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Abstract— In this article, we demonstrate an energy efficient
convolutional neural network (CNN) engine by performing
multiply-and-accumulate (MAC) operations in the time domain.
The multi-bit inputs are compactly represented as a single pulse
width encoded input. This translates into reduced switching
capacitance (CDYN), compared to baseline digital implementa-
tion, and can enable low power neural network computing in
an edge device. The time-domain CNN engine employs a novel
bi-directional memory delay line (MDL) unit to perform signed
accumulation of input and weight products. The proposed MDL
design leverages standard digital circuits and does not require
any capacitors and complex analog-to-digital converters (ADCs)
to realize the convolution operation, thereby enabling easy scaling
across the process technology nodes. Four speed-up modes and
a configurable MDL length are supported to address through-
put versus accuracy trade-off of the time-domain computing
approach. Delay calibration units have been accommodated to
mitigate the process variation induced delay mismatch among
concurrently operating MDL units. The proposed time-domain
MDL design implements a LeNet-5 CNN engine in a com-
mercial 40-nm CMOS process achieving an energy efficiency
of 12.08 TOPS/W, a throughput of 0.365 GOPS at 537 mV in the
16× speed-up mode. 40-nm CMOS test-chip measurements over
100 MNIST images show 97% classification accuracy. Simulation
results over the entire 10 000 MNIST validation dataset images
taking into account the circuit non-ideal effects of the MDL-based
time-domain approach show a classification accuracy of 98.42%.
The test-chip is operational down to the near-threshold voltage
(up to 375 mV) while maintaining the classification accuracy
over 90% in the 1× speed-up mode. Furthermore, two methods
of scaling MDLs to multi-bit weights are proposed. Simulation
results for 1000-class AlexNet over 50 000 ImageNet validation
dataset images show classification accuracy loss within 1% when
compared with software implementation. The proposed MDL
based time-domain approach performing 1-bit/8-bit weight and
8-bit input MAC operations when compared with the correspond-
ing baseline digital implementations shows 2.09×-2.32× higher
energy efficiency and 2.22×-3.45× smaller area.
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I. INTRODUCTION

W ITH the rapid progress in machine learning (ML)
algorithms coupled with performance improvements in

computing resources, there has been an unprecedented increase
in the deployment of cognitive devices in various applica-
tions such as image classification, speech recognition, object
localization, facial recognition, and so on [1]–[3] (see Fig. 1).
In particular, convolutional neural networks (CNNs), a class
of artificial neural network are extensively used for many such
ML applications, due to their state-of-the-art classification
accuracy at a much lesser complexity compared to their
fully connected network (FCN) counterpart [4], [5]. However,
the CNN inference process requires intensive compute and
memory resources making it challenging to implement in
energy constrained edge devices. For example, the widely
known CNNs such as AlexNet [3] and VGG [6] comprise
60 million and 138 million filter weights, respectively, which
are used to compute 724 million and ≈15.5 billion multiply-
and-accumulate (MAC) operations [4]. Such an enormous
number of MAC operations consume a significant fraction of
a CNN accelerator’s total power budget [7], [8]. Thus, making
MAC operation energy efficient is extremely important.

In this article, a time-domain MAC computing approach
is proposed by leveraging the concept of a time accumu-
lator. The key attributes of the proposed design include:
1) bi-directional memory delay lines (MDLs) performing
time-domain signed MAC operations; 2) multi-precision fil-
ter weight support (signed/unsigned 1–8 bits); 3) 16 filters
each supporting 2 × 2 sub-sampling (maximum pooling) and
averaging; 4) all-digital, technology scalable design without
requiring any capacitors, analog-to-digital converters (ADCs),
and/or frequency generators/modulators; 5) near threshold
voltage operation; and 6) 4 speed-up modes supporting 1–16×
throughput improvement by quantizing 4 LSBs of input
activation. An energy efficient CNN engine implemented
in a commercial 40-nm CMOS process (see Fig. 17) is
demonstrated.

This article is organized as follows. Section II describes the
background of this work and discusses the basics of CNNs and
motivation for time-domain computation. Section III presents
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Fig. 1. Edge computation using CNN.

Fig. 2. LeNet-5 CNN [9] architecture.

the concept of proposed time-domain MAC computation using
time accumulators, circuit design, architecture, and imple-
mentation details. Various design trade-offs along with their
mitigation strategies are presented in Section IV. Section V
presents the 40-nm CMOS test-chip measurement results.
A case-study is also presented in this section comparing the
energy efficiency of the proposed time-domain circuit with
the baseline digital approach. Section VI concludes this article
with the key findings.

II. BACKGROUND

A. Convolutional Neural Network

A generic CNN consists of convolution layers, pooling
layers, activation layers, and FCN layers. The convolution
layer is the core building block of a typical CNN. Each
convolution layer implements multiple trainable filters which
are used to extract feature-like edges, gradients, colors, etc.,
in an image. Fig. 2 shows the LeNet-5 CNN [9] architecture
which can be used to classify the hand-written digits (MNIST
dataset [9]). During the training phase, the weights of all the
filters for each layer are determined using a training algorithm
(such as back-propagation [10], [11]) on the training MNIST
dataset. Each filter is convolved across the width and the height
of input activation, computing the dot product between the
weights of the filter and the input activation, producing a 2-D
output activation map for a given filter. As a result, the neural
network learns to filter weights that get activated when specific
types of features are detected at specific spatial positions in
the input activation. During the inference phase, when the test
data are presented to the CNN layers, key features (e.g., edges,
gradients, color changes, orientation in a handwritten digits
MNIST dataset, etc.) in the input activation are extracted at
each layer. The major operation in CNNs is the MAC operation
given by (1), which is computed by performing a dot product
of a weight matrix and an input image matrix [4]. The MAC

Fig. 3. Representation of 8-bit inputs in different signal domains.

value is averaged out to compute the multiply-accumulate-
average (MAV) value [given by (2)], which ensures that the
output value does not exceed the range

MAC =
N∑

i=1

(Xi × wi ) (1)

MAV = 1

N

N∑

i=1

(Xi × wi ) (2)

where N is the number of products per MAC, Xi is the
textitith input pixel value, and wi is the ith weight value.

Typically, an activation layer is used between two con-
secutive convolutional, pooling, or fully connected layers.
The purpose of this layer is to introduce nonlinearity into a
neural network. The rectified linear unit (ReLU) is the most
commonly used activation layer which returns 0 if it receives
any negative input and returns back the same value if it is
positive. Pooling (sub-sampling) is performed to reduce the
data size feeding into the next layer [12], [13]. Max-pooling
is typically used for the sub-sampling operation which chooses
the maximum MAC value across a small output window
(e.g., 2 × 2). This can reduce the memory footprint to store
intermediate layer outputs by 75%, as the outputs of the
pooling layers (P2 or P4) are stored instead of convolution
layers (C1 or C3) [12]. Once the data size of input feature
maps is reduced after passing through convolution and pooling
layers, FCN layers are used. A typical FCN layer comprises
a finite number of feature maps, each of size 1 × 1. Each of
these feature maps is connected to all the feature maps of the
previous layer. In LeNet-5 CNN, a fully connected layer (FC1)
comprises 120 feature maps, each of which is connected to all
the 400 nodes of the fourth layer (P4). Similarly, the last layer
of LeNet-5 CNN is a fully connected layer (FC2) comprising
10 1 × 1 feature maps, each of which is connected to all
120 feature maps of FC1.

