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Abstract— In this work, we demonstrate a compressed
time-domain, pooling-aware convolution (COMPAC) convolu-
tional neural network (CNN) engine for energy-efficient edge AI
computing by performing multi-bit input and multi-bit weight
multiply-and-accumulate (MAC) operations in the time domain.
The multi-bit inputs are compactly represented as a single
pulsewidth encoded input. This translates into reduced switching
capacitance (CDYN), compared with the baseline digital implemen-
tation, and can enable low-power neural network computing in
an edge device. COMPAC CNN engine employs a novel and an
improved version of the memory delay line (MDL) supporting
the time residue scaling to perform the signed accumulation of
multi-bit input and multi-bit weight products in the time domain.
The compressed time-domain (CTD) approach is proposed to
improve the throughput in time encoding of the input activations.
The simulation results of the proposed CTD approach on the
AlexNet CNN over 1000 ImageNet images show that 14.71 and
7.15 input clock cycles are consumed to time-encode an 8-bit
input activation in two different CTD modes, improving the
throughput by 88.60% and 94.46%, respectively, compared
with the conventional pulsewidth modulation-based time-domain
encoding. Furthermore, a pooling-aware convolution (PAC) tech-
nique is proposed to reduce the number of redundant MAC
computations for the convolution layers that are followed by
the max-pooling layer. The simulation results on the AlexNet
CNN over 1000 ImageNet images show up to 31.47% (21.79%)
reduction in the number of non-zero input activations MACs
with a top-five classification accuracy loss of 0.60% (0.90%)
with an on-chip access overhead of 60.53% (8.03%) for the
PAC modes 1 (2) respectively. Finally, energy-efficient data flow
for optimal on-/off-chip memory accesses for the time-domain
MAC computation is proposed. COMPAC data flow the results
in 86.97% reduced on-chip accesses and 29.74% reduced off-chip
accesses compared with the Eyeriss approach, at iso-bit pre-
cision. COMPAC CNN engine implemented in 65-nm CMOS
test chip demonstrates an energy efficiency of 1.044 TOPS/W
and the throughput of 0.1278 GOPS at 720 mV for the
AlexNet. The top-five classification accuracy of 76.90% measured
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over 1000 ImageNet images and 77.15% by simulating over
50 000 ImageNet images is achieved. The simulation results
comprehending MDL circuit non-idealities for the AlexNet over
50 000 ImageNet validation set images show a classification
accuracy loss within 1% compared with the 8-bit fixed-point
software implementation.

Index Terms— AlexNet, compressed time-domain (CTD),
convolutional neural network (CNN), energy-efficient edge com-
puting, ImageNet, memory delay line (MDL), multiply-and-
accumulate (MAC), pooling-aware convolution (PAC), time
residue scaling (TRS), time-domain processing.

I. INTRODUCTION

MACHINE learning (ML) approaches are being explored
for a wide variety of applications requiring com-

plex computations [1]–[3]. In particular, convolutional neural
networks (CNNs, class of artificial neural networks) are exten-
sively used for many such ML applications due to their state-
of-the-art classification accuracy at a much lesser complexity
compared with their fully connected network (FCN) counter-
part [4], [5]. The CNN inference process requires intensive
compute and memory resources to compute an enormous
number of multiply-and-accumulate (MAC) operations, which
consumes a significant fraction of a CNN accelerator’s total
power budget [6], [7]. The computation in the cloud suffers
from issues, such as high latency, limited bandwidth, security,
and privacy when transferring data from the edge to the
cloud. There arises a critical need to develop energy-efficient
computing capabilities to perform MAC operations locally on
an edge device. In this article, a compressed time-domain,
pooling-aware convolution (COMPAC) CNN engine is pro-
posed for energy-efficient MAC operation by leveraging the
concept of a memory delay line (MDL) (presented in our
previous work [8], [9]). The key contributions of this work
are as follows.

