14.4 All-Digital Time-Domain CNN Engine Using Bidirectional Memory Delay Lines for Energy-Efficient Edge Computing

Aseem Sayal, Shirin Fathima, S. S. Teja Nibhanupudi, Jaydeep P. Kulkarni

University of Texas, Austin, TX

Convolutional Neural Networks (CNN) provide superior classification accuracy in a variety of machine learning applications, such as image/speech/sensor data processing. However, CNNs require intensive compute and memory resources making it challenging to employ in energy-constrained edge-computing devices. Specifically, Multiply-and-Accumulate (MAC) operations consume a significant portion of the total CNN energy [1].

Various analog compute techniques using charge manipulation schemes and A/D converters, as well as frequency-modulation-based approaches have been proposed to realize efficient MAC computations in a CNN accelerator (Fig. 14.4.6) [1-2, 5-6]. However, finite voltage headroom is required in analog MAC designs, whereas accurate frequency control is necessary for prior frequency-domain MAC approaches. This limits the voltage scalability of analog approaches and performance scalability of prior frequency-domain techniques degrading the MAC energy efficiency - critical for CNNs used in edge-compute devices. In this paper, we demonstrate an energy-efficient CNN engine implemented in a 40nm CMOS (Figs. 14.4.1, 14.4.7) featuring: 1) Bi-directional Memory Delay Lines (MDL) performing time-domain MAC operations; 2) multi-precision filter weight support (signed/unsigned 1-8b); 3) 16 filters each supporting 2×2 sub-sampling (max. pooling) and averaging; 4) all-digital, technology scalable design without requiring any capacitors, A/D converters, and/or frequency generators/modulators; and 5) near-threshold voltage operation supporting 16x speed-up with 4 input encoding modes.

The CNN data flow (Fig. 14.4.1) consists of: 1) training input data using TensorFlow/Keras software framework; 2) feeding trained filter weights and test input data to the test-chip using LabVIEW-PXI data acquisition instruments; 3) performing on-chip MAC, averaging, and pooling operations for the test input data; and 4) fully connected layers and soft-max computation in software (TensorFlow). The time-domain MAC computations are realized using the proposed MDL which accumulates the dot product of a weight bit and the time encoded input pulse-width (Fig. 14.4.2). It is derived from the concept of a 'timeregister' used in high precision time-to-digital converters, which can perform time addition and time storage using a string of delay cells controlled by an enable (EN) signal [7]. Each MDL unit comprises two cross-coupled inverter pairs, S1-S4 switches, and a reset control (RST). The time-encoded dot product of input (X_i) and 1b filter weight (w_i) acts as an EN pulse and controls the MDL operating mode. During the accumulation phase, EN=1 and the MDL acts either as a forward delay line (for +ve dot product, S1 and S2 are ON) or a backward delay line (for -ve dot product, S2, S3 and S4 are ON), enabling bi-directional data flow emulating signed dot products. When EN goes low, the MDL acts as a memory storage line and retains the MDL state vector using cross-coupled inverters (S1, S3 and S4 are ON). The metastability risk during an EN falling transition is resolved by the next incoming EN pulse, as the MDL is transformed into a chain of cascaded delay cells. When the MDL state vector string progresses towards the either end of the MDL (node A or node E), an up-down counter is triggered, which translates time-domain dot product accumulation information into digital bits acting as a time-to-digital converter. If the accumulated dot product pulse-width exceeds the full-scale MDL delay, an overflow condition is detected, and the propagating edge is inverted (using S5-S6) and applied at the beginning node A of MDL (or trailing end node E). Thus, a finite length MDL can be used to perform long-duration time-domain accumulation using an up-down counter. The calibration unit consists of additional delay cells which can be added to the MDL to mitigate delay mismatch in the presence of process variations.

The bi-directional MDL forms the core of the CNN engine implementing 16 filters. Each filter consists of 4 bi-directional MDLs, a weight shift register, a shared pulse generator/selector, an up/down counter, a bi-directional barrel shifter, and pooling comparators (Fig. 14.4.3). 8b input data (X) is represented in the time domain as a Pulse-Width Modulated (PWM) signal as multiples of input clock period ($2t_0$). A pulse generator/selector circuit is designed to generate 0-255 t_0 PWM signals using a two-stage approach [1]. As 4 MSBs (X[7-4]) correspond to a maximum of value of 240 (out of the 255 full-scale value of an 8b input), an MSB_EN signal

