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Abstract 

A 1.09Mb, high density (HD), 1R1W 8T-bitcell SRAM is 

demonstrated in 10nm FinFET CMOS featuring Low Swing 

(LS) and Column Multiplexed (CM) bitline (BL) techniques. 

Read-Vmin and noise-tolerance is improved using a series 

NMOS clipper and a split input NAND for early keeper turnoff. 

Measurements show 30(40)mV lower read-Vmin, 18(30)% 

lower BL power for the proposed LS(LS+CM) BL schemes, 

with improved noise tolerance, and minimal area overhead.   

Motivation 

1R1W 8T-SRAM arrays with decoupled read/write ports 

and single ended, large signal sensing using hierarchical read 

BLs (Fig.1) face bitcell density scaling challenges in advanced 

FinFET nodes, as bitcells are already scaled to 1-Fin transistors 

[1]. Minimum sized HD bitcells are susceptible to increased 

process variations resulting into higher Vmin and poor noise 

tolerance. Thus, high bit-density, low-Vmin and better noise 

tolerance often pose conflicting design tradeoffs. We propose 

LS and LS+CM BL techniques for 1R1W 8T SRAMs to 

achieve lower Vmin along with and improved noise tolerance.  

Proposed Low Swing Bitline (LS BL) Technique 

As shown in Fig. 2, an NMOS transistor (N1) with the gate 

connected to a bias voltage (Vbias ≤ Vcc) is inserted in series 

between the common read port of the bitcells (LS_LBL) and 

the local read circuit (LBL node). The LS_LBL node is 

precharged to the lower voltage Vbias-Vtn thus effectively 

lowering the dynamic switching capacitance (CDYN) of the read 

path. This partially offsets the read-delay degradation due to 

series connected clipper N1. To improve the read-path delay 

further, the low swing bitline node (LS_LBL) is connected to 

the PMOS P3 of the split input NAND gate. As the LS_LBL 

node evaluates earlier than the full swing LBL node, it turns on 

P3 faster which turns off the keeper stack earlier. This mitigates 

the keeper contention efficiently and improves the read path 

delay especially in a skewed slow-N and fast-P process corner.  

        During the precharge phase, the keeper is turned-off 

reducing the voltage stress induced keeper aging (in both 

baseline and proposed techniques). This improves the BL noise 

tolerance across the operational lifetime. If the P3 and N3 

devices of the NAND gate are connected to a common LS_LBL 

node, it would result in an even faster keeper turn-off but also 

would degrade the noise tolerance significantly as the NAND 

gate inputs are biased close to the switching trip-point. During 

read-1 scenario, the LS_LBL and LBL nodes discharge to Vss. 

LBL node follows LS_LBL node albeit with additional delay 

due to series NMOS in the path. However, during a transient 

noise event in a read-0 scenario, the LBL node has improved 

noise immunity due to full swing precharge voltage (Vcc) and 

the shielding effect due to series connected clipper which is 

operating in the sub-threshold region in the beginning of 

evaluation phase. Thus, by decoupling read-1/0 tradeoffs using 

series clipper and split-input NAND keeper, lower read-Vmin 

and better noise tolerance are achieved simultaneously.  

Low Swing + Column-Multiplexed Bitline Technique 

The statically biased series clipper (N1) in the LS BL 

technique can be configured into a column multiplexer control 

signal by splitting the LBL into two sub-parts (LS_LBL-1,2) 

and connecting them to the full swing LBL node with shared 

local read circuits, similar to the split BLs used in 6T bitcells 

[2] (Fig. 3). CM control signals are asserted based on the 

address pre-decoder logic. Keeper control NAND gate now 

contains two PMOS paths P3-P4 and P5-P6 driven by respective 

LBL sub-parts. P4/P6 avoids short circuit current in the NAND 

gate when the corresponding LBL sub-part is not evaluated. By 

splitting the LBL CDYN into two halves, LS+CM BL technique 

achieves higher BL power savings beyond the LS BL technique 

alone. The read path leakage is reduced due to stacking effect 

of the inactive CM clipper. The unselected LBL sub-part is not 

precharged in every read cycle resulting in further BL leakage 

savings. Smaller # bits/LBL sub-part with lower leakage allows 

keeper downsizing. This mitigates keeper contention 

effectively yielding higher Vmin savings. Vmin/CDYN benefits 

with CM can be traded off for higher bit density by sharing 

local read circuits across a higher # of bitcells. Note that, 

LS/CM BL techniques can be applied to Global BLs for 

additional gains. 10nm statistical simulations across multiple 

process corners show 60(80)mV lower read Vmin for 

LS(LS+CM) technique compared to the baseline case(Fig. 4).  