1) Time residue scaling (TRS) technique is proposed in the
MDL to perform a multi-bit input and multi-bit weight
MAC operation in the time-domain accurately.

2) The compressed time-domain (CTD) approach is pro-
posed, in which the total time taken to encode an input
is proportional to its magnitude only rather than the
full-scale magnitude. This is achieved by eliminating the
dead time in the pulsewidth modulated (PWM) input
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signal when it is low. The proposed CTD approach
combines the throughput benefits obtained by skipping
the zero-magnitude input activations and eliminating
the dead time for the input activations, which have a
magnitude less than the full-scale value (2n − 1 for
n-bit input). The simulation results on the AlexNet
CNN over 1000 ImageNet images show a throughput
improvement of 88.60% and 94.46% to time-encode an
8-bit input activation in two different CTD modes com-
pared with the conventional PWM-based time-domain
approach [8], [9].

3) Pooling-aware convolution (PAC) technique is proposed
to reduce the number of redundant MACs for the
convolution layers that are followed by a max-pooling
layer. For example, in the 2 × 2 max-pooling oper-
ation, the maximum value out of the four adjacent
convolution outputs is chosen and applied as an acti-
vation to the subsequent convolution layers. In other
words, the remaining three non-maximum MAC values
are discarded. In the proposed PAC approach, these
redundant MACs are identified during the time-domain
MAC operation and are not completely computed to
save energy. A comparison logic is added to keep a
track of all four MAC values while accumulating the
products of inputs and weights with reduced precision.
In the scenario where a given MAC value lags behind
the maximum MAC value (out of four MAC values) by
a certain pre-defined threshold, the given MAC value
is not further computed; thereby resulting in a fewer
number of MACs. The simulation results on the AlexNet
CNN over 1000 ImageNet images show up to 31.47%
(21.79%) reduction in the number of non-zero input
activations MACs with a top-five classification accuracy
loss of 0.60% (0.90%) in two different PAC modes.

4) An energy-efficient data flow (EEDF) for optimal
on-/off-chip memory accesses is also proposed for
time-domain MAC computation. A configurable static
random access memory (SRAM) bank architecture to
allocate dynamic storage space to the input activations
and weights depending upon the convolution layer archi-
tecture is proposed. Furthermore, a convolution-stride-
aware mapping of input activations and weights to the
SRAM array is proposed to optimize for on-/off-chip
memory accesses. In addition, input–output activation
and weight-reuse techniques are proposed for on-chip
access reduction, and the run-length coding (RLC) tech-
nique is used for off-chip memory access reduction.
COMPAC data flow results in 86.97% reduced on-chip
accesses and 29.74% reduced off-chip accesses com-
pared with an Eyeriss [4], compared at an iso-8-bit
precision.

5) The COMPAC CNN engine is demonstrated on
the 65-nm CMOS node, implementing the AlexNet
CNN, achieving energy efficiency of 1.044 TOPS/W,
a throughput of 0.1278 GOPS, and a top-five classifi-
cation accuracy of 76.90% at 720 mV.

This article is organized as follows. Section II describes the
background of this work and discusses the basics of CNNs

and motivations for the CTD multi-bit input/weight MAC
computation, PAC technique, and EEDF. Section III presents
the concept, architecture, design, and implementation details
of the proposed COMPAC CNN engine. Section IV presents
the 65-nm CMOS test-chip measurement results. Section V
concludes this article with the key findings.

