵ {𝑖}.

Induction step. Assume Lemma 5.3 is true for Δ𝐸𝐶𝑡. Consider 𝑡 + 1 rounds left.

Δ𝐸𝐶𝑡+1 =𝐸𝐶𝑡+1(𝐷) −𝐸𝐶𝑡+1(0)

= (1 − 𝑝)
𝑛−1∑
𝑘=0

(
𝑛− 1
𝑘

)
𝑝𝑘(1 − 𝑝)𝑛−1−𝑘

{
𝐶

𝑘+ 1
+𝐸𝐶𝑡(𝐷)

}
− (1 − 𝑝)

𝑛−1∑
𝑘=0

(
𝑛− 1
𝑘

)
𝑝𝑘(1 − 𝑝)𝑛−1−𝑘 ⋅𝐸𝐶𝑡(0)

− 𝑝𝑟𝐷 − (1 − 𝑝)𝑛 𝐶
𝑛

≤ (1 − 𝑝)
{
𝑀 +Δ𝐸𝐶𝑡

}
− 𝑝𝑟𝐷

≤𝑀

𝑡+1∑
𝑖=1

(1 − 𝑝)𝑖 − 𝑝𝑟𝐷
𝑡∑
𝑖=0

(1 − 𝑝)𝑖. □

An important property of Δ𝐸𝐶𝑡(𝒃−𝑖𝑡+1) is that it is monotone increasing as the number of 0’s in 𝒃−𝑖
𝑡+1 increases. One way to 

understand this property is that a player 𝑗 ≠ 𝑖 with a zero history is more likely to lie in the next rounds, which in turn increases the 
expected regular payment if player 𝑖 is truthful. We prove this property mathematically in Lemma 5.4.

Lemma 5.4. If �̂�−𝑖
𝑡+1 contains more zeros than 𝒃−𝑖

𝑡+1, then

Δ𝐸𝐶𝑡(𝒃−𝑖𝑡+1) ≤Δ𝐸𝐶𝑡(�̂�
−𝑖
𝑡+1).

Proof. First note that the only non-trivial case is when the penalty is just high enough such that players with truthful history stay 
truthful and players with 0 history lie whenever realization is 0. Since every player is symmetric, players with the same history 
will act the same. If the penalty is too low, Δ𝐸𝐶𝑡(𝒃−𝑖𝑡+1) does not depend on 𝒃−𝑖

𝑡+1 and Δ𝐸𝐶𝑡(𝒃−𝑖𝑡+1) −Δ𝐸𝐶𝑡(�̂�
−𝑖
𝑡+1) = 0. Same when the 

penalty is too high then players will be truthful regardless of history. Now we can assume players with truthful history stay truthful 
regardless of the realization and players with zero history lie whenever possible. We prove by induction on 𝑡.
Base case. 𝑡 = 1. Let Δ𝐸𝐶𝑡(𝒃−𝑖𝑡+1) contain 𝑘 zero’s (and 𝑛 − 𝑘 − 1 𝐷’s). Then we have

Δ𝐸𝐶1(𝒃−𝑖𝑡+1) = 𝑝(−𝑟𝐷) + (1 − 𝑝)
𝑘∑
𝑖=0

(
𝑘

𝑖

)
𝑝𝑖(1 − 𝑝)𝑘−𝑖 𝐶

𝑛− 𝑘+ 𝑖
− 1{𝑘=𝑛−1} ⋅

𝐶

𝑛
(1 − 𝑝)𝑛

= 𝑝(−𝑟𝐷) + (1 − 𝑝)
𝑛−1∑
𝑗=0
𝛼(𝑗, 𝑘)𝐻(𝑗) letting 𝑗 = 𝑘− 𝑖

where

𝛼(𝑗, 𝑘) =

{( 𝑘
𝑘−𝑗

)
𝑝𝑘−𝑗 (1 − 𝑝)𝑗 for 0 ≤ 𝑗 ≤ 𝑘

0 for 𝑘 < 𝑗 ≤ 𝑛− 1

and

𝐻(𝑗) =

{ 1
𝑛−𝑗 ⋅𝐶 for 0 ≤ 𝑗 < 𝑛− 1
𝑛−1
𝑛

⋅𝐶 for 𝑗 = 𝑛− 1

Note that 
∑𝑛−1
𝑗=0 𝛼(𝑗, 𝑘) = 1 and 𝛼(𝑗, 𝑘)’s depend on 𝑘. On the other hand, 𝐻(𝑗)’s do not depend on 𝑘 and is an increasing sequence in 

𝑗. Now consider �̂�−𝑖
𝑡+1 that contains �̂� zeros, and 𝑘 < �̂�. Then we have

Δ𝐸𝐶 (�̂�−𝑖 ) − Δ𝐸𝐶 (𝒃−𝑖 ) = (1 − 𝑝)
𝑛−1∑{

𝛼(𝑗, �̂�) − 𝛼(𝑗, 𝑘)
}
𝐻(𝑗)
15
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𝑗=0
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= (1 − 𝑝)
⎧⎪⎨⎪⎩

�̂�∑
𝑗=𝑘+1

𝛼(𝑗, �̂�)𝐻(𝑗) −
𝑘∑
𝑗=0

(𝛼(𝑗, 𝑘) − 𝛼(𝑗, �̂�))𝐻(𝑗)
⎫⎪⎬⎪⎭

≥ (1 − 𝑝)
⎧⎪⎨⎪⎩

�̂�∑
𝑗=𝑘+1

𝛼(𝑗, �̂�)𝐻(𝑘) −
𝑘∑
𝑗=0

(𝛼(𝑗, 𝑘) − 𝛼(𝑗, �̂�))𝐻(𝑘)
⎫⎪⎬⎪⎭

= (1 − 𝑝)𝐻(𝑘)
⎧⎪⎨⎪⎩
�̂�∑
𝑗=0
𝛼(𝑗, �̂�) −

𝑘∑
𝑗=0
𝛼(𝑗, 𝑘)

⎫⎪⎬⎪⎭
= 0

Induction step. Assume the lemma is true for 𝑡. We prove for 𝑡 + 1 rounds left. Assume again 𝒃−𝑖
𝑡+1 contains 𝑘 zero’s.

Δ𝐸𝐶𝑡+1(𝒃−𝑖𝑡+1) =𝐸𝐶𝑡+1(𝐷,𝒃
−𝑖
𝑡+1) −𝐸𝐶𝑡+1(0,𝒃

−𝑖
𝑡+1)

= (1 − 𝑝)

{
𝑘∑
𝑖=0

(
𝑘

𝑖

)
𝑝𝑖(1 − 𝑝)𝑘−𝑖

(
𝐶

𝑛− 𝑘+ 𝑖
+Δ𝐸𝐶𝑡(𝑘− 𝑖 lying)

)}
− 𝑝𝑟𝐷 − 1{𝑘=𝑛−1}(1 − 𝑝)𝑛

{
𝐶

𝑛
−𝐸𝐶𝑡(0,0)

}
= −𝑝𝑟𝐷 + (1 − 𝑝)