is asserted for 240 t_0 duration in the first stage generating T0-T15 output pulses in increments of $16t_0$ duration. In the second step, the MSB_EN signal is deasserted and 4 LSBs (X[3-0]) PWM signals are generated as outputs T0-T15. Four precision modes are implemented to support 1-to-16× speed-up in the input PWMs by quantizing 4 LSBs. As shown in the pulse generator timing diagram (Fig. 14.4.3), varying duration T0-T15 pulses are generated based on the precision mode and concatenated with X[7-4] MSB pulses generated in the first step. The LSB pulse-width quantization steps are chosen to limit the quantization error to ±0.5*speed-up ratio. As the pulse generator operates continuously in every MAC_CLK period, pulse gating AND logic is implemented to ensure that only a single PWM input pulse is applied to the MDL in each dot product computation. Next, the single PWM input is multiplied with a 1b filter weight (w_i) stored in a 25b shift register (for a 5×5 filter size) producing the $X_1 \cdot w_i$ dot product. The bidirectional MDL then performs signed accumulation, time-to-digital conversion (20b-up/down counter) and averaging/scaling (20b-bi-directional barrel shifter performing up to 7b shifts). For multi-bit filter weights, multiple instances of MDLs with each weight shift register initialized with one bit of the weight vector can be used. A sub-sampling operation using max pooling across a 2×2 window is implemented to reduce the convolution layer output data size by 75%. This is achieved by 4 concurrent MDL operations and feeding the MDL counter outputs to 8b MAX comparators. The pooled output from each filter is stored off-chip and reused as the input to the next convolution layer.

Figure 14.4.4 shows oscilloscope-captured waveforms from the 40nm CMOS testchip (Fig. 14.4.7) confirming MDL functionality with delay phase and storage phase for different MDL lengths. The pulse generator and the pulse-gating logic functionality is verified with the correct toggling of MSB_EN, T15, T8, T4 outputs and the pulse-gating control signals. 1-to-16× speed-up in the PWM input representation is validated with multiple precision modes for a test-case input of 214. The measured classification accuracy (on 100 images) for LeNet-5 using the MINIST dataset is ~2% lower relative to software counterpart (Fig. 14.4.5). 16× speed-up mode resulted in lower accuracy because of input quantization and increased sensitivity of MDL residue. Simulation results using the proposed MDLbased CNN for AlexNet with 2-class ImageNet dataset (cats vs. dogs) with signed 8b weights, shows 13% lower classification accuracy compared to software (16b floating-point weights). The CNN engine is operable down to 375mV with more than 90% MNIST classification accuracy. For the LeNet-5 case, both C1- and C3layer throughput increases with the higher speed-up mode and with the increasing supply voltage achieving a peak throughput of 0.38 (0.128) GOPS for the C3 (C1) layer at 585mV. The energy efficiency peaks with increasing supply voltage scaling and reaches a maximum of 13.46 (4.61) TOPS/W for the C3 (C1) layer at 496mV. Figure 14.4.6 tabulates LeNet-5 parameters, test-chip characterization results (at optimal voltage of 537mV), and compares with earlier approaches [1-6].

Acknowledgements:

Authors thank Vignesh Radhakrishnan and Jacob Rohan for helping with the testchip measurements. Authors also like to thank TSMC University shuttle program for the test-chip fabrication support.

References:

- [1] A. Biswas, et al., "Conv-RAM: An Energy-Efficient SRAM With Embedded Convolution Computation For Low-Power CNN-Based Machine Learning Applications," *ISSCC*, pp. 488-490, 2018.
- [2] S. K. Gonugondla, et al., "A 42pJ/decision 3.12TOPS/W Robust In-Memory Machine Learning Classifier With On-Chip Training," *ISSCC*, pp. 490-492, 2018 [3] J. Sim, et al., "A 1.42TOPS/W Deep Convolutional Neural Network Recognition Processor for Intelligent IoE Systems," *ISSCC*, pp. 264-265, 2016.
- [4] B. Moons, et al., "A 0.3–2.6 TOPS/W Precision-Scalable Processor for Real-Time Large-Scale ConvNets," *IEEE Symp. VLSI Circuits*, pp. 178-179, 2016.
- [5] M. Liu, et al., "A scalable time-based integrate-and-fire neuromorphic core with brain-inspired leak and local lateral inhibition capabilities," *IEEE CICC*, pp. 1-4, 2017.
- [6] A. Amravati, et al., "A 55nm Time-Domain Mixed-Signal Neuromorphic Accelerator With Stochastic Synapses and Embedded Reinforcement Learning For Autonomous Micro-Robots," *ISSCC*, pp. 124-126, 2018.
- [7] K. Kim, et al., "A 9 bit, 1.12ps Resolution 2.5b/Stage Pipelined Time-to-Digital Converter in 65 nm CMOS Using Time-Register," *IEEE JSSC*, vol. 49, no. 4, pp. 1007-1016, 2014.

Figure 14.4.1: LeNet-5 CNN engine data flow and its interface with the test-chip which implements MAC, averaging, and pooling operations.

Figure 14.4.2: Proposed bi-directional Memory Delay Line concept (MDL) for time-domain, signed MAC computation: circuit topology, switch-selection logic, calibration unit, and timing diagram.

Figure 14.4.3: Overall architecture of the proposed MD- based CNN engine with input PWM pulse generator supporting 1-to-16× speed-up modes.

Figure 14.4.4: Experimental demonstration of the MDL functionality, pulse generator/pulse gating logic, and 1-to-16x speed-up with input quantization.