Measurement Results 

Measured read PFAIL vs. VCC data  from a 1.09Mb, 1R1W 

HD 8T SRAM test-chip (Fig. 9) fabricated in 10nm FinFET 

CMOS [3] when extrapolated to 1Mb array size demonstrate 

30(40)mV lower read-VMIN at 950MHz for LS (LS+CM) BL 

technique (Fig. 5a).  Vmin savings increase to up to 70mV at 

lower frequencies(Fig. 5b). Noise induced failures are captured 

by performing low frequency (10MHz), read-0 operation on the 

selected RWL and initializing rest of the LBL bits to ‘1’ for 

maximum BL leakage. WLVss voltage of wordline drivers is 

increased gradually to induce higher BL leakage by weakly 

turning on unselected RWLs (Fig. 6). LS+CM BL with reduced 

# of bits/sub-LBL achieves superior noise tolerance than the LS 

BL; although both are better than the baseline case (Fig.7). 

Reduced LBL voltage swing achieves 18(30)% average total 

BL power reduction for LS (LS+CM) technique (Fig. 8a) which 

results into to 8% array level savings. Total BL power savings 

increase at lower Vcc as LBL swing is reduced by a fixed Vtn 

drop relative to Vbias (Fig. 8b). Vmin is reduced further by 

lowering the LBL voltage swing by lowering the NMOS 

clipper bias (Vbias). With 100mV lower Vbias, LS(LS+CM) 

BL technique achieves 20(30)mV lower Vmin compared to the 

Vbias=Vcc case(Fig. 10). BL power savings increase to 3.1 

(1.7)% for the LS (LS+CM) BL technique (Fig.12) while noise- 

tolerance is not degraded for Vcc>460mV/ WLVss<50mV (Fig. 

11). Area overhead for the LS(LS+CM) BL scheme is 0(1.8)%.    

References: [1] K.-H. Koo et al., VLSI’15, pp.266-267 [2] J. Chang 

et al., ISSCC’17, pp.206-207 [3] C. Auth et al., IEDM’17 pp.673-676  
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Fig. 1 Baseline 1R1W 8T SRAM with hierarchical read bitline path and 

butterfly 512x224 array floorplan supporting 32 bits/LBL 

Fig. 2 Proposed Low Swing Bitline (LS BL) Technique with 

series NMOS clipper and Spilt Input NAND driven keeper stack 

Fig. 3 Proposed Low Swing + Column Multiplexed  Bitline (LS+CM BL) 

technique with 2:1 column muxing and spilt input NAND driven keeper

Fig. 4 10nm statistical simulations (a) Delay-Vcc trend showing 

keeper contention limited read Vmin (b) 80mV Vmin 

improvement across multiple process corners 

(a)

(b)

Fig. 5 Measured Read Vmin results (a) Read PFAIL Vs Vcc 

(b) Read Vmin improvement vs. frequency 

(a) (b)

Fig. 6 Noise Tolerance characterization with read-0 failures: Selected bit is 

initialized to      unselected bits connected to the same LBL initialized to 

     WL driver Vss (WLVss) is gradually raised to induce a read-0 failure

(a) (b)

Fig. 7 Measured Noise failures @10MHz (a) at iso-Vcc (b) at iso-WLVss

Fig. 8 Measured power results (a) Total BL power 

comparison (b) % Total BL power saving at lower Vcc  
Fig. 9 Die-micrograph, measurement 

setup and test-chip summary 

Fig. 10 Measured read Vmin with 100mV 

reduced Vbias for LS, LS+CM BL  techniques 

Fig. 11 Measured increase in noise induced failures 

with 100mV reduced Vbias (a) iso-Vcc (b) iso-WLVss 

Fig. 12 Measured % total BL power 

savings with Vbias reduction

Technology 10nm FinFET CMOS

# Transistors 16 million

Total die area 0.37 mm2

Total array capacity 1.09 Mb

8T bitcell sizing, area 1-1-1-2-2, 0.048µm2

Test interface Membrane probe

Vmin reduction
(@1E-6 PFAIL target, 950MHz, 250C)

30mV for LS BL

40mV for LS+CM BL

Noise tolerance 
(400mV Vcc, 100mV WLvss, 250C)

44% better for LS BL

72% better for LS+CM BL

Avg. BL power saving 18% LS BL, 30% LS+CM BL

Area overhead 0% LS BL, 1.8% LS+CM BL
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