𝑛−1∑
𝑗=0
𝛼(𝑗, 𝑘)𝐻(𝑗)

where 𝛼(𝑗, 𝑘)’s are the same as earlier, and 𝐻(𝑗)’s are now

𝐻(𝑗) =

{ 1
𝑛−𝑗 ⋅𝐶 +Δ𝐸𝐶𝑡(𝑗 lying) 0 ≤ 𝑗 < 𝑛− 1
𝑛−1
𝑛

⋅𝐶 +Δ𝐸𝐶𝑡(𝑛− 1 lying) 𝑗 = 𝑛− 1

By induction, Δ𝐸𝐶𝑡(𝑗 lying) increases in 𝑗. Thus, 𝐻(𝑗)’s is again an increasing sequence in 𝑗. We re-use the argument in the base 
case and prove Δ𝐸𝐶𝑡+1(�̂�

−𝑖
𝑡+1) ≥Δ𝐸𝐶𝑡+1(𝒃−𝑖𝑡+1) for �̂�−𝑖

𝑡+1 with �̂� > 𝑘 zeros. □

With this property, we develop a framework for the equilibrium proofs of both DSE and NE:

1. Determine what 𝒃−𝑖
𝑡+1 look like based on the type of the equilibrium we are trying to compute;

2. Upper bound Δ𝐸𝐶𝑡(𝒃−𝑖𝑡+1) with an expression using 𝐶 , 𝐷, 𝑡, 𝑝 and 𝑟 (see Lemma 5.3);

3. Compare player 𝑖’s expected payment on the first round when she lies or tells the truth using Δ𝐸𝐶𝑇−1(𝒃−𝑖𝑇 );
4. Find the penalty rate that sets the two expected payments equal, and that is the desired penalty threshold.

Proof for Theorem 5.1. Fix a player 𝑖. To show that being truthful is a dominant strategy for player 𝑖, we want to look at the 
situation that maximizes the difference between truth-telling and lying for player 𝑖, which is precisely when every other player is 
lying as much as possible, by Lemma 5.4. Now we assume every other player reports 0 whenever they can. We compare the expected 
cost of being truthful and lying in the very first round.

𝔼[lying] = (1 − 𝑝)𝑛−1𝐶
𝑛
+𝐸𝐶𝑇−1(0,𝟎);

𝔼[honest] =
𝑛−1∑
𝑘=0

(
𝑛− 1
𝑘

)
𝑝𝑖(1 − 𝑝)𝑛−1−𝑘

{
𝐶

𝑘+ 1
+𝐸𝐶𝑇−1(𝐷,𝟎)

}
,

where 𝑘 represents the number of players in 𝑁 ⧵ {𝑖} that are busted in round 𝑇 . We would like to find the penalty rate such that 
𝔼[honest] − 𝔼[lying] ≤ 0. By Lemma 5.3, we have

𝔼[honest] − 𝔼[lying] = 𝐶
𝑛

1 − (1 − 𝑝)𝑛

𝑝
− (1 − 𝑝)𝑛−1𝐶

𝑛
+Δ𝐸𝐶𝑇−1(𝟎)

≤
𝐶

𝑛

1 − (1 − 𝑝)𝑛−1

𝑝

1 − (1 − 𝑝)𝑇

𝑝
− 𝑟𝐷(1 − (1 − 𝑝)𝑇−1),

which is negative when 𝑟 ≥ 𝐶

𝑛𝐷

1−(1−𝑝)𝑛−1
𝑝

1−(1−𝑝)𝑇
𝑝−𝑝(1−𝑝)𝑇−1 . Since we are analyzing the case that maximizes the differences in lying and 
16

truth-telling, we can say that truthfulness is a Nash equilibrium if and only if the penalty rate is above the given threshold. □
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Proof for Theorem 5.2. Based on the discussion, we first assume that every player 𝑗 ≠ 𝑖 is truthful in the first round and 𝑟 ≥ 𝐶

𝑛𝐷

1
𝑝
. 

We want to prove that some player 𝑗 ∈𝑁 ⧵ {𝑖} does not want to deviate from being truthful in the next round. Then it follows that 
the threshold for truthful NE is equivalent to the case with a single sophisticated player and 𝑛 −1 truthful players. Since the threshold 
(5.2) is exact in the model with one sophisticated and 𝑛 − 1 truthful players, this threshold is the exact threshold for truthful Nash 
equilibrium.

Fix some player 𝑗 ≠ 𝑖. Assume there are 𝑡 +1 rounds left. Again, we compare the expected payments of lying and being honest for 
player 𝑗.

𝔼[honest] = 𝑝
{
𝐶

𝑛
+𝐸𝐶𝑡(𝐷,𝑫)

}
+ (1 − 𝑝)

{
𝐶

𝑛− 1
+𝐸𝐶𝑡(𝐷, (0,𝑫))

}
𝔼[lying] = 𝑟𝐷 + 𝑝 ⋅𝐸𝐶𝑡(0,𝑫) + (1 − 𝑝) ⋅𝐸𝐶𝑡(𝐷, (0,𝑫))

By Lemma 5.4 and Lemma 5.3, we have

𝔼[honest] − 𝔼[lying] ≤ 𝐶

𝑛− 1
− 𝑟𝐷 +Δ𝐸𝐶𝑡(0,𝑫) ≤ 0,

for 𝑟 ≥ 𝐶

𝑛𝐷

1
𝑝
. Thus, player 𝑗 will not deviate from being truthful, even when player 𝑖 is lying in the previous round. □

5.4. Approximate results

Similar to the single-player model, we extend the results for Bernoulli distributions to approximate results for general distri-

butions. Given 𝛼 ∈ [0, 1], we redefine being busted as having an observed consumption of at least 𝛼𝐷. For the dominant strategy 
equilibrium, we find the threshold such that being 𝛼-truthful is a dominant strategy in Theorem 5.3.

Theorem 5.3. Given 𝛼 ∈ [0, 1] and some general distribution 𝐹 , let 𝑝 = 1 −𝐹 (𝛼𝐷). The 𝛼-truthful strategy profile forms a dominant strategy 
equilibrium if

𝑟 ≥
1
𝛼

𝐶

𝑛𝐷

1 − (1 − 𝑝)𝑛

𝑝

1 − (1 − 𝑝)𝑇

𝑝− 𝑝(1 − 𝑝)𝑇−1
. (5.3)

Proof. Let 𝑝 = 1 − 𝐹 (𝛼𝐷). Assume, for contradiction, that the player adopts some strategy that has a minimum reporting of 𝛽𝐷, 
0 ≤ 𝛽 ≤ 𝛼. We compare the expected costs of this strategy and the strategy of being 𝛼-truthful. We re-define Δ𝐸𝐶𝑡(𝒃−𝑖𝑡+1) as follows:

Δ𝐸𝐶𝑡(𝒃−𝑖𝑡+1) ≜𝐸𝐶𝑡(𝛼𝐷,𝒃
−𝑖
𝑡+1) −𝐸𝐶𝑡(𝛽𝐷,𝒃

−𝑖
𝑡+1).