LeNet-5 on MNIST datas		90 100 Labor 5
V=650mV, Freq. = 25MHz, T=25	C % 90	
Conv. Layers (Hard	ware) 5 85 Freq. = 25MHz	On MNIST - Mode: 16x - Mode: 1x - Mode:
FCN (Software	MDL tradeoffs	₹ 50 Mode: 8x
ig 97	<u>5</u> 75	g 30 - ★ - Mode: 1x
E 96	<u>5</u> 70	20 10 T=25°C, VP clock Freq.=1MHz
SSE	S 65	300 350 400 450 500 550 600 650 700
5/W,1x 4x 8x 16x , S/W,1x 4x	8x 16x, O 60 S/W ,1x 4x 8x 16x,	Voltage (mV)
(software) Speed-up/Precision me Weights: +1/- 1 Weight	ode (software) Speed-up/	LeNet-5 on MNIST
Conv. Layers: 8-bit fixed point FCN, S/W: 16-bit floating point inputs/	inputs Conv. Layers- 8bit fixed point	11 E 1.3MHz 24MHz -*-Mode: 1x
PCN, SW. 10-bit floating point inputs	S/W, FCN- 16bit floating poir	nt c 25MHz
0.000	inputs and weights	25MHz 25MHz
	eq: 25MHz Limited by acquisition instrument 1E4	iii 2
Mode: 4x	acquisition instrument 1E4 0	e
N 1E4	1E3 do	
H 1E3		Voltage (mV) S 15 LeNet-5 on MNIST - ⊕ - Mode: 16x
B	d	Ø T=25°C
B 1E2	1E2 thd the first term of the	10 1MHz 24MHz - Mode: 1x
£ 1E1	24MHz 25MHz 25MHz	25MHz ⁽⁰⁾ .
_ 1E0 12MHz	1E-1 E	E 5
TE-1 1MHz 1.3MHz	T = 25° C 11E-2	,
350 400 450 500	550 600 650	1
Voltage	(mV)	300 400 500 600 700 Voltage (mV)

Figure 14.4.5: Measured throughput, energy efficiency, and classification accuracy for 1-to-16× speed-up modes on LeNet-5 using MNIST dataset.

for LeNet-5	C1+P2	C3+F	P4 LeN	LeNet-5 Results/Metrics				and Pooling Layer P2				and Pooling Layer P4			
Filter Size	5*5*1*6	5*5*6	16 Preci	Precision (Speed-up) Mode		1x	4x	8x	16x	1x	4x	8x	16x		
Input/Filter	8bits/	8bits		Input clock frequency (MHz)			24.	0 24.0	24.0	24.0	24.0	24.0	24.0	24.0	
Size	1bit	1bi	MAC	clock fre	equency (MHz)	0.1	9 0.75	1.50	3.00	0.19	0.75	1.50	3.00	
Input Size	32*32*1	14*14	Conv	volution Cycle Time (us)			149.3	3 37.33	18.67	9.33	842.67	210.67	105.33	3 52.6	
Output Size	14"14"6	5*5*	16 Or	Operating Voltage (V)			0.53	37 0.53	0.537	0.537	0.537	0.537	0.537	0.53	
#Filters	6	16		Power (uW)				37 28.67	28.67	28.67	30.17	30.17	30.17	7 30.1	
#Operations/ convolution*	(25*4*6	(150° 16)°		Throughput (GOPS)			0.00	0.032	0.064	0.128	0.023	0.091	0.183	0.36	
#MAC clock cycles/conv	28	158	*Assu	Energy Efficiency (TOPS/W) *Assuming 1 Multiply-Accu **Scalable to multi-bit weigh				9 1.16 te-Aver	6 2.33 4.65 0.76 3.02 6.04 rage, and 1 Pooling = 2 operations					12.0	
Reference	Tech. (nm)	Circuit Type	Input/ Weight Size	Chip Size (mm²)	Pooling	Lo Vo Supp	c	Capaci- tors or ADCs	Class catio	on Th	Throughput (GOPS)		er Ef	Energy Efficiency (TOPS/W	
ISSCC'18 [1]	65	Analog	6bits/1bit	0.067	No	No		Yes	969	6	10.70		.7	28.10	
ISSCC'18 [2]	65	Analog	8bits	1.440	No	No		Yes	969	6	S-	39		3.125	
ISSCC'16 [3]	65	Digital	16bits	16.000	Yes	No		No	No 98.3%		64	4.51E	+4	1.42	
VLSI'16 [4]	40	Digital	6bits/4bits	2.400	No	Ye	s	No	98%		102 3.9		E+4 2.60		
CICC'17 [5]	65	Time	8bits/3bits	0.24	No	Ye	s	Yes 9		6 0.396		2.05E	+4	0.019	
ISSCC'18 [6]	55	Time	6bits/6bits	3.125	No	Ye	s No		8 2		2.152	690		3.12	
This work (MDL CNN)	40	Time	8bits/	0.124	Yes	Ye	s	No	979	6	0.365	30.1	7	12.08	

Figure 14.4.6: Performance summary for C1+P2 and C3+P4 convolutional + pooling layers; proposed MDL comparison with prior approaches.

ISSCC 2019 PAPER CONTINUATIONS

Figure 14.4.7: Test-chip die micrograph, characterization setup, and measurements summary table.