B. Motivation for Time-Domain Computing

As MAC operations constitute a significant portion of
the total CNN power budget, it is worthwhile to consider
various methods for compact data representation to improve
the energy efficiency (see Fig. 3). The data in the digital
domain are represented as a multi-bit digital vector [14], [15]
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Fig. 4. Prior energy efficient ML accelerators in (a)–(c) analog volt-
age [16]–[18], (d) digital [4], and (e) and (f) time and frequency
domains [19], [20].

[see Fig. 4(d)]. This form of data representation is imple-
mented using higher number of nets, translating into high
dynamic switching capacitance (CDYN), and consequently
higher power and area. A detailed case-study on the CDYN
comparison is presented in Section V-F.

In the analog domain approach, data are represented as a
continuous varying voltage signal. Various design techniques
using charge manipulation schemes and ADCs have been pro-
posed to realize efficient MAC computations in a CNN accel-
erator. Analog approaches [16]–[18] compute MAC operation
in the analog voltage domain using a static random access
memory (SRAM) array, capacitors, and data converters [ADCs
and digital-to-analog converters (DACs)]. In these approaches,
input pixel data are either encoded as the pulse width modu-
lated (PWM) signal [16] or pulse amplitude modulated (PAM)
[17] signal, and applied on the wordline [see Fig. 4(a) and
(b)]. The MAC operation is performed by summing up the
read current of simultaneously accessed bitcells. The bitline
voltage in this case represents the sum of products (SRAM bit
weight × wordline input pixel). The bitline current summation
approach is susceptible to: 1) process variations in the nano-
scale SRAM bitcell transistors; 2) functional failures due to
bit-flips as a result of long duration wordline activations and/or
large bitline voltage differential; and 3) the possibility of
corrupting a weak bit by shorting it to a strong bit storing
opposite value due to concurrent wordline activations. In the
design approach discussed in [18], the input pixel digital bit-
stream is first converted into an analog voltage using DAC,
and then used to precharge the bitline to compute the MAC
operation [see Fig. 4(c)] using a ten-transistor SRAM bitcell.
This approach mitigates the process variation induced bitcell
current variation as well as bit-flip scenarios at the expense of
a larger bitcell area. However, the finite voltage headroom and
the sensitivity of circuit parameters to slight change in analog
domain signals limit the voltage scalability, thereby degrading
the MAC accuracy.

In the frequency domain approach, data are represented
as signals with varying frequency using ring oscillators or
RC loaded circuits. In [19] and [20], MAC operations are
computed in the frequency domain using a digital controlled
oscillator (DCO) with either resistor or capacitor loading.

Various nodes of a ring oscillator are loaded with different
capacitor banks to alter the RC time constant of the oscillator
[see Fig. 4(e) and (f)]. The capacitor value is controlled
by the SRAM bitcells storing the weight. This approach
makes the design sensitive to parasitic diffusion capacitance
of the DCO. The added R and C components need to be
larger than the diffusion capacitance to linearly modulate the
ring oscillator frequency in response to the weight change.
In addition, adding a capacitor at every node of a continuously
running ring oscillator increases the total CDYN, and con-
sequently the power dissipation. Furthermore, implementing
such binary weighted capacitor banks can occupy significant
area, thereby degrading the area efficiency. In [20], the MAC
operation is performed in the frequency domain by counting
the number of binary weighted frequency pulses (representing
multi-bit weights) in a given PWM input signal. Thus, large
range frequency generators/modulators limit the performance
scalability of such frequency domain approaches. Moreover,
larger magnitude inputs would result in higher toggle activity
incurring higher switching power.

In the time-domain computing approach, data can be rep-
resented as PWM inputs or pulse position modulated inputs
or a combination of thereof. In [21], the time-domain analog-
to-digital mixed-signal processing (TDAMS) approach is pro-
posed to implement time-domain binary neural networks.
TDAMS uses the time difference in the rising edges to
generate variable delays in order to realize the MAC operation
of 1-bit input activation and weight value. This approach
further employs fully spatially unrolled architecture where
every memory has its dedicated processing element (PE) to
increase its energy efficiency. A time-mode adder circuit is
proposed in [22] to realize a trans-linear principle in time.
The exponential relationship between the voltage and time in
an RC circuit is leveraged to implement time adders.

In the proposed work, a multi-bit digital bit-stream is
encoded as a single PWM signal with its pulse width repre-
senting the magnitude of the input data. This results in multi-
bit data to single data-signal compaction resulting in reduced
CDYN compared to the conventional digital data representa-
tion. Furthermore, the time-domain computing approach can
leverage standard digital gates with full rail-to-rail voltage
swing outputs. This mitigates the reduced voltage headroom
challenges encountered in an analog voltage domain approach
enabling an ultra-low voltage operation. Additionally, the time-
domain approach does not require multiple clock sources
unlike frequency domain approaches which result in reduced
CDYN. Unlike the frequency domain, the toggle activity does
not depend on the input magnitude in the proposed time-
domain approach. Thus, although the time-domain approach
results in slower throughput due to its sequential operation,
it can be a promising approach for realizing MAC computa-
tions, especially in energy constrained edge devices.

III. PROPOSED TIME-DOMAIN CNN ENGINE DESIGN

A. Concept of Time-Domain MAC Computation

The concept of time domain MAC computation using PWM
inputs is illustrated in Fig. 5. In this example, the MAC
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Fig. 5. Concept of time-domain MAC operation. (a) Dot product operation
of the input pixel matrix and the weight matrix. (b) Time-domain MAC circuit
concept. (c) MAC operation in the digital domain. (d) MAC operation in the
time domain.

operation is performed by adding the products of a
3 × 3 weight matrix and an input pixel matrix [see
Fig. 5(a) and (c)]. Binary weights [23]–[25] are used to sim-
plify the discussion. However, the time-domain approach is
scalable to multi-bit weight values. An input pixel value
is encoded into a PWM signal using a digital-to-time con-
verter (DTC). Then, the input PWM signal is multiplied by
the corresponding weight bit using an AND gate. This time-
encoded product signal is then passed onto the time accumula-
tor circuit [see Fig. 5(b)] to compute the MAC operation in the
time domain. Sequentially, all input pixel values are encoded
as PWM signals, and its product with respective weight bit is
loaded on the time accumulator circuit. Thus, all time-encoded
products are applied onto the time accumulator circuit, and
the width of these timing pulses gets accumulated to realize
the MAC operation in the time domain [see Fig. 5(d)].
The time accumulator circuit will be discussed in detail in
Section III-D4.

B. Architecture Overview

The proposed time-domain CNN architecture performing
the MAC operation of 8-bit inputs with 1-bit weights is shown
in Fig. 6. First, 16 PWM signals (generated using the pulse
generator module) are selected based on the 8-bit input image
pixel value. The pulse selector acts as a DTC, converting the
digital image pixel input into a time-encoded PWM signal. The
higher the pixel value, the larger the pulse width of the time-
encoded input. The generated PWM signal is passed through
a pulse gating logic to avoid repetitive products of same input
being added to the MAC output. This ensures that the time-
encoded input pixel signal is utilized only once in the time-
domain MAC computation. This gated PWM signal is then
multiplied by the binary weight (0 or 1 or −1) using an AND

gate. Multiplication by weight bit “0” results in no toggling at
the AND output, while multiplying by weight bit “±1” results
in PWM output at the AND gate which is the same as the input
PWM signal. The weight bits are stored in the weight register,
which is implemented as a cyclic shift register. The parallel-in

Fig. 6. Architecture of the proposed time-domain-based CNN engine.

and serial-out shift register is used to perform multiplication
of the input pixel value and weight. The time-encoded product
signal is then added using the proposed bi-directional MDL
to perform the signed addition of the products for each MAC
operation. The operation of the proposed MDL performing
time-domain accumulation is discussed in detail in the next
section. A 20-bit positive edge triggered up-down counter is
followed by the MDL to convert the time-encoded MAC signal
into digital value. It acts as a time-to-digital converter (TDC)
for performing post-processing in the digital domain. This
signal is right-/left-shifted using a 20-bit bi-directional bar-
rel shifter to perform scaling and averaging after a MAC
operation to compute the MAV output. The shift operation
correctly scales the MAC output value before feeding it as an
input to the next convolution layer. Once the shifter output
value from four MDLs for each filter is obtained, the max-
pooling operation (2 × 2 window) [12], [13] is performed
using three 8-bit comparators. The pooled output from each
filter is stored off-chip and reused as the input to the next
convolution layer.