Similar to the proof in Theorem 5.1, we want to upper bound Δ𝐸𝐶𝑡(𝟎). Here we show the computation of Δ𝐸𝐶𝑡(𝟎) for 𝑡 = 1 and 
using the recursion argument in the proof of Lemma 5.3, we can show that

Δ𝐸𝐶𝑡(𝛽) =
𝐶

𝑛

1 − (1 − 𝑝)𝑛

𝑝

𝑡∑
𝑖=1

(1 − 𝑝)𝑖 − 𝛼𝑝𝑟𝐷
𝑡−1∑
𝑖=0

(1 − 𝑝)𝑖. (5.4)

After that, we use the same argument in the proof of Theorem 5.1 to obtain the threshold for the first day and Theorem 5.3 follows. 
Now we prove the statement for 𝑡 = 1. If the net consumption for the last day exceeds 𝛼𝐷 (which happens with probability 𝑝), 
then the difference between the penalty payments is (𝛼 − 𝛽)𝑟𝐷. Otherwise, the player can save some regular payment by reporting 
some 𝛽′𝐷 where 𝛽 ≤ 𝛽′ ≤ 𝛼. Let 𝑋 denote the number of players being busted beside the target player. Then 𝑋 ∼ 𝐵𝑖𝑛(𝑛 − 1, 𝑝) and 
𝑃 (𝑋 = 𝑘) =

(𝑛−1
𝑘

)
𝑝𝑘(1 − 𝑝)𝑛−1−𝑘. Therefore,

Δ𝐸𝐶1(𝛽) =𝐸𝐶𝑡(𝛼𝐷) −𝐸𝐶𝑡(𝛽𝐷)

≤ max
𝛽≤𝛽′≤𝛼

(1 − 𝑝)
𝑛−1∑
𝑘=0
𝑃 (𝑋 = 𝑘)

(
𝐶𝛼

𝑘𝛼 + 𝛼
− 𝐶𝛽′

𝑘𝛼 + 𝛽′

)
− 𝑝𝑟𝐷(𝛼 − 𝛽)

≤
𝛼 − 𝛽
𝛼

(1 − 𝑝)𝑀 − (𝛼 − 𝛽)𝑝𝑟𝐷,

and

max
0≤𝛽≤𝛼

Δ𝐸𝐶1(𝛽) = (1 − 𝑝)𝑀 − 𝛼𝑝𝑟𝐷,

given 𝑟 > (1−𝑝)𝑀
𝛼𝑝𝐷

, which is satisfied because actual threshold for 𝑟 in (5.3) is higher. Using the recursion argument in Lemma 5.3, we 
can obtain the expression (5.4). □

For Nash equilibrium, we first define the approximate truthful NE in Definition 5.2, which is a natural extension of the complete 
17

truthful NE. We then give a penalty threshold in Theorem 5.4 such that an approximately truthful profile will form an NE.
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Definition 5.2 (𝛼-truthful Nash equilibrium). Given 𝛼 ∈ [0, 1], a reporting profile 𝒃 ∈ [0, 𝐷]𝑛×𝑇 is an 𝛼-truthful Nash equilibrium if 
𝒃𝑖
𝑡
≥ 𝛼𝐷 for all 𝑖, 𝑡 and no player wants to deviate from being 𝛼-truthful in any round.

Theorem 5.4. Given 𝛼 ∈ [0, 1] and some general distribution 𝐹 , let 𝑝 = 1 −𝐹 (𝛼𝐷). The 𝛼-truthful strategy profile forms a Nash equilibrium 
if

𝑟 ≥
1
𝛼

𝐶

𝑛𝐷

1 − (1 − 𝑝)𝑇

𝑝− 𝑝(1 − 𝑝)𝑇−1
. (5.5)

Proof. Similar to the proof of Theorem 5.2, we only need to show that players who had a 𝛼-truthful history would stay truthful. We 
redefine Δ𝐸𝐶𝑡(𝒃−𝑖𝑡+1) as in the proof of Theorem 5.3 and use a similar argument in Theorem 5.2 to show that Δ𝐸𝐶𝑡(𝛽𝐷, �̃�𝑫) ≤ 0 for 
0 ≤ 𝛽 ≤ 𝛼 and �̃� ≥ 𝜶. Then we can safely assume that players 𝑗 ≠ 𝑖 stay 𝛼-truthful in the entire game. Now we compare player 𝑖’s 
expected savings and penalties by reporting some 𝛽𝐷 from being 𝛼-truthful.

𝔼[savings] ≤
{

𝐶 ⋅ 𝛼𝐷
(𝑛− 1)𝛼𝐷 + 𝛼𝐷

− 𝐶 ⋅ 𝛽𝐷
(𝑛− 1)𝛼𝐷 + 𝛽𝐷

}
⋅ 𝔼[# days before busted]

𝔼[lying] ≥ 𝑟𝐷(𝛼 − 𝛽) ⋅ Pr(busted).

Expected penalties exceed expected savings when 𝑟 = 1
𝛼

𝐶

𝑛𝐷

1−(1−𝑝)𝑡+1
𝑝−𝑝(1−𝑝)𝑡 . □

We see that both the penalty thresholds, (5.3) and (5.5) are close to 1
𝛼

times their counterparts of Bernoulli thresholds, (5.1)

and (5.2), for 𝑝 = 1 − 𝐹 (𝛼𝐷). Recall that in the single-player model, 𝛼-truthfulness can be obtained by directly using the Bernoulli 
threshold with 𝑝 = 1 − 𝐹 (𝛼𝐷). In the multi-player model, however, we have to multiply the Bernoulli threshold with a factor of 1

𝛼
, 

which suggests it is more difficult to get every player to speak the truth under the cost-sharing setting. We note that both penalty 
rates (5.3) and (5.5) are upper bounds for the actual thresholds. This is because we treat any report greater than 𝛼𝐷 as 𝛼𝐷. We 
conjecture that the exact thresholds are not far from thresholds (5.3) and (5.5).

6. Conclusions and discussions

We propose a penalty mechanism for eliciting truthful self-reports when only partial signals are revealed in a repeated game. A 
player faces a trade-off between under-reporting today and paying a penalty in the future due to the uncertainty of partial signals. 
It is straightforward that if the penalty is infinitely high, the player(s) will be truthful to avoid any potential inconsistency, but a 
large penalty is not desirable in reality. Instead, we show that it is not necessary to have an infinite penalty to achieve complete 
truthfulness. In fact, the length of the game naturally reduces the minimum penalty rate that incentivizes truth-telling.

For the theoretical analysis, we aim to understand the behavior of the player(s) and find the minimum penalty rate required 
to achieve truthfulness. In particular, given any penalty rate, we provide a characterization of the optimal strategies under both 
single- and multiple-player settings for any distributions. We identify a penalty rate that achieves complete truthfulness for Bernoulli 
distributions, which can be used in a reduction to obtain approximate truthfulness for arbitrary distributions.

The penalty mechanism we analyze in this work has a preliminary version in [21], in which the authors described the penalty 
mechanism as a possible electricity rate structure to ensure fairness for different electricity consumers. Our work provides a robust 
and theoretical analysis of the proposed penalty mechanism as well as guidelines for setting up the penalty rate that guarantees 
truthfulness. The penalty we analyze particularly focuses on the absolute difference between the two consecutive reports. It may 
very well be possible to consider other penalty definitions. For example, the penalty can be based on the difference between the 
current report and the maximum report in the entire history. Using the maximum report in history instead of the report from the 
round before may increase the chance of “busting” a lying report because it is likely that the electricity user has revealed their true 
gross consumption at some point in the history of the game. However, we believe in this case the analysis for the penalty mechanism 
will be simplified and has already been included in our current work. To see this, we first consider the rounds before the player is 
forced to report their true consumption 𝐷 for the first time. To find the penalty rate for truthfulness, we simply need to compare the 
“honest-till-end” and “lying-till-busted” strategies as we did in Section 3. After the true consumption 𝐷 has been revealed, in a later 
round when the player has the option to lie, they can either lie and pay a penalty of 𝑟𝐷, or report the truth and pay 𝐷. We then only 
need to make sure the penalty rate 𝑟 is greater than 1 to ensure truthfulness.

