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Convolutional Neural Networks (CNN) provide superior classification accuracy in
a variety of machine learning applications, such as image/speech/sensor data
processing. However, CNNs require intensive compute and memory resources
making it challenging to employ in energy-constrained edge-computing devices.
Specifically, Multiply-and-Accumulate (MAC) operations consume a significant
portion of the total CNN energy [1].

Various analog compute techniques using charge manipulation schemes and A/D
converters, as well as frequency-modulation-based approaches have been
proposed to realize efficient MAC computations in a CNN accelerator (Fig. 14.4.6)
[1-2, 5-6]. However, finite voltage headroom is required in analog MAC designs,
whereas accurate frequency control is necessary for prior frequency-domain MAC
approaches. This limits the voltage scalability of analog approaches and
performance scalability of prior frequency-domain techniques degrading the MAC
energy efficiency — critical for CNNs used in edge-compute devices. In this paper,
we demonstrate an energy-efficient CNN engine implemented in a 40nm CMOS
(Figs. 14.4.1, 14.4.7) featuring: 1) Bi-directional Memory Delay Lines (MDL)
performing time-domain MAC operations; 2) multi-precision filter weight support
(signed/unsigned 1-8b); 3) 16 filters each supporting 2x2 sub-sampling (max.
pooling) and averaging; 4) all-digital, technology scalable design without requiring
any capacitors, A/D converters, and/or frequency generators/modulators; and 5)
near-threshold voltage operation supporting 16x speed-up with 4 input encoding
modes.

The CNN data flow (Fig. 14.4.1) consists of: 1) training input data using
TensorFlow/Keras software framework; 2) feeding trained filter weights and test
input data to the test-chip using LabVIEW-PXI data acquisition instruments; 3)
performing on-chip MAC, averaging, and pooling operations for the test input
data; and 4) fully connected layers and soft-max computation in software
(TensorFlow). The time-domain MAC computations are realized using the
proposed MDL which accumulates the dot product of a weight bit and the time
encoded input pulse-width (Fig. 14.4.2). It is derived from the concept of a ‘time-
register’ used in high precision time-to-digital converters, which can perform time
addition and time storage using a string of delay cells controlled by an enable
(EN) signal [7]. Each MDL unit comprises two cross-coupled inverter pairs, S1-
S4 switches, and a reset control (RST). The time-encoded dot product of input
(X;) and 1b filter weight (w;) acts as an EN pulse and controls the MDL operating
mode. During the accumulation phase, EN=1 and the MDL acts either as a forward
delay line (for +ve dot product, S1 and S2 are ON) or a backward delay line (for
-ve dot product, S2, S3 and S4 are ON), enabling bi-directional data flow
emulating signed dot products. When EN goes low, the MDL acts as a memory
storage line and retains the MDL state vector using cross-coupled inverters (S1,
S3and S4 are ON). The metastability risk during an EN falling transition is resolved
by the next incoming EN pulse, as the MDL is transformed into a chain of
cascaded delay cells. When the MDL state vector string progresses towards the
either end of the MDL (node A or node E), an up-down counter is triggered, which
translates time-domain dot product accumulation information into digital bits
acting as a time-to-digital converter. If the accumulated dot product pulse-width
exceeds the full-scale MDL delay, an overflow condition is detected, and the
propagating edge is inverted (using S5-S6) and applied at the beginning node A
of MDL (or trailing end node E). Thus, a finite length MDL can be used to perform
long-duration time-domain accumulation using an up-down counter. The
calibration unit consists of additional delay cells which can be added to the MDL
to mitigate delay mismatch in the presence of process variations.