C. Data Flow Overview

Sixteen filters are implemented on-chip, where each fil-
ter block comprises 4 MAC blocks to perform signed time
accumulation and 2 × 2 max-pooling. Each filter comprises
a 25-bit weight register to store weights. In the C3 layer,
5 × 5 1-bit weights of each channel are stored in the weight
register, and this process is repeated six times to perform
the MAC operation. Four input pixel values encoded in the
time domain are applied to these 16 filters using four pulse
selector modules and a shared pulse generator module. The
input activation and weight values (for all the channels) are
stored off-chip and applied to the test-chip using a scan chain.
The output activations (computed MAV values after pooling)
from the scan out port of the scan chain are stored off-
chip using the National Instruments PXIe system. Different
operation modes (states) of the CNN engine such as the reset
state, weight loading state, MAC computation state, shifting
state, and comparison state are triggered sequentially by the
top-level control logic depending upon the operating phase of
the test-chip.

D. Circuit Description

1) Pulse Generator and Pulse Selector Modules: The pulse
generation and selection methodology is adapted from [16].
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Fig. 7. (a) PWM signals generated by the pulse generator module. (b) Pulse
selector circuit (adapted from [16]).

Sixteen free-running PWM signals (T0–T15) are generated
in a pulse generator module such that the pulse width of
each signal increments by 17 × to and varies in the range
of 0 × to to 255 × to, as shown in Fig. 7(a). Here, to represents
the minimum possible pulse width and equals half period of
input clock (e.g., for input clock frequency of 25 MHz, to
equals 0.5×40 ns = 20 ns). These pulses are generated in two
phases: the MSB phase and the LSB phase. In the MSB phase,
the pulse width is incremented by 16 × to, whereas in the LSB
phase, it gets incremented by to. Thus, 256 × to or 128 input
clock cycles (equals 1 MAC_CLK cycle) are consumed to
generate these 16 PWM signals. To avoid overlapping of
PWM signals between consecutive MAC_CLK clock cycles,
an intentional delay of to is added at the start of each PWM
signal (T 0–T 15). The input pixel value is then time-encoded
using any of these 16 PWM signals in the MSB and LSB
phases. 4 MSB bits of the input-pixel value (X[7:4]) select one
of the 16 PWM signals for 240 × to duration in the MSB phase
(when MSB_EN is held high) and 4 LSBs (X[3:0]) select one
of the PWM signals in the remaining 15 × to duration in the
LSB phase (when MSB_EN is held low). The selected PWM
signals in both MSB and LSB phases are concatenated in the
pulse selector module using one 16:1 multiplexer (MUX) and
four 2:1 MUXes to time-encode the input pixel value X[7:0]
as a free-running PWM signal (PSout), as shown in Fig. 7(b).
The pulse generation approach is not based on the logic path
delay difference which is susceptible to pulse shrinking and
expansion due to process variations. The proposed approach
generates different PWMs based on the synchronous input
clock operation. Thus, no shrinking and expansion effects are
expected in the pulse generation circuit.

2) Pulse Gating Logic: As the pulse generator module
operates continuously in every MAC_CLK period, a pulse
gating logic is implemented to ensure that the product of input
PWM pulse with the corresponding weight bit is applied only
once to the MDL.

3) Input/Weight Product Computation: The PWM encoded
pixel value is multiplied by the weight value using an AND

gate. The weights are stored in a weight register, which is

Fig. 8. (a) Time register circuit. (b) Gated delay cell. (c) Timing
diagram [26].

Fig. 9. Proposed bi-directional MDL performing time-domain MAC.

implemented as a 25-bit cyclic shift register. In the weight
load phase, a shifter is initialized with filter weights for the
convolution layer C1 or C3. In the MAC computation phase,
each weight bit is serially shifted out to perform multiplication
of the weight bit and the time-encoded input PWM signal
using an AND gate.

4) Time Accumulation Using Bi-Directional Memory Delay
Line: The proposed MDL design is derived from the concept
of time-register, which is used in high precision TDC [26].
The property of time addition of two different input pulses
is utilized to perform the accumulation operation in a MAC
computation. The time-registers can perform the time addition
and time storage using a string of gated delay cells, called
the gated delay-line (GDL) which are controlled by an enable
(EN) signal, as shown in Fig. 8(a) and (b) [26]. The phase
increases when the EN pulse is high and held constant when
EN is low [see Fig. 8(c)]. Hence, when an input pulse is
received, the phase of the GDL is advanced by the amount
of input pulse width and held when the input pulse becomes
low. When the input pulse edge reaches the end of the GDL
[phase equals the total full scale (TFS) value], a Full signal
is asserted. The capacity of time-storage can be enlarged by
increasing the number of gated delay cells. However, if EN is
held low for a long duration, the gated delay cells can attain an
arbitrary value due to tri-stated outputs. Thus, the time-register
operation may pose a metastability risk when this GDL is used
as a time accumulator during a MAC operation, which may
often have zero product due to zero weight bit.

a) Bi-directional MDL: The time domain MAC compu-
tations are realized using the proposed Bi-directional MDL,
which accumulates the product of weight bit and the time-
encoded input pulse width (see Fig. 9). The MDL comprises
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Fig. 10. Proposed MDL unit acting as a delay unit and a memory unit.

a string of delay units (MDL units) to perform signed time
accumulation. The two ends of MDL (nodes A and E) are
connected through an inverter. Each MDL unit comprises
two cross-coupled inverter pairs, S1–S3 switches, and a reset
logic (see Fig. 10). Each MDL unit is enabled by the EN
signal. The product of time-encoded input pixel (Xi ) and
1-bit weight (wi ) acts as a EN pulse and controls the MDL
operating mode. During the time-accumulation phase, EN
is held high and MDL acts either as a forward delay line
(for positive products, S1 and S2 are ON) or a backward
delay line (for negative products, S2 and S3 are ON), thus
enabling bi-directional data flow emulating signed products.
When EN becomes low, the MDL acts as a memory storage
line and retains the MDL state vector using cross-coupled
inverters (S1 and S3 are ON). Thus, the MDL unit can be
realized as a memory or delay unit based on S1–S3 switch
configurations (see Table I). The metastability risk during EN
falling transition is resolved by the next incoming EN pulse,
as the MDL is transformed into a chain of cascaded delay
cells. In the case of positive weights (SIGN = 1), MDL state
vector propagation takes place in the forward direction with
switch S4 being turned on. However, in the case of negative
weights (SIGN = 0), MDL state vector propagation takes place
in the backward direction with switch S5 being turned on.
An up-down counter is triggered (positive edge) whenever the
MDL state vector string progresses towards either end of MDL
(node A or node E), which translates time-domain product
accumulation information into digital bits acting as a TDC.
If the accumulated product pulse width exceeds the MDL
full-length delay value, an overflow condition is detected,
and the propagating edge is inverted (using S4 and S5, see
Fig. 9) and applied at the beginning of MDL (node A). Thus,
a finite length MDL can be used to perform long duration
time domain accumulation using an up-down counter. The
calibration unit consists of additional MDL units which can
be added to the original MDL to mitigate the delay mismatch
among concurrently running MDLs in the presence of process
and temperature variations.