Besides various types of penalty mechanisms, there are many other interesting future directions. One possible future development 
is to extend our results to asymmetric multi-player settings where players do not have the same gross consumption or the same 
distribution for partial signals. For heterogeneous players, we may then consider, in addition to truthfulness, the fairness of the 
mechanism. It is both theoretically interesting and practically important to understand and ensure fairness in multi-player systems. 
One possible way is to define a fairness ratio (e.g., the value of a player’s payment over her gross consumption) for the cost-sharing 
model. A mechanism is then equitable if the fairness ratio for each player is relatively consistent. It is also worthwhile to derive 
other truthful and fair mechanisms that do not involve a penalty. For example, it is possible for the center to re-distribute part of the 
18

collected wealth to traditional energy consumers to compensate for their over-payment of the grid costs.
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Appendix A. Missing materials

A.1. Recursion approach

In Section 3.1, we briefly mentioned that we can solve for the optimal cost for the Bernoulli distribution via recursion. In the 
recursion proof, we compute explicitly the expression for 𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡, 𝑟, 𝑏𝑡+1) for 𝑡 < 𝑇 and 𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑇 , 𝑟, 𝑏𝑇 ) for the first round. Here, 
we provide such expressions and optimal strategies can be easily derived from these expressions. We note that we presented the 
alternative proof in the main article because it showcases the essence of our proposed mechanism. Moreover, the recursion approach 
would be computationally heavy for continuous distributions whereas the proof in the main body can be extended to any general 
distributions.

The following is the complete proof via backward induction. For simplicity, we set 𝐷 = 1, which does not affect the results. We 
break the proof into four cases and together, the four cases paint the picture of the optimal strategy under the Bernoulli distributions 
for the single player model.

Case 1 𝑝 ≤ 1
2 and 𝑟 ≤ 1 OR 𝑝 >

1
2 and 𝑟 ≤ 1

2𝑝

Case 2 𝑝 >
1
2 and

1
2𝑝 < 𝑟 ≤ 1

Case 3 𝑝 >
1
2 and 𝑟 > 1

Case 4 𝑝 ≤ 1
2 and 𝑟 > 1

Case 1. 𝑝 ≤ 1
2 and 𝑟 ≤ 1 OR 𝑝 > 1

2 and 𝑟 ≤ 1
2𝑝

Lemma A.1. For any 1 ≤ 𝑡 < 𝑇 , when 𝑝 ≤ 1
2 and 𝑟 ≤ 1 OR when 𝑝 > 1

2 and 𝑟 ≤ 1
2𝑝 , given yesterday’s arbitrary report 𝑏𝑡+1,

𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡, 𝑟, 𝑏𝑡+1) = (1 − 2𝑝)𝑟𝑏𝑡+1 + (𝑡− 1)𝑝(1 − 2𝑝)𝑟+ 𝑡𝑝(1 + 𝑟),

which is achieved by setting 𝑏𝑡 = 0. If 𝑟 < 1, 𝑏𝑡 = 0 is the unique optimal report; if 𝑟 = 1, the optimal report is any value 𝑏𝑡 ≤ 𝑏𝑡+1.

Proof. We prove the lemma by induction. When 𝑡 = 1,

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(1, 𝑟, 𝑏2, 𝑏1) = 𝑝(1 + 𝑟) + (1 − 𝑝)𝑏1 − 𝑝𝑟𝑏2 + (1 − 𝑝)𝑟|𝑏2 − 𝑏1|. (A.1)

The coefficient for 𝑏1 is either (1 − 𝑝)(1 − 𝑟) (if 𝑏2 ≥ 𝑏1) or (1 − 𝑝)(1 + 𝑟) (if 𝑏2 < 𝑏1). Both are non-negative for 𝑟 ≤ 1. Therefore, by 
setting 𝑏1 = 0, we achieved the optimal cost:

𝑂𝑝𝑡𝐶𝑜𝑠𝑡(1, 𝑟, 𝑏2) = min
𝑏1
𝐸𝑥𝑝𝐶𝑜𝑠𝑡(1, 𝑟, 𝑏2, 𝑏1) = 𝑟(1 − 2𝑝)𝑝2 + 𝑝(1 + 𝑟).

Assume the lemma is true for round 𝑡 − 1 ≥ 1. For round 𝑡 and given yesterday’s report 𝑏𝑡+1,

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑡, 𝑟, 𝑏𝑡+1, 𝑏𝑡)

= 𝑝(1 + 𝑟) + (1 − 𝑝)𝑏𝑡 − 𝑝𝑟𝑏𝑡+1 + (1 − 𝑝)𝑟|𝑏𝑡+1 − 𝑏𝑡|
+ 𝑝𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡− 1, 𝑟,1) + (1 − 𝑝)𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡− 1, 𝑟, 𝑏𝑡)

= 𝑝(1 + 𝑟) + (1 − 𝑝)𝑏𝑡 − 𝑝𝑟𝑏𝑡+1 + (1 − 𝑝)𝑟|𝑏𝑡+1 − 𝑏𝑡|
+ 𝑝[(1 − 2𝑝)𝑟+ (𝑡− 2)𝑝(1 − 2𝑝)𝑟+ (𝑡− 1)𝑝(1 + 𝑟)]

+ (1 − 𝑝)[(1 − 2𝑝)𝑟𝑏𝑡 + (𝑡− 2)𝑝(1 − 2𝑝)𝑟+ (𝑡− 1)𝑝(1 + 𝑟)]
19

= 𝑡𝑝(1 + 𝑟) + (𝑡− 1)𝑝(1 − 2𝑝)𝑟+ (1 − 𝑝)[1 + (1 − 2𝑝)𝑟]𝑏𝑡 + (1 − 𝑝)𝑟|𝑏𝑡+1 − 𝑏𝑡|− 𝑝𝑟𝑏𝑡+1.
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The coefficient for 𝑏𝑡 is as follows{
(1 − 𝑝)(1 + (1 − 2𝑝)𝑟+ 𝑟) = (1 − 𝑝)(1 + 2(1 − 𝑝)𝑟) 𝑏𝑡 > 𝑏𝑡+1
(1 − 𝑝)(1 + (1 − 2𝑝)𝑟− 𝑟) = (1 − 𝑝)(1 − 2𝑝𝑟) 𝑏𝑡 ≤ 𝑏𝑡+1

When 𝑟 ≤ 1
2𝑝 , both coefficients are non-negative. Therefore, choosing 𝑏𝑡 = 0 is optimal and the optimal cost is

𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡, 𝑟, 𝑏𝑡+1) = min
𝑝𝑡
𝐸𝑥𝑝𝐶𝑝𝑠𝑡(𝑡, 𝑟, 𝑏𝑡+1, 𝑏𝑡)

= 𝑡𝑝(1 + 𝑟) + (𝑡− 1)𝑝(1 − 2𝑝)𝑟+ (1 − 𝑝)𝑟𝑏𝑡+1 − 𝑝𝑟𝑏𝑡+1

= 𝑡𝑝(1 + 𝑟) + (𝑡− 1)𝑝(1 − 2𝑝)𝑟+ (1 − 2𝑝)𝑟𝑏𝑡+1.

By induction, we proved the lemma. □

Theorem A.1. If 𝑝 ≤ 1
2 and 𝑟 ≤ 1, or if 𝑝 > 1

2 and 𝑟 ≤ 1
2𝑝 , the player’s optimal strategy is lying-till-end.