The bi-directional MDL forms the core of the CNN engine implementing 16 filters.
Each filter consists of 4 bi-directional MDLs, a weight shift register, a shared pulse
generator/selector, an up/down counter, a bi-directional barrel shifter, and pooling
comparators (Fig. 14.4.3). 8b input data (X) is represented in the time domain as
a Pulse-Width Modulated (PWM) signal as multiples of input clock period (21).
A pulse generator/selector circuit is designed to generate 0-255¢, PWM signals
using a two-stage approach [1]. As 4 MSBs (X/7-4]) correspond to a maximum
of value of 240 (out of the 255 full-scale value of an 8b input), an MSB_EN signal

is asserted for 2401, duration in the first stage generating T0-T15 output pulses
in increments of 16, duration. In the second step, the MSB_EN signal is de-
asserted and 4 LSBs (X/3-0]) PWM signals are generated as outputs T0-T15. Four
precision modes are implemented to support 1-to-16x speed-up in the input
PWMs by quantizing 4 LSBs. As shown in the pulse generator timing diagram
(Fig. 14.4.3), varying duration T0-T15 pulses are generated based on the precision
mode and concatenated with X[7-4] MSB pulses generated in the first step. The
LSB pulse-width quantization steps are chosen to limit the quantization error to
+0.5*speed-up ratio. As the pulse generator operates continuously in every
MAC_CLK period, pulse gating AND logic is implemented to ensure that only a
single PWM input pulse is applied to the MDL in each dot product computation.
Next, the single PWM input is multiplied with a 1b filter weight (w)) stored in a
25b shift register (for a 5x5 filter size) producing the X;*w; dot product. The bi-
directional MDL then performs signed accumulation, time-to-digital conversion
(20b-up/down counter) and averaging/scaling (20b-bi-directional barrel shifter
performing up to 7b shifts). For multi-bit filter weights, multiple instances of MDLs
with each weight shift register initialized with one bit of the weight vector can be
used. A sub-sampling operation using max pooling across a 2x2 window is
implemented to reduce the convolution layer output data size by 75%. This is
achieved by 4 concurrent MDL operations and feeding the MDL counter outputs
to 8b MAX comparators. The pooled output from each filter is stored off-chip and
reused as the input to the next convolution layer.

Figure 14.4.4 shows oscilloscope-captured waveforms from the 40nm CMOS test-
chip (Fig. 14.4.7) confirming MDL functionality with delay phase and storage
phase for different MDL lengths. The pulse generator and the pulse-gating logic
functionality is verified with the correct toggling of MSB_EN, T15, T8, T4 outputs
and the pulse-gating control signals. 1-to-16x speed-up in the PWM input
representation is validated with multiple precision modes for a test-case input of
214. The measured classification accuracy (on 100 images) for LeNet-5 using the
MINIST dataset is ~2% lower relative to software counterpart (Fig. 14.4.5). 16x
speed-up mode resulted in lower accuracy because of input quantization and
increased sensitivity of MDL residue. Simulation results using the proposed MDL-
based CNN for AlexNet with 2-class ImageNet dataset (cats vs. dogs) with signed
8b weights, shows 13% lower classification accuracy compared to software (16b
floating-point weights). The CNN engine is operable down to 375mV with more
than 90% MNIST classification accuracy. For the LeNet-5 case, both C1- and C3-
layer throughput increases with the higher speed-up mode and with the increasing
supply voltage achieving a peak throughput of 0.38 (0.128) GOPS for the C3 (C1)
layer at 585mV. The energy efficiency peaks with increasing supply voltage scaling
and reaches a maximum of 13.46 (4.61) TOPS/W for the C3 (C1) layer at 496mV.
Figure 14.4.6 tabulates LeNet-5 parameters, test-chip characterization results (at
optimal voltage of 537mV), and compares with earlier approaches [1-6].
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Figure 14.4.7: Test-chip die micrograph, characterization setup, and

measurements summary table.

accuracy

Technology |40nm CMOS
Area 0.124mm?
# standard cells| ~40,000
# of filters 16
supported
Data type Signed/
supported unsigned
Voltage Range | 0.375-1.1V
I;\pul clock 25MHz
requency
MAC clock
frequency 0.2-3.1MHz
Energy Efficie- 12.08
ncy @537mV TOPS/W
Throughput 0.365
@537mV GOPS
Power @537mV| 30.17uW
LeNet-5 MNIST
classification 97%
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