b) MDL timing diagram: Fig. 11 shows the MDL timing
diagram to illustrate the MDL operation in more detail.
Assuming that the initial state of MDL outputs is all “0s,” and
node A is held high (logic value is “1”). The first time-encoded
product is loaded onto MDL and the logic value “1” at A is
propagated through MDL units for the time duration when EN

TABLE I

SWITCH CONFIGURATIONS OF MDL, CALIBRATION
UNIT, AND TDC

Fig. 11. Timing diagram of the proposed bi-directional MDL.

is held high. When EN becomes low, the logic value “1” might
not get latched properly in the latest MDL unit propagating
the EN pulse, thereby arousing a metastability issue. Since
the MDL state vector is represented as a string of 1s followed
by a string of 0s or vice versa, the metastability risk latching
the correct value is at the transition of 1s string to 0s string.
Thus, MDL may represent the input time-encoded product,
which is off by 1 MDL unit delay. In the next MAC_CLK
period, the second time-encoded product is applied by holding
EN high and the state vector of “1s” advances through MDL
for the time duration when EN is held high. The metastability
risk (if any) from previous product accumulation gets resolved
when this EN is applied, since MDL now acts as a delay
line and the metastable node gets driven by the previous
MDL unit. In the next MAC_CLK cycle, the third product of
the time-encoded input PWM signal and the negative weight
is applied. As observed in Fig. 11, state-vector propagation
occurs in the reverse (backward) direction, i.e., from right to
left. Once the state vector of “1s,” reaches the end of MDL
(node E), the 0−→1 transition occurs and the counter value
is incremented. The overflow value is loaded back on MDL
through an inverter and a string of “0s” starts propagating
through MDL. Thus, the 0−→1 transition is detected at either
end of MDL (node A or node E) when a string of “0s”
followed by a string of “1s” is propagated. Thus, a finite MDL
length along with an up-down counter can be used to perform
signed time accumulation of long duration.

c) MDL design considerations for NMOS/PMOS drive
strengths’ mismatch and slew rate: The mismatch between the
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drive strengths of NMOS and PMOS devices in the MDL units
does not affect the accumulation operation. The counter value
gets incremented whenever the 0 −→ 1 transition is observed
at either end of MDL (node A or node E). 0 −→ 1 transition
occurs at either end of MDL when a string of 0s followed by 1s
is propagated through MDL. Thus, the MDL full-length delay
equals the sum of fall delay (when 0s propagate through MDL)
and rise delay (when 1s propagate through MDL) for all the
MDL units. Since the counter gets incremented/decremented
by 1 when the EN of pulse width equal to 1 MDL full-length
delay (sum of equal number of rise and fall delays for all
MDL units) is propagated, the relative difference between the
rise and fall delays of individual MDL units does not affect
the MDL accuracy.

All the MDL units have a fanout of 1. The layout of
MDL is done using the commercial place and route (P&R)
engineering design automation (EDA) tools to optimize for
the timing and meet the slew rate specifications. All the
MDL units are placed close to each other to optimize for the
performance-power-area (PPA) metric. The optimally designed
MDL block is instantiated (replicated) four times, in a filter
for performing 2 × 2 max-pooling. The proposed time-domain
CNN engine instantiates 16 such filters. Thus, all the MDLs
have identical placement and routing. Thus, any potential slew
rate mismatch due to random MDL unit cell placement and
routing is mitigated by using identically designed and placed
individual MDL blocks.

5) Time-to-Digital Converter: A 20-bit positive edge trig-
gered, up-down counter is used to convert the time-encoded
MAC value into the digital domain. The counter value is incre-
mented when the 0−→1 transition occurs at node E (if switch
S6 is turned on and SIGN = 1) and is decremented when
the 0−→1 transition occurs at node A (if switch S7 is turned
on and SIGN = 0). The configuration of switches S6 and
S7 is determined based on START_POS and START_NEG
signal values (see Table I). Whenever the 0−→1 transition
occurs at node E while accumulating negative products (SIGN
= 0), START_NEG is set, whereas START_POS is reset.
Similarly, the START_NEG signal is reset and the START_POS
signal is set when the 0−→1 transition occurs at node E
while accumulating positive products (SIGN = 1), as shown
in Fig. 9. If the 0−→1 transition occurs at node E while
accumulating positive products (SIGN = 1) and START_NEG
is high, switch S6 remains turned off and the counter value is
not incremented, since the negative residue loaded on MDL
from the previous stage has not been fully flushed. Thus,
the control logic determining the configuration of S6 and
S7 switches ensures that the counter value is incremented and
decremented correctly to compute signed MAC operation in
the time domain.

6) Scaling and MAV Computation Using Bi-Directional
Barrel Shifter: The counter output value is fed to the 20-bit
bi-directional barrel shifter (supporting the left shift and
the right shift up to 7 bits) to compute MAV and scaling
operations.

The counter output value represents how many times the
MDL full-length delay has been traversed. It does not repre-
sent the absolute MAC output value since the time-encoded

input-pixel value and the counter output value are represented
in different time scales. Thus, a scaling operation needs to be
performed to restore the correct MAC value by incorporating
the scaling factor. This scaling operation ensures that the
correct MAC outputs in terms of counter values are applied
as inputs to the next convolution layer. The EN pulse width
of a unit input-pixel value is to, where 2 × to is the input
clock period (as discussed in Section III-D1, Fig. 7). This pulse
width for a unit pixel-value can be controlled by varying the
input clock frequency. The full-length delay of MDL, which
is the delay between consecutive 0−→1 transitions (when a
string of “0s” followed by a string of “1s” propagates through
MDL), is M × (UnitRise_Delay + UnitFall_Delay), where
M is the number of MDL units, UnitRise_Delay is the rise
propagation delay, and UnitFall_Delay is the fall propagation
delay of each MDL unit. This MDL full-length delay value
can be controlled by varying the supply voltage or number of
MDL units. The EN pulse width to increment counter by 1 is
equal to the MDL full-length delay value. Thus, the scaling
factor (multiple of 2n by controlling the input clock frequency
and the supply voltage) needs to be accounted to scale back
the counter value, as given by (3). The counter output needs to
be multiplied by this scaling factor to reflect the actual MAC
output. Typically, to is less than the MDL full-length delay
value. Thus, the shifter performs left shifts (multiplies) by n
bits to restore the MAC output.