Proof. Lemma A.1 showed that the theorem is true for every day except the first day. We now show that the theorem is true for the 
first day.

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑇 , 𝑟, 𝑏𝑇 ) = 𝑝(1 +𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑇 − 1, 𝑟,1)) + (1 − 𝑝)(𝑏𝑇 +𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑇 − 1, 𝑟, 𝑏𝑇 ))

= 𝑝[1 + (1 − 2𝑝)𝑟+ (𝑇 − 2)𝑝(1 − 2𝑝)𝑟+ (𝑇 − 1)𝑝(1 + 𝑟)]

+ (1 − 𝑝)[𝑏𝑇 + (1 − 2𝑝)𝑟𝑏𝑇 + (𝑇 − 2)𝑝(1 − 2𝑝)𝑟+ (𝑇 − 1)𝑝(1 + 𝑟)]

= (𝑇 − 1)𝑝(1 + 𝑟) + (𝑇 − 2)𝑝(1 − 2𝑝)𝑟+ 𝑝+ (1 − 𝑝)(1 + 𝑟− 2𝑝𝑟)𝑏𝑇 + (1 − 2𝑝)𝑝𝑟

The coefficient for 𝑏𝑇 is non-negative in both cases. So the optimal choice for the first day is also zero. Along with the Lemma A.1, 
we’ve shown the optimal strategy is lying-till-end for 𝑝 ≤ 1

2 , 𝑟 ≤ 1 and 𝑝 > 1
2 , 𝑟 ≤

1
2𝑝 with optimal cost

𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑇 , 𝑟) = min
𝑏𝑇

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑇 , 𝑟, 𝑏𝑇 )

= (𝑇 − 1)𝑝(1 + 𝑟) + (𝑇 − 2)𝑝(1 − 2𝑝)𝑟+ 𝑝+ (1 − 2𝑝)𝑝𝑟. □

Case 2. 𝑝 > 1
2 and 1

2𝑝 < 𝑟 ≤ 1 When 𝑝 > 1
2 and 1

2𝑝 < 𝑟 ≤ 1, as we have seen in Equation (A.1),

𝑂𝑝𝑡𝐶𝑜𝑠𝑡(1, 𝑟, 𝑏2) = (1 − 2𝑝)𝑟𝑏2 + 𝑝(1 + 𝑟),

by setting 𝑏1 = 0. Next, we consider round 2 ≤ 𝑡 < 𝑇 .

Lemma A.2. For any 2 ≤ 𝑡 < 𝑇 , when 𝑝 > 1
2 and 1

2𝑝 < 𝑟 ≤ 1, given yesterday’s arbitrary report 𝑏𝑡+1,

𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡, 𝑟, 𝑏𝑡+1) =

[
2(1 − 𝑝)𝑡𝑟+

𝑡−1∑
𝑙=2

(1 − 𝑝)𝑙 + (1 − 𝑝− 𝑟)

]
𝑏𝑡+1 + 𝑐𝑜𝑛𝑠𝑡.,

which is achieved by setting 𝑏𝑡 = 𝑏𝑡+1.

Proof. We prove the lemma by induction. When 𝑡 = 2,

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(2, 𝑟, 𝑏3, 𝑏2)

=

{
(1 − 𝑝)[1 + (1 − 2𝑝)𝑟− 𝑟]𝑏2 + (1 − 2𝑝)𝑟𝑏3 + 2𝑝(1 + 𝑟) + 𝑝(1 − 2𝑝)𝑟, 𝑏2 ≤ 𝑏3
(1 − 𝑝)[1 + (1 − 2𝑝)𝑟+ 𝑟]𝑝2 − 𝑟𝑏3 + 2𝑝(1 + 𝑟) + 𝑝(1 − 2𝑝)𝑟, 𝑏2 > 𝑏3

Since 𝑟 > 1
2𝑝 , 1 + (1 −2𝑝)𝑟 − 𝑟 ≤ 0 and 1 + (1 −2𝑝)𝑟 + 𝑟 ≥ 0. Thus 𝐸𝑥𝑝𝐶𝑜𝑠𝑡(2, 𝑟, 𝑏3, 𝑏2) is a valley function with respect to 𝑏2 and takes 

minimum by setting 𝑏2 = 𝑏3. Therefore, 𝑂𝑝𝑡𝐶𝑜𝑠𝑡 can be written as

𝑂𝑝𝑡𝐶𝑜𝑠𝑡(2, 𝑟, 𝑏3) = [2(1 − 𝑝)2𝑟+ (1 − 𝑝− 𝑟)]𝑏3 + 2𝑝(1 + 𝑟) + 𝑝(1 − 2𝑝)𝑟.

Assume up to round 𝑡 − 1 ≥ 1, the lemma holds. For round 𝑡 and yesterday’s report 𝑏𝑡+1,

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑡, 𝑟, 𝑏𝑡+1, 𝑏𝑡)
20

= 𝑝(1 + 𝑟) + (1 − 𝑝)𝑏𝑡 − 𝑝𝑟𝑏𝑡+1 + (1 − 𝑝)𝑟|𝑏𝑡+1 − 𝑏𝑡|
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+ (1 − 𝑝)

[
2(1 − 𝑝)𝑡−1𝑟+

𝑡−2∑
𝑙=2

(1 − 𝑝)𝑙 + (1 − 𝑝− 𝑟)

]
𝑏𝑡 + 𝑝(1 − 2𝑝)𝑟

+ (𝑡− 1)𝑝(1 + 𝑟) + (𝑡− 3)𝑝(1 − 𝑝− 𝑟) +
𝑡−2∑
𝑖=2

[
2(1 − 𝑝)𝑖𝑟+

𝑖−1∑
𝑙=2

(1 − 𝑝)𝑙
]

+ 𝑝

[
2(1 − 𝑝)𝑡−1𝑟+

𝑡−2∑
𝑙=2

(1 − 𝑝)𝑙 + (1 − 𝑝− 𝑟)

]
≜𝑀(𝑏𝑡+1, 𝑏𝑡) + 𝑐𝑜𝑛𝑠𝑡.,

where

𝑀(𝑏𝑡+1, 𝑏𝑡) = (1 − 𝑝)𝑏𝑡 − 𝑝𝑟𝑏𝑡+1 + (1 − 𝑝)𝑟|𝑏𝑡+1 − 𝑏𝑡|
+ (1 − 𝑝)

[
2(1 − 𝑝)𝑡−1𝑟+

𝑡−2∑
𝑙=2

(1 − 𝑝)𝑙 + (1 − 𝑝− 𝑟)

]
𝑏𝑡.

If 𝑏𝑡 ≤ 𝑏𝑡+1,

𝑀(𝑏𝑡+1, 𝑏𝑡) = (1 − 𝑝)𝑏𝑡 − 𝑝𝑟𝑏𝑡+1 + (1 − 𝑝)𝑟|𝑏𝑡+1 − 𝑏𝑡|
+ (1 − 𝑝)

[
2(1 − 𝑝)𝑡−1𝑟+

𝑡−2∑
𝑙=2

(1 − 𝑝)𝑙 + (1 − 𝑝− 𝑟)

]
𝑏𝑡

= (1 − 𝑝)

[
1 − 𝑟+ 2(1 − 𝑝)𝑡−1𝑟+

𝑡−2∑
𝑙=2

(1 − 𝑝)𝑙 + (1 − 𝑝− 𝑟)

]
𝑏𝑡 + (1 − 2𝑝)𝑟𝑏𝑡+1.

Note that the coefficient of 𝑏𝑡 is (1 − 𝑝) times the following

1 − 𝑟+ 2(1 − 𝑝)𝑡−1𝑟+
𝑡−2∑
𝑙=2

(1 − 𝑝)𝑙 + (1 − 𝑝− 𝑟)

= 1 +
𝑡−2∑
𝑙=1

(1 − 𝑝)𝑙 − 2𝑟[1 − (1 − 𝑝)𝑡−1] =
𝑡−2∑
𝑙=0

(1 − 𝑝)𝑙(1 − 2𝑝𝑟) ≤ 0,

where the inequality is due to 𝑟 ≥ 1
2𝑝 .

If 𝑏𝑡 > 𝑏𝑡+1,

𝑀(𝑏𝑡+1, 𝑏𝑡) = (1 − 𝑝)

[
1 + 𝑟+ 2(1 − 𝑝)𝑡−1𝑟+

𝑡−2∑
𝑙=2

(1 − 𝑝)𝑙 + (1 − 𝑝− 𝑟)

]
𝑏𝑡 − 𝑟𝑏𝑡+1,

where the coefficient of 𝑏𝑡 is positive. Thus the minimum of 𝑀(𝑏𝑡+1, 𝑏𝑡) is achieved at 𝑏𝑡 = 𝑏𝑡+1, i.e.,

𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡, 𝑟, 𝑏𝑡+1) =

[
2(1 − 𝑝)𝑡𝑟+

𝑡−1∑
𝑙=2

(1 − 𝑝)𝑙 + (1 − 𝑝− 𝑟)

]
𝑏𝑡+1 + 𝑐𝑜𝑛𝑠𝑡.

By induction, we proved the lemma. □

Theorem A.2. When 𝑝 > 1
2 and 1

2𝑝 < 𝑟 ≤ 1, the optimal strategy is lying-till-busted for the first 𝑇 − 1 rounds and lying in the last round.

Proof. Let us consider the first day.

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑇 , 𝑟, 𝑏𝑇 ) = 𝑝(1 +𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑇 − 1, 𝑟,1)) + (1 − 𝑝)(𝑏𝑇 +𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑇 − 1, 𝑟, 𝑝𝑇 ))

= (1 − 𝑝)

[
1 + 2(1 − 𝑝)𝑡𝑟+

𝑡−1∑
𝑙=2

(1 − 𝑝)𝑙 + (1 − 𝑝− 𝑟)

]
𝑏𝑇 + 𝑐𝑜𝑛𝑠𝑡.

The coefficient for 𝑏𝑇 is positive when 1
2𝑝 < 𝑟 < 1, thus 𝑏𝑇 = 0. □
21

Case 3. 𝑝 > 1
2 and 𝑟 > 1
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Lemma A.3. For 𝑝 > 1
2 , 𝑟 > 1, and any 1 ≤ 𝑡 < 𝑇 , given yesterday’s arbitrary report 𝑏𝑡+1,

𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡, 𝑟, 𝑏𝑡+1) =

[
(1 − 𝑝− 𝑝𝑟)

𝑡−1∑
𝑖=0

(1 − 𝑝)𝑖
]
𝑏𝑡+1 + 𝑐𝑜𝑛𝑠𝑡.,

which is achieved by setting 𝑏𝑡 = 𝑏𝑡+1.

Proof. We prove the lemma by induction. When 𝑡 = 1, the expected cost is

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(1, 𝑟, 𝑏2, 𝑏1) = 𝑝(1 + 𝑟) + (1 − 𝑝)𝑏1 − 𝑝𝑟𝑏2 + (1 − 𝑝)𝑟|𝑏𝑏 − 𝑏1|.
The coefficient for 𝑏1 is (1 − 𝑝)(1 + 𝑟) for 𝑏1 ≥ 𝑏2 and is positive. The coefficient is (1 − 𝑝)(1 − 𝑟) for 𝑏1 < 𝑏2 and is negative. This 
implies that 𝐸𝑥𝑝𝐶𝑜𝑠𝑡(1, 𝑡, 𝑏2, 𝑏1) is a valley function and the minimum is achieved by setting 𝑏1 = 𝑏2. Thus the optimal cost for 𝑡 = 1
is

𝑂𝑝𝑡𝐶𝑜𝑠𝑡(1, 𝑟, 𝑏2) = 𝑝(1 + 𝑟) + (1 − 𝑝− 𝑝𝑟)𝑏2.

Assume up to round 𝑡 − 1 ≥ 1, the lemma holds. For round 𝑡 and yesterday’s report 𝑏𝑡+1,

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑡, 𝑟, 𝑏𝑡+1, 𝑏𝑡)

= 𝑝(1 + 𝑟) + (1 − 𝑝)𝑏𝑡 − 𝑝𝑟𝑏𝑡+1 + (1 − 𝑝)𝑟|𝑏𝑡+1 − 𝑏𝑡|+ 𝑝(𝑡− 1)

+ (1 − 𝑝)

[
𝑏𝑡(1 − 𝑝− 𝑝𝑟)

𝑡−2∑
𝑖=0

(1 − 𝑝)𝑖 + (1 + 𝑟)𝑝
𝑡−2∑
𝑖=0

(1 − 𝑝)𝑖 + 𝑡− 1 −
𝑡−2∑
𝑖=0

(1 − 𝑝)𝑖
]

=𝑀(𝑏𝑡+1, 𝑏𝑡) + 𝑐𝑜𝑛𝑠𝑡.,

where

𝑀(𝑏𝑡+1, 𝑏𝑡) = (1 − 𝑝)𝑏𝑡 − 𝑝𝑟𝑏𝑡+1 + (1 − 𝑝)𝑟|𝑏𝑡+1 − 𝑏𝑡|
+ 𝑝𝑡(1 − 𝑝− 𝑝𝑟)(1 − 𝑝)

𝑡−2∑
𝑖=0

(1 − 𝑝)𝑖.

When 𝑏𝑡 ≥ 𝑏𝑡+1, the coefficient for 𝑏𝑡 is as follows

(1 − 𝑝)

{
1 + (1 − 𝑝)

𝑡−2∑
𝑖=0

(1 − 𝑝)𝑖 − 𝑝𝑟
𝑡−2∑
𝑖=0

(1 − 𝑝)𝑖 + 𝑟

}
= (1 − 𝑝)

{
𝑡−1∑
𝑖=0

(1 − 𝑝)𝑖 + 𝑟

[
1 − 𝑝

𝑡−2∑
𝑖=0

(1 − 𝑝)𝑖
]}

= (1 − 𝑝)

{
𝑡−1∑
𝑖=0

(1 − 𝑝)𝑖 + 𝑟(1 − 𝑝)𝑡−1
}
,

which is always positive. When 𝑏𝑡 < 𝑏𝑡+1, the coefficient is as follows

(1 − 𝑝)

{
1 + (1 − 𝑝)

𝑡−2∑
𝑖=0

(1 − 𝑝)𝑖 − 𝑝𝑟
𝑡−2∑
𝑖=0

(1 − 𝑝)𝑖 + 𝑟

}

= (1 − 𝑝)

{
1 + (1 − 𝑝)

𝑡−2∑
𝑖=0

(1 − 𝑝)𝑖 − 𝑟

[
1 + 𝑝

𝑡−2∑
𝑖=0

(1 − 𝑝)𝑖
]}

,

which is negative when

𝑟 >
1 + (1 − 𝑝)

∑𝑡−2
𝑖=0(1 − 𝑝)

𝑖

1 + 𝑝
∑𝑡−2
𝑖=0(1 − 𝑝)𝑖

=
∑𝑡−1
𝑖=0(1 − 𝑝)

𝑖

2 − (1 − 𝑝)𝑡−1
= 1 − (1 − 𝑝)𝑡

2𝑝− 𝑝(1 − 𝑝)𝑡−1
(A.2)

Note that from Equation (A.2), we see when 𝑝 > 1
2 , the right-hand-side is smaller than 1. Thus given 𝑟 > 1, the 𝑀 function is a valley 

function, and the minimum is achieved by setting 𝑏𝑡 = 𝑏𝑡+1. The optimal cost in round 𝑡 is then

𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡, 𝑟, 𝑏𝑡+1) =𝑀(𝑏𝑡+1, 𝑏𝑡+1) + 𝑐𝑜𝑛𝑠𝑡.