To perform the averaging operation, the right shift by
appropriate number of bits is performed. It is worth mentioning
that the averaging factor in the MAV computation operation is
a multiple of 2m , such that 2m ≥ N , where N is the number
of products in a MAC. For example, in the C1 layer N = 25,
whereas averaging is performed by 32 by shifting right the
scaled counter output from the above step by 5 bits. The impact
of different averaging factors (25 versus 32) is mitigated by
training the CNN using 2m as the averaging factor. This step
avoids any loss in the classification accuracy. Thus, the left
shift and the right shift by appropriate number of bits are
performed in the shifter to perform scaling and averaging
operations, respectively

ScalingFactor

= EN pulse width of a unit counter value

EN pulse width of a unit input pixel value

= M × (UnitRise_Delay + UnitFall_Delay)

to
= 2n. (3)

7) Pooling Using 8-bit Comparators: The sub-sampling
operation using max-pooling across the 2 × 2 window is
implemented to reduce the intermediate layer output memory
footprint by 75%. This is achieved by four concurrent MDL
operations and feeding the MDL shifter outputs to three 8-bit
comparators (see Fig. 6). It should be noted that the max-
pooling operation is not implemented in the time-domain since
it requires MDL of very long length to accumulate pulse
widths for all the products of a given MAC. Pooling in time-
domain requires ORing of four long MDL state vectors to
find the largest MDL state vector. Then, the largest MDL
state vector needs to be converted back into the digital
domain using finite length MDL and counter. Thus, the area
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Fig. 12. (a) Quantization of input PWM signals supporting 1–16× speed-up.
(b) Demonstration of 1×, 8×, and 16× speed-up modes to time-encode the
input pixel value of 214.

overhead of implementing max-pooling in the time domain
would be very high. In the proposed work, MDL of finite
length is deployed by making use of counter which converts
the partially computed time-domain MAC value to the digital
domain (as discussed in Section III-D4b). The pooled output
from each filter is stored off-chip and reused as the input to
the next convolution layer.

IV. DESIGN TRADE-OFFS AND MITIGATION STRATEGIES

A. Throughput Improvement Versus Input Quantization

One of the main trade-offs of the time-domain-based MAC
computation approach is the low throughput. For a n-bit input
pixel value, 2n−1 input clock cycles are required to time-
encode the input pixel value and perform its product with
a weight bit. For example, for a 16-bit input pixel value,
MAC_CLK period = 32768 × (2 × to), which would require
a longer duration to perform accumulation in the time domain.
Hence, the throughput for larger bit-width inputs would be
very small in the time-domain approach. To address the low
throughput issue associated with the proposed time-domain
approach, four speed-up modes are implemented to support
1–16× throughput improvement by quantizing 4-LSBs in the
PWM signal. The varying pulse width pulses (T0–T15) are
generated based on the speed-up mode in the LSB phase
and concatenated with X[7:4] MSB pulses generated in the

Fig. 13. (a) Throughput versus quantization error. (b) Linearity (pulse width
versus input activation value) for 1–16× speed-up modes.

Fig. 14. Calibration unit circuit to mitigate process variations.

MSB phase [see Fig. 12(a)]. Thus, the speed-up mode results
in 1–16× throughput improvement to time-encode the input
pixel value, as shown in Fig. 12(a). With a higher speed-
up mode, the input clock period represents a higher input
magnitude. The LSB pulse width quantization steps are chosen
to limit the quantization error to ± 0.5 × speed-up ratio [see
Fig. 13(a)]. With a higher speed-up mode, the quantization
step increases and the linearity between the pulse widths of
time-encoded input and the input activation value decreases
[see Fig. 13(b)].

B. Process Variation Mitigation Using Calibration Unit

To achieve correct max-pooling output due to concurrent
MDL operation, the delay paths in all four MDLs need to be
accurately matched for a given input PWM. However, the full-
length delay value might not be the same in all four MDLs
due to process mismatch or temperature variations. Therefore,
a calibration unit is added to each MDL to offset the delay
variations, which may exist due to process or temperature
variations (see Fig. 14). Due to temperature variations, the full-
length delay value of MDLs might get affected. To mitigate
such delay variations (systematic delay error component)
across all MDLs, the input clock frequency and the supply
voltage can be tuned, to ensure that the equation (3) holds
true for the same value of scaling factor n under temperature
variation. The delay mismatch (random delay error compo-
nent) due to random process variations among all MDLs for
the same input is minimized by appropriately configuring
cal_bit[0:2] and cal_enable signals to add a configurable delay
of 1–7 MDL units.

C. Variable MDL Length for Residue Reduction

In the proposed CNN engine, configurable length MDLs
are implemented to optimize the MDL full-length delay value.
This enables controlling the residual time value in the MDL
depending on the input clock frequency. Each MDL comprises
1–4 MDL blocks, where each MDL block comprises 16 MDL
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Fig. 15. Configurable MDL length (16–64 MDL units) to address accuracy
versus throughput tradeoff.

units (see Fig. 15). A longer MDL results in larger time-
residue, which may lower the classification accuracy of the
CNN engine. The residual time loss in MDL equals the
remainder of total accumulated time/MDL full-length delay.
Thus, a longer MDL length implies higher residual time loss,
which translates into lower classification accuracy. MDL with
a longer length comprises more MDL units. Thus, it leads to
more area and higher leakage power, since leakage for more
number of MDL units is added.

However, longer MDL supports higher number of products
per MAC for the same capacity of counter, as MDL full-
length delay is increased. The dynamic power of counter
decreases since it is incremented or decremented less number
of times due to higher MDL full-length delay. Furthermore,
longer MDL can effectively mitigate the process variations
since the delay mismatch of each MDL unit gets averaged
over a larger number of MDL units, resulting in a consistent
full-length delay value across the MDLs. There is no effect
on the dynamic power of MDL. Thus, by controlling the
MDL length, the residual error can be optimized, so that
classification accuracy loss is restricted to a minimal value
while operating at low power.

D. MDL Half-Length Delay Offset

As discussed in Section III-D4, the initial state of each MDL
unit output node value is held at the logic value “0,” and node
A is held at the logic value “1.” Then, the first positive edge
transition (0−→1) at node E occurs by propagating node A
value “1” for the EN duration until it reaches node E. Thus,
the counter value gets incremented by propagating only a
string of “1s” in the first round, instead of propagating “0s”
followed by “1s.” Thus, the intentional half of MDL full-
length delay value is added upfront. For subsequent counter
increments, the string of 0s followed by string of 1s needs to
reach node E. This ensures that the final residual time value
of the MDL is ± half of the MDL full-length delay value,
instead of 1 full-length delay value.

V. MEASURED RESULTS

A. Measurement Setup and Test-Chip Summary

Fig. 16 shows the overall measurement setup of the test-
chip implemented using commercial 40-nm CMOS process
technology [27]. The test-chip implements the LeNet-5 CNN
architecture and occupies a total area of 0.124 mm2

Fig. 16. (a) Block diagram of the proposed time-domain CNN engine setup.
(b) Laboratory measurement setup.

Fig. 17. Die micrograph and a summary of 40-nm test-chip implementing
the time-domain CNN engine.

(see Fig. 17). The overall CNN inference and training method-
ology consists of: 1) training input data using the Tensor-
Flow/Keras [28] software framework; 2) feeding trained filter
weights and MNIST validation dataset image pixel values to
the test-chip using LabVIEW-PXIe data acquisition instru-
ments [29]; 3) performing on-chip MAC, averaging, and
pooling operations for both C1 and C3 convolution layers;
and 4) FCN layers and soft-max computation in software
(TensorFlow). Due to the absence of on-chip global buffers
(SRAM), the input activations, the weights, and the output
activations (pooled MAV value) are applied/captured using the
scan chain interface for each MAC computation. The National
Instrument PXIe instrument is used to record the scan chain
outputs. Each image is classified as two steps—storing output
activations for layer C1 and for layer C3.