= (1 − 𝑝− 𝑝𝑟)

[
1 + (1 − 𝑝)

𝑡−2∑
𝑖=0

(1 − 𝑝)𝑖
]
𝑏𝑡 + 𝑐𝑜𝑛𝑠𝑡.

=

[
(1 − 𝑝− 𝑝𝑟)

𝑡−1∑
(1 − 𝑝)𝑖

]
𝑏𝑡 + 𝑐𝑜𝑛𝑠𝑡.
22

𝑖=0
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By induction, we proved the lemma. □

Theorem A.3. When 𝑝 > 1
2 , if 𝑟 ≥ 1−(1−𝑝)𝑇

𝑝(1−(1−𝑝)𝑇−1) , honest-till-end is the optimal strategy; if 1 < 𝑟 < 1−(1−𝑝)𝑇
𝑝(1−(1−𝑝)𝑇−1) , lying-till-busted is optimal.

Proof. We write out the expected cost on the first round, i.e., 𝑡 = 𝑇 .

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑇 , 𝑟, 𝑏𝑇 ) = 𝑝(1 +𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑇 − 1, 𝑟,1)) + (1 − 𝑝)(𝑏𝑇 +𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑇 − 1, 𝑟, 𝑏𝑇 ))

= (1 − 𝑝)

[
1 + (1 − 𝑝− 𝑝𝑟)

𝑇−2∑
𝑖=0

(1 − 𝑝)𝑖
]
𝑏𝑇 + 𝑐𝑜𝑛𝑠𝑡.

= (1 − 𝑝)

[
1 + (1 − 𝑝)

𝑇−2∑
𝑖=0

(1 − 𝑝)𝑖 − 𝑝𝑟
𝑇−2∑
𝑖=0

(1 − 𝑝)𝑖
]
𝑏𝑇 + 𝑐𝑜𝑛𝑠𝑡.

= (1 − 𝑝)

[
𝑇−1∑
𝑖=0

(1 − 𝑝)𝑖 − 𝑝𝑟
𝑇−2∑
𝑖=0

(1 − 𝑝)𝑖
]
𝑏𝑇 + 𝑐𝑜𝑛𝑠𝑡.

The coefficient for 𝑏𝑇 is positive when

𝑟 <

∑𝑇−1
𝑖=0 (1 − 𝑝)𝑖

𝑝
∑𝑇−2
𝑖=0 (1 − 𝑝)𝑖

=
1−(1−𝑝)𝑇

𝑝

𝑝
1−(1−𝑝)𝑇−1

𝑝

= 1 − (1 − 𝑝)𝑇

𝑝(1 − (1 − 𝑝)𝑇−1)
. (A.3)

The optimal strategy for the first day is therefore setting 𝑏𝑇 = 0 when 𝑟 is smaller than (A.3) and 𝑏𝑇 = 1 otherwise. Along with 
Lemma A.3, we have proved the theorem. □

Case 4. 𝑝 ≤ 1
2 and 𝑟 ≥ 1 For any 2 ≤ 𝑡 ≤ 𝑇 − 1, let

ℎ(𝑡) =
∑𝑡−1
𝑖=0(1 − 𝑝)

𝑖

1 + 𝑝
∑𝑡−2
𝑖=0(1 − 𝑝)𝑖

= 1 − (1 − 𝑝)𝑡

2𝑝− 𝑝(1 − 𝑝)𝑡−1
,

and

𝐴(𝑡) = (1 − 𝑟)
𝑡−1∑
𝑖=1

(1 − 𝑝)𝑖 + (1 − 𝑝− 𝑝𝑟)(1 − 𝑝)𝑡−1 + (1 − 2𝑝)𝑟
𝑡−1∑
𝑖=1

(1 − 𝑝)𝑖−1.

Claim A.1. When 𝑝 < 1
2 , 1 = ℎ(1) < ℎ(2) <⋯ < ℎ(𝑇 − 1) < ℎ(𝑇 ) < 1

2𝑝 .

Proof. The derivative of ℎ(𝑡) with respect to 𝑡 is strictly positive:

𝑑

𝑑𝑡
ℎ(𝑡) = 𝑑

𝑑𝑡

1 − (1 − 𝑝)𝑡

2𝑝− 𝑝(1 − 𝑝)𝑡−1

= [2𝑝− 𝑝(1 − 𝑝)𝑡−1][−(1 − 𝑝)𝑡 ln(1 − 𝑝)] − [1 − (1 − 𝑝)𝑡][−𝑝(1 − 𝑝)𝑡−1 ln(1 − 𝑝)]
[2𝑝− 𝑝(1 − 𝑝)𝑡−1]2

= 𝑝(1 − 𝑝)
𝑡−1 ln(1 − 𝑝)[1 − 2𝑝(1 − 𝑝)]
[2𝑝− 𝑝(1 − 𝑝)𝑡−1]2

>
𝑝(1 − 𝑝)𝑡−1 ln(1 − 𝑝)[1 − 2𝑝]

[2𝑝− 𝑝(1 − 𝑝)𝑡−1]2
≥ 0

The edge cases can be checked manually. Thus, ℎ(𝑡) is increasing w.r.t. 𝑡. □

Claim A.2. When 𝑝 < 1
2 and 𝑡 ≥ 2, 𝐴(𝑡) + (1 − 𝑟) ≥ 0 if and only if and 𝑟 ≤ ℎ(𝑡 + 1).

Proof. We simplify the expression 𝐴(𝑡) + 1 − 𝑟 as follows.

𝐴(𝑡) + 1 − 𝑟 = (1 − 𝑟)
𝑡−1∑
𝑖=0

(1 − 𝑝)𝑖 + (1 − 𝑝− 𝑝𝑟)(1 − 𝑝)𝑡−1 + (1 − 2𝑝)𝑟
𝑡−1∑
𝑖=1

(1 − 𝑝)𝑖−1

= 1 − (1 − 𝑝)𝑡

𝑝
+ (1 − 𝑝)𝑡 − 𝑟(2 − (1 − 𝑝)𝑡).
23

Thus 𝐴(𝑡) + 1 − 𝑟 ≥ 0 if and only if
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𝑟 ≤

1−(1−𝑝)𝑡
𝑝

+ (1 − 𝑝)𝑡

2 − (1 − 𝑝)𝑡
= 1 − (1 − 𝑝)𝑡+1

2𝑝− 𝑝(1 − 𝑝)𝑡
= ℎ(𝑡+ 1). □

Next, we further distinguish the following subcases ℎ(𝑡 − 1) < 𝑟 ≤ ℎ(𝑡) for each 𝑡 = 2, … , 𝑇 − 1.