B. Test-Chip Characterization

The experimental demonstration of a 64-unit long MDL
behavior under the delay phase and the memory phase is
shown in Fig. 18(a). Three output node values (after 32 units,
48 units, and 64 units) are observed as shown in the oscil-
loscope capture. These waveforms are phase shifted in time
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Fig. 18. Measured (a) MDL waveforms demonstrating delay and memory
phases, (b) pulse gating logic module waveforms, and (c) PWM signals
generated from a pulse generator module.

Fig. 19. Experimental demonstration of (a) 1×, (b) 4×, (c) 8×, and (d) 16×
speed-up modes.

which confirms the successful operation of the proposed MDL
concept. During the MDL delay phase (when EN is held high),
the state vector on MDL is advanced, thereby resulting in
transitions, whereas the MDL state is held constant during
the memory phase (when EN is low). The pulse gating logic
waveforms are shown in Fig. 18(b), confirming that the time-
encoded input pixel value is used only once in the MAC
computation. The pulse generator module functionality is
verified with the correct toggling of MSB_EN, T15, T8, and
T4 outputs in the 16× speed-up mode, as shown in Fig. 18(c).
1–16× speed-up in PWM input representation is validated
with multiple speed-up modes for a test-case input of 214 (see
Fig. 19). In the 1× speed-up mode, 128 input clock cycles
are used to time-encode the input pixel value of 214 accu-
rately. However, the pixel value of 214 is encoded four times
in 4× speed-up mode for the same number of 128 input clock
cycles, thereby increasing the throughput by 4×, but with a
quantization error of 2. Similarly, 16 and eight cycles of input
clock are required in 8× and 16× speed-up modes to time-
encode the 214-pixel value as 216 and 208, respectively. Thus,
the PWM throughput increases with a higher speed-up mode
at the expense of higher quantization error.

C. Accuracy, Throughput, and Energy Efficiency Results

The classification accuracy is measured for LeNet-5 CNN
over 100 MNIST dataset images. Table II lists key LeNet-
5 network parameters. 8-bit fixed point input pixel values and

Fig. 20. Classification accuracy on LeNet-5 CNN for 4 speed-up modes
using signed/unsigned weights at 537 mV (a) measured over 100 images and
(b) simulated over 10 000 images accounting for MDL non-ideal effects.

TABLE II

PARAMETERS OF LeNeT-5 CONVOLUTION LAYERS C1 AND C3

binary signed/unsigned weights are used in the convolution
layers, whereas 16-bit floating point inputs and weights are
used in the fully connected layer and software implementation.
For signed binary weights (±1), 98% classification accuracy
is obtained in 1–8× speed-up modes, whereas it is degraded
by 1% in 16× speed-up mode [see Fig. 20(a)]. 16× speed-up
mode resulted in lower accuracy because of input quantization
and increased sensitivity of the MDL residue. For unsigned
weights (0 and 1), 1% accuracy drop with respect to the
signed weights case is observed. The measured accuracy
values are within 1-2% of the state-of-the-art 16-bit floating
point software implementation, which confirms the overall
functionality of the proposed MDL based time-domain MAC
computing approach.

The measurements are performed over 100 validation set
MNIST images for signed and unsigned weights in all the
4 speed-up modes. In total, classification accuracy is experi-
mentally measured for 100 × 2 × 4 = 800 images. As men-
tioned in Section V-A, the output activations (pooled MAV
value) are captured for each MAC value from the test-chip
using a scan chain due to the absence of on-chip SRAM. The
National Instrument PXIe instrument is used to interface with
the scan chain resulting in very slow data acquisition from the
test-chip.

To fully validate the effectiveness of the proposed time-
domain approach, LeNet-5 simulations are performed on the
entire 10 000 MNIST validation dataset images taking into
account the non-ideal effects of MDL, shifter, and pulse
generation circuits. The non-ideal effects modeled in the
simulation are: 1) quantization of input activations in different
speed-up modes; 2) addition of half-length delay value as
an offset in MDL; 3) residual time loss in each MAC value
depending upon the MDL full-length delay value; and 4) loss
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Fig. 21. Measured classification accuracy on LeNet-5 CNN over 100 MNIST
dataset test images for 4 speed-up modes and signed weights for the 300–
700-mV range.

Fig. 22. Measured throughput for convolution layers C1 and C3 of LeNet-
5 CNN for different voltages and speed-up modes.

of precision in averaging since it is performed by right shift
operation in the bi-directional shifter. The predicted class
from this simulation model matches with the experimental
results obtained over 100 MNIST images. Fig. 20(b) shows
the classification accuracy results obtained using a simula-
tion model over 10 000 MNIST validation set images in all
the 4 speed-up modes. 98.42% accuracy is obtained in the
16× mode, which is ≈0.5% lower than the state-of-the-art
floating point software accuracy. These results confirm the
overall functionality of the proposed MDL based time-domain
MAC computing approach. Moreover, MDL supports the ultra-
low voltage operation; is functional up to 375 mV with more
than 90% accuracy in the 1× speed-up mode. 97% classifica-
tion accuracy is observed at voltages down until 537 mV in
16× speed-up mode (see Fig. 21). As the supply voltage scales
down and approaches the threshold voltage (VT ), increased
delay variations are observed in the MDL due to: 1) intrinsic
VT variations in the NMOS and PMOS devices of the MDL
unit and 2) variable and degraded input slew rate because of
preceding stage MDL transitions. The increased delay vari-
ations result in variable MDL full-length delay value. Thus,
MAC values are not computed accurately and the classification
accuracy is degraded.

For LeNet-5 CNN, both convolution layers C1 and
C3 measured throughput increases with higher speed-up
mode and with increasing supply voltage, achieving a peak

Fig. 23. Measured energy efficiency for convolution layers C1 and C3 of
LeNet-5 CNN for different voltages and speed-up modes.

TABLE III

PERFORMANCE SUMMARY OF PROPOSED TIME-DOMAIN CNN ENGINE

IMPLEMENTING CONVOLUTION LAYERS C1 AND C3 OF LeNeT-5

throughput of 0.38(0.128) GOPS for the C3(C1) layer at
585 mV (see Fig. 22). The maximum frequency is limited
to 25 MHz due to the test equipment limitation. Thus,
no increase in throughput is observed above 550 mV. The
measured energy efficiency peaks with supply voltage scaling
and reaches a maximum of 13.46(4.61) TOPS/W for C3(C1)
layer at 496 mV (see Fig. 23). With the increase in voltage,
the energy efficiency increases first until 550 mV and then
decreases. This trend is observed since test equipment
supports the maximum input clock frequency of 25 MHz, and
thus power increases while throughput remains constant above
550 mV. Table III summarizes the test-chip performance. For
a supply voltage of 537 mV and an input clock frequency
of 24 MHz, an energy efficiency of 12.08 TOPS/W and a
throughput of 0.365 GOPS for convolution layer C3 are
observed in the 16× speed-up mode.

D. Scalability Analysis for Multi-Bit Weights

In this section, we propose two MDL design approaches to
perform time-domain MAC computations for multi-bit inputs
and multi-bit weights.

1) Approach 1: Using Multiple Independent MDLs: The
time-accumulation of products of the m-bit weight and the
time-encoded input pixel value is performed using m MDLs
(1 for each weight bit). The counter values from these m MDLs
are scaled appropriately (multiplied by powers of 2 depending
upon weight bit position), and then added to compute the
final MAC value, as shown in Fig. 24. The main limitations
of using multiple independent MDLs for computing multi-bit
weight/activation MAC operation are: 1) significant loss in
classification accuracy due to accumulation of residual time
loss across all MDLs and 2) multiple MDLs (m MDLs are
required for a m-bit weight value) and an adder circuit to add
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Fig. 24. Illustration of 8-bit weight and 8-bit input MAC operation using
eight independent MDLs.

Fig. 25. Illustration of 4-bit weight and 8-bit input MAC operation using
MDL with a configurable full-length delay.

the partial sums for each weight bit, thereby increasing the
area and power dissipation.

2) Approach 2: Using Single MDL of Configurable Length:
The limitations associated with multiple MDLs approach
described above can be mitigated by designing a MDL of
configurable full-length delay value, in which MDL units are
dynamically added depending upon the weight-bit position.
The full-length delay value of MDL is scaled by a factor of
2−i , where i is the weight bit position, as shown in Fig. 25.
In this approach, all the products of time-encoded input
activation with MSB weight bit are first applied on the MDL
(minimum MDL length). Then, the MDL length is doubled
(full-length delay is doubled) and products of input activations
with next significant weight bit are applied. This process is
repeated until products with all the weight bits are applied on
MDL. Thus, a single MDL is used to accumulate products
of multi-bit input activations and weights, and the residual
time loss is minimized to improve the classification accuracy.
However, this approach requires a minimum of 2m−1 MDL
units, where m is the bit-width of the weight signal. For
example, a 16-bit weight value would require 32 768 MDL
units, which can consume a large area and high power. Thus,
this approach may pose design challenges to perform MAC
operations for weight values with higher bit-widths. Moreover,
careful design analysis is required to ensure that the MDL
full-length delay value is scaled exactly by powers of 2 in
the presence of process and temperature variations. These
MDL design trade-offs for higher bit-widths inputs/weights
are discussed in Section V-F3.

Fig. 26. Simulated classification accuracy on AlexNet CNN over 1000-class
ImageNet dataset for different speed-up modes operating at 537 mV, 25 oC,
and 25-MHz input clock frequency using (a) 8 independent MDLs (each
64 MDL units long) and (b) a single MDL with configurable length
(1-128 MDL units).

3) Simulation Results on AlexNet CNN: The classification
accuracy of the AlexNet network on the 1000-class Ima-
geNet validation dataset (50 000 images) using the proposed
multi-bit weight time-domain approaches for all the speed-
up modes is evaluated by incorporating the non-ideal effects
of MDL, shifter, and pulse generation circuits. The non-ideal
effects modeled in the simulation are: 1) quantization of input
activations in different speed-up modes; 2) addition of half-
length delay value as an offset for each MDL; 3) residual
time loss in all the MDLs depending upon the MDL full-
length delay value and input clock frequency; and 4) loss
of precision in averaging since it is performed by right shift
operation in the bi-directional shifter. The full-length delay
of MDL is obtained by simulating the MDL at 537 mV
and 25 °C. 8-bit fixed point input and weights are used in
convolution and pooling layers, whereas 16-bit floating point
inputs and weights are used in FCN and soft-max layers.
In approach-1, 8 independent MDLs each 64 MDL units long
are used. ≈10% classification accuracy loss is observed in
16× speed-up mode when compared with the 16-bit floating
point software accuracy [see Fig. 26(a)]. This loss can be
attributed to the fact that residue loss in timing accumulation
occurs for each weight bit and gets added since eight MDLs
are used to compute each MAC value. Moreover, residual time
loss is significantly high for MSB bits of weight vector. For
approach-2 with configurable MDL length, less than 1% clas-
sification accuracy loss is observed using a single MDL with
configurable length (1-128 MDL units) in the 16× mode when
compared with the 16-bit floating point software accuracy [see
Fig. 26(b)], since the residual time loss is minimized in this
approach.

E. Comparison With Prior Approaches

Table IV compares the proposed time-domain approach
with the earlier proposed digital [14], [15], analog [16]–[18],
and frequency domain [19], [20] and time-domain [21]
approaches. The comparison includes different metrics such
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TABLE IV

COMPARISON OF THE PROPOSED TIME-DOMAIN CNN ENGINE WITH PRIOR ENERGY EFFICIENT ML ACCELERATORS

as the technology node, input/weight bit precision, core size,
accuracy, CNN type, dataset on which classification accuracy
is reported, low Vcc operation support, throughput, power,
and energy efficiency. The classification accuracy of 98.42%
(simulated, incorporating circuit non-ideal effects) is achieved
over 10 000 MNIST images using the proposed time-domain
approach in 16× speed-up mode implementing LeNet-5. This
classification accuracy is comparable with the earlier proposed
approaches which also perform only on-chip convolution
and off-chip fully connected layer operations of LeNet-5:
98.3% in [14], 99% over 100 images in [18], and 98.5%
(performing convolution layer C2) in [21]. The proposed
MDL based time-domain design implements 16 filters and
occupies 0.124 mm2 in 40-nm CMOS technology. Unlike
analog domain approaches [16]–[18], the proposed time-
domain approach enables low voltage operation with the MDL
operational down until 375 mV. The energy efficiency of
the earlier proposed works [14]–[21] ranges from 0.019 to
48.20 TOPS/W. It should be noted that the energy efficiency
numbers for earlier approaches as well as for the proposed
MDL based time-domain approach depend upon the com-
plexity of the implemented CNN, number of on-chip filters,
on-chip global buffer (SRAM) capacity, input and weight
bit-widths, operating voltage range, and CMOS technology
node implementation.

F. Case Study: Time Domain Versus Digital Domain MAC

As the time-domain approach utilizes standard digital gates
with sequential MAC computation, it is worthwhile to com-
pare it with a conventional digital implementation performing
sequential partial sum-based MAC computation.

1) Methodology and Design Configurations: A detailed
post-PNR (P&R) analysis is performed to compare the average
net length (post-Route wirelength), CDYN, area, and energy
efficiency of designs performing 1-bit and 8-bit weight MAC
operation in conventional digital and proposed time-domain
approaches. Both digital-domain and time-domain circuits are
synthesized using the Cadence synthesis tool (Genus) and

physically implemented using the Cadence P&R tool (Innovus)
with standard cell utilization around 70% (see Table V). 40-nm
commercial typical design corner libraries (nominal voltage
of 1.1 V) are used in both the design approaches. The designs
in both approaches are routed using metal layers M1–M4.

To perform MAC operation of 8-bit input and 1-bit weight
values in the digital domain, a 15-bit sequential adder is used
along with a 15-bit register to add the partial sum value and
the product of 8-bit input and 1-bit weight [see Fig. 27(a)].
The input pixel values from 0 to 255 are sequentially added to
perform the 1-bit weight MAC operation. The 15-bit adder and
the register are used to ensure no overflow occurs when adding
these 256 values. The MAC operation of the 8-bit input and
8-bit weight values is computed using a 8-bit × 8-bit multi-
plier, 28-bit adder, and 28-bit register in the digital domain
[see Fig. 27(b)]. The input and weight values are selected
randomly and the MAC operation is computed for a filter size
of 3 × 3 × 256 (equals AlexNet convolution layer C3 filter
size). The input and weight values are randomly selected
2304 times, and each product of input and weight value is
added to compute a MAC value. Thus, 28-bit adder/register
sizes are chosen to ensure no overflow occurs in adding
2304 16-bit input/weight product values. In the time-domain
approach, the proposed circuit (16-unit MDL) is used along
with the 15-bit counter, as shown in Fig. 27(c). Two time-
domain approaches are implemented to perform the MAC
operation of 8-bit input and 8-bit weight values. Eight copies
of 16-unit MDL, eight copies of 28-bit counter/shifter (acts
as a counter in the normal mode and a shifter in the shifting
mode), and a single 20-bit adder are used to compute MAC
operation using time-domain approach-1 [see Fig. 27(d)],
whereas the configurable 1–128 unit MDL and 28-bit counter
are used in time-domain approach-2 [see Fig. 27(e)] to com-
pute multi-bit input/weight MAC operation in the time domain.
These multi-bit weight time-domain approaches are discussed
earlier in Section V-D.