SubCase 4.1. 𝑝 ≤ 1
2 and ℎ(𝑡 − 1) < 𝑟 ≤ ℎ(𝑡) We start with the last day,

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(1, 𝑟, 𝑏2, 𝑏1) =

{
(1 − 𝑝)(1 − 𝑟)𝑏1 + (1 − 2𝑝)𝑟𝑏2 + 𝑐𝑜𝑛𝑠𝑡., 𝑏2 ≥ 𝑏1
(1 − 𝑝)(1 + 𝑟)𝑏1 − 𝑟𝑏2 + 𝑐𝑜𝑛𝑠𝑡., 𝑏2 < 𝑏1.

Given 𝑟 ≥ ℎ(𝑡 − 1) ≥ 1, 𝑂𝑝𝑡𝐶𝑜𝑠𝑡(1, 𝑟, 𝑏2) = (1 − 𝑝 − 𝑝𝑟)𝑏2 + 𝑐𝑜𝑛𝑠𝑡., achieved by setting 𝑏1 = 𝑏2.

Now we consider the rounds after the first 𝑡 rounds, i.e., the last 𝑇 − 𝑡 rounds.

Lemma A.4. When 𝑝 < 1
2 and ℎ(𝑡 − 1) < 𝑟 ≤ ℎ(𝑡), given yesterday’s arbitrary report 𝑏𝑡′+1,

𝑂𝑝𝑡𝐶𝑜𝑠𝑡(𝑡′, 𝑟, 𝑏𝑡′+1) =𝐴(𝑡′)𝑏𝑡′+1 + 𝑐𝑜𝑛𝑠𝑡., (A.4)

which is achieved by setting 𝑏𝑡′ = 𝑏𝑡′+1 for any 2 ≤ 𝑡′ < 𝑡 and by setting 𝑏𝑡′ = 0 for 𝑡 ≤ 𝑡′ ≤ 𝑇 − 1.

Proof. For 𝑡′ = 2,

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(2, 𝑟, 𝑏3, 𝑏2) =

{
(1 − 𝑝)[1 − 𝑟+ (1 − 𝑝− 𝑝𝑟)]𝑏2 + (1 − 2𝑝)𝑟𝑏3 + 𝑐𝑜𝑛𝑠𝑡, 𝑏3 ≥ 𝑏2
(1 − 𝑝)[1 + 𝑟+ (1 − 𝑝− 𝑝𝑟)]𝑏2 − 𝑟𝑏3 + 𝑐𝑜𝑛𝑠𝑡, 𝑏3 < 𝑏2.

Given 𝑝 < 1
2 and 𝑟 > ℎ(𝑡 − 1) ≥ ℎ(2) = 2−𝑝

1+𝑝 , 𝐸𝑥𝑝𝐶𝑜𝑠𝑡(2, 𝑟, 𝑏3, 𝑏2) is a valley function and takes minimum at 𝑏2 = 𝑏3. Thus,

𝑂𝑝𝑡𝐶𝑜𝑠𝑡(2, 𝑟, 𝑏3) = (2 − 𝑝)(1 − 𝑝− 𝑝𝑟)𝑏3 + 𝑐𝑜𝑛𝑠𝑡. =𝐴(2)𝑏3 + 𝑐𝑜𝑛𝑠𝑡.

In general, for any 𝑡′ ≥ 3,

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑡′, 𝑟, 𝑏𝑡′+1, 𝑏𝑡′ ) =

{
(1 − 𝑝)[1 − 𝑟+𝐴(𝑡′ − 1)]𝑏𝑡′ + (1 − 2𝑝)𝑟𝑏𝑡′+1 + 𝑐𝑜𝑛𝑠𝑡., 𝑏𝑡′+1 ≥ 𝑏𝑡′

(1 − 𝑝)[1 + 𝑟+𝐴(𝑡′ − 1)]𝑏𝑡′ − 𝑟𝑏𝑡′+1 + 𝑐𝑜𝑛𝑠𝑡., 𝑏𝑡′+1 < 𝑏𝑡′ .

By Claim A.2, for 2 ≤ 𝑡′ < 𝑡, 1 − 𝑟 +𝐴(𝑡′ − 1) ≤ 0 since 𝑟 > ℎ(𝑡 − 1) > ℎ(𝑡′ − 1). Then 𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑡, 𝑟, 𝑏𝑡′+1, 𝑏𝑡′ ) is a valley function and 
takes minimum at 𝑏𝑡′ = 𝑏𝑡′+1. For 𝑡 ≤ 𝑡′ ≤ 𝑇 − 1, 1 − 𝑟 +𝐴(𝑡′ − 1) ≥ 0 since 𝑟 ≤ ℎ(𝑡) ≤ ℎ(𝑡′). Then the coefficient for 𝑏𝑡′ in both cases is 
positive and the expected cost takes minimum at 𝑏𝑡′ = 0. □

Finally, we consider the first day,

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑇 , 𝑟, 𝑝𝑇 ) = (1 − 𝑝)[1 +𝐴(𝑇 − 1)]𝑏𝑇 + 𝑐𝑜𝑛𝑠𝑡.,

where the coefficient for 𝑏𝑇 is positive. Thus on the first day, the optimal 𝑏𝑇 = 0. In conclusion, we have the following theorem.

Theorem A.4. When 𝑝 < 1
2 , 2 ≤ 𝑡 ≤ 𝑇 − 1, and ℎ(𝑡 − 1) < 𝑟 ≤ ℎ(𝑡), the optimal strategy is lying-till-end for the first 𝑡 rounds, and lying-till-

busted for the rest of the game.

SubCase 4.2. 𝑟 ≥ ℎ(𝑇 − 1) When 𝑟 ≥ ℎ(𝑇 − 1), as we have seen in previous subcase,

𝐸𝑥𝑝𝐶𝑜𝑠𝑡(𝑇 , 𝑟, 𝑏𝑇 ) = (1 − 𝑝)[1 +𝐴(𝑇 − 1)]𝑏𝑇 + 𝑐𝑜𝑛𝑠𝑡.,

where

1 +𝐴(𝑇 − 1) = 1 + (1 − 𝑟)
𝑇−2∑
𝑖=1

(1 − 𝑝)𝑖 + (1 − 𝑝− 𝑝𝑟)(1 − 𝑝)𝑇−2 + (1 − 2𝑝)𝑟
𝑇−2∑
𝑖=1

(1 − 𝑝)𝑖−1

= 1 + (1 − 𝑝− 𝑝𝑟)
𝑇−1∑
𝑖=1

(1 − 𝑝)𝑖−1.

Thus 1 +𝐴(𝑇 − 1) ≥ 0 if and only if

𝑟 ≤
1 − (1 − 𝑝)𝑇

𝑝(1 − (1 − 𝑝)𝑇−1)
.

24

In conclusion, we have the following theorem.
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Theorem A.5. When 𝑝 < 1
2 , if 1−(1−𝑝)𝑇−1

2𝑝−𝑝(1−𝑝)𝑇−2 < 𝑟 ≤
1−(1−𝑝)𝑇

𝑝(1−(1−𝑝)𝑇−1) , the optimal strategy is lying-till-busted; if 𝑟 > 1−(1−𝑝)𝑇
𝑝(1−(1−𝑝)𝑇−1) , the optimal 

strategy is honest-till-end.
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