2) CDYN, Area, and Energy Efficiency Analysis: Table V
lists the important design metrics for both these approaches
using the same 40-nm CMOS standard digital gates. In the
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TABLE V

AREA, CDYN, AND ENERGY EFFICIENCY COMPARISON OF MAC COMPUTATION IN THE DIGITAL
DOMAIN AND THE PROPOSED TIME-DOMAIN APPROACH

Fig. 27. Illustration of designs performing MAC operation for 8-bit inputs.
(a) 1-bit weight in the digital domain. (b) 8-bit weight in the digital domain.
(c) 1-bit weight in the proposed time domain. (d) 8-bit weight in the
proposed time-domain approach-1. (e) 8-bit weight in the proposed time-
domain approach-2.

proposed time-domain approach, the input pixel value in
the digital domain is converted into a time-domain signal
using the pulse generator and selector modules. This overhead
is taken into consideration while evaluating the net length,
CDYN, area, power, and energy efficiency of the time-domain
approach. It is assumed that 16 filters are implemented to com-
pute MAC operation for 1-bit weight MAC operation (imple-
menting LeNet-5), and 32 filters are implemented to compute
MAC operation for 8-bit inputs and weights (implementing
AlexNet). Each filter comprises four MDLs to compute four
MAC values. Thus, the pulse generation overhead for each
MDL is evaluated by dividing its value by 64 (16 × 4) and 128
(32 × 4) for 1-bit weight and 8-bit weight MAC computation,
respectively.

The proposed time-domain implementations to compute
MAC operation for 1-bit and 8-bit weight values result
in 2.17–3.40× reduction in the number of nets, 2.33–3.50×
reduction in total capacitance, and 2.09–2.34× reduced switch-
ing capacitance when compared with designs implemented in
the digital domain (see Table V). The time-domain design
implementations are compact and results in 2.22–3.45×
smaller area when compared with digital design implemen-
tations, as evident in post-PNR layouts shown in Fig. 28.
Since the time-domain approach operates at the MAC_CLK
frequency which is smaller than the input clock frequency

Fig. 28. Post-PNR floorplan of designs performing MAC operation for 8-
bit inputs. (a) 1-bit weight in the digital domain. (b) 1-bit weight in the
proposed time domain. (c) 8-bit weight in the digital domain. (d) 8-bit weight
in the proposed time-domain approach-1. (e) 8-bit weight in the proposed
time-domain approach-2.

of the digital domain approach, 28-bit adder implementation
in the proposed time-domain approach-1 [see Fig. 28(d)] is
compact than the 28-bit adder implementation in the base-
line digital approach [see Fig. 28(c)]. This translates into
significant (≈2×) area benefit for the proposed time-domain
approach-1 over the digital domain approach.

The vector-based power analysis using the Value Change
Dump (VCD) file [30] (generated from functional simulation)
is performed in the Synopsys primetime (PTPX) tool to
accurately estimate the power in both digital and time-domain
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approaches. For 1-bit weight MAC computation, input pixel
values from 0 to 255 are sequentially applied in both digital-
and time-domain approaches to estimate the power of adding
an 8-bit input-pixel value to the partial sum value. The input
toggle rate (including both rise and fall transitions) varies in
the range of 0.0078-1 for all the input pins (1 for the LSB and
decreases by a factor of 2 for the next significant bit).

For 8-bit weight MAC computation, the input and weight
values are selected randomly and the MAC operation is
computed for a filter size of 3 × 3 × 256 (equals AlexNet
convolution layer C3 filter size). The input and weight values
are randomly selected 2304 times, and each input × weight
product is added sequentially to compute a MAC value. The
average power varies by less than 1% when estimated over
30 runs (each run with different random number genera-
tor seed values), which ensures that the reported average
power in Table V is a good representation of typical power
consumption. The input toggle rate varies in the range of
0.20-0.35 for all the input pins. Using these power values
and the maximum clock frequency supported by these design
configurations, the energy for MAC operation is quantified.
The proposed MDL based time-domain circuits result in
2.09–2.32× better energy efficiency when compared with its
digital design implementations at an iso-voltage (see Table V).

3) MDL Design Limitations for Higher Input/Weight Bit-
Widths: The pulse generation scheme in the proposed
time-domain approach requires 2n−1 input clock cycles to
time-encode a n-bit input pixel value, thereby significantly
degrading the throughput (lower MAC_CLK frequency) for
inputs with higher bit-widths (e.g., 16 or 32 bit). The power
consumption of MDL and TDC scales down appropriately at
lower MAC_CLK frequencies such that the energy efficiency
(Power/Fmax) of MDL remains the same. However, pulse
generation/selection logic power consumption almost remains
the same since the input clock frequency is unchanged. Thus,
the power of pulse generation/selection modules starts dom-
inating the overall time-domain CNN engine power, thereby
reducing the energy efficiency of the proposed time-domain
approach. Moreover, the proposed time-domain approach
using multiple independent MDLs (approach-1) to perform
the MAC operation of weights with higher bit-widths may
result in significant classification accuracy loss, since residual
loss would be accumulated for higher number of weight bits.
Using a single MDL with configurable length (approach-2)
requires 2m−1 MDL units to perform the m-bit weight MAC
operation. Hence, it may lead to a significant increase in
area for higher values of m (e.g., 16 or 32 bit). Thus, better
MDL/pulse generation design solutions need to be devised to
scale the proposed MDL based time-domain approach to larger
bit-width inputs and weights.

VI. CONCLUSION

In this article, an energy efficient time-domain CNN engine
suitable for edge computing is demonstrated. The proposed
time-domain CNN engine deploys a bi-directional MDL to
perform the signed accumulation of input and weight products.
The fully digital and technology scaling friendly design is

compact and does not use any capacitors and data converters
(DACs and ADCs). It supports near-threshold voltage opera-
tion and is useful for low power edge computing applications.
Four speed-up modes and a configurable MDL length are
supported to address the throughput versus accuracy trade-off.
The proposed design is tolerant to process variations, and the
delay mismatch among MDLs are offset by the calibration
unit. A 40-nm CMOS test-chip implementing the LeNet-
5 CNN achieved an energy efficiency of 12.08 TOPS/W and
a throughput of 0.365 GOPS at 537 mV in the 16× speed-
up mode. The classification accuracy of 97% measured over
100 MNIST images and of 98.42% by simulating (incorpo-
rating circuit non-ideal effects) over 10 000 MNIST images
is achieved. Furthermore, two MDL design approaches are
proposed to perform MAC operations with multi-bit inputs and
multi-bit weights. Simulation results taking into account MDL
circuit non-idealities for 1000-class AlexNet over 50 000 Ima-
geNet validation set images show a classification accuracy
loss within 1% when compared with the 16-bit floating point
software implementation. The proposed MDL based time-
domain approach performing 1-bit/8-bit weight and 8-bit input
MAC operations when compared with the corresponding base-
line digital implementations show 2.09–2.32× higher energy
efficiency and 2.22–3.45× smaller area.
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