II. BACKGROUND

A. AlexNet CNN

A typical CNN consists of convolution layers, pooling lay-
ers, activation layers, and FCN layers. The convolution layer
serves as the core layer, which implements multiple trainable
filters that are used to extract features, such as edges, gradients,
and colors, in an image. The major operation in CNNs is
the MAC operation, which is computed by performing the
dot product of a weight matrix and a portion of the input
image matrix [8]. Each filter is convolved across the width
and height of the input activation, computing multiple MACs
and producing a 2-D output activation map for a given filter.
Typically, an activation layer is used between consecutive
convolutional or fully-connected layers. This layer is used
to add non-linearity to a neural network. The rectified linear
unit (ReLU) is the most commonly used activation layer that
returns 0 if it receives any negative input and returns the same
value if it is positive [10]. Pooling (sub-sampling) is performed
to reduce the data size feeding into the next layer [11], [12].
Max-pooling is commonly used for the sub-sampling operation
that chooses the maximum MAC value across a small output
window (e.g., 2 × 2) [12]. The FCN layers are usually used
in the end, once the data size of input feature maps is reduced
after passing through the pooling layers. A typical FCN layer
comprises of a finite number of feature maps, each of size
1 × 1. Each of these feature maps is connected to all the feature
maps of the previous layer. For example, the AlexNet CNN
contains eight trainable layers; the first five are the convolution
layers, and the remaining three are the fully connected layers
[3]. The output of the last fully connected layer is fed to a
1000-way soft-max layer that produces a distribution over the
1000 class image labels. Max-pooling layers follow the first,
second, and fifth convolution layers. The ReLU non-linearity
is applied to the output of every convolution and FCN layer.

B. Prior Work

As MAC operations constitute a significant portion of the
total CNN power budget [6], various methods have been
explored for compact data representation to improve energy
efficiency. The data in digital domain are represented as
multi-bit digital vector [4], [13]–[18]. This form of data
representation is implemented using a higher number of
nets, translating into a high dynamic switching capacitance
(CDYN) and, consequently, higher power and area. In the
analog-domain approach, data are represented as a continu-
ously varying voltage signal. Various design techniques using
charge manipulation schemes and analog-to-digital (A/D) con-
verters have been proposed to realize efficient MAC compu-
tations in a CNN accelerator. Analog approaches [19]–[21]
compute MAC operation in analog voltage domain using
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Fig. 1. Concept of the time-domain MAC operation [9]. (a) Dot product
operation of input matrix and weight matrix. (b) Time-domain MAC circuit
concept. (c) MAC operation in the digital domain. (d) MAC operation in the
time domain.

a SRAM array, capacitors, and data converters (ADCs and
DACs). However, finite voltage headroom and the sensitivity
of circuit parameters to a slight change in analog-domain
signals limit the voltage scalability, thereby degrading the
MAC accuracy [20]. In the frequency-domain approach, data
are represented as signals with varying frequencies using ring
oscillators or RC loaded circuits. In [23] and [24], MAC oper-
ations are computed in the frequency domain using a digital
controlled oscillator (DCO) with either resistor or capacitor
loading. Various nodes of a ring oscillator are loaded with
different capacitor banks to represent multi-bit weights altering
the RC time constant of the oscillator. Thus, large-range
frequency generators/modulators limit the performance scala-
bility of such frequency-domain approaches. Moreover, larger
magnitude inputs would result in higher toggle activity incur-
ring higher switching power. In the time-domain computing
approach, data can be represented as the PWM inputs or
pulse position modulated inputs or a combination of thereof.
In [24], the time-domain analog-digital mixed-signal process-
ing approach is proposed to implement a time-domain binary
neural network. A time-mode adder circuit is proposed in [25]
to realize a trans-linear principle in time.

In our earlier work [8], [9], a multi-bit digital bit-stream
is encoded as a single PWM signal with its pulsewidth
representing the magnitude of the input data. The multi-bit
data are compacted to a single data signal, resulting in
reduced CDYN compared with the conventional digital data
representation. We presented a detailed comparison between
the time-domain computing approach and the sequential digital
implementation, performing 1-/8-bit weight and 8-bit input
MAC operations, and observed 2.09×-2.32× higher energy
efficiency and 2.22×–3.45× smaller area for the time-domain
implementations [9]. Furthermore, this approach leverages
standard digital gates with full rail-to-rail voltage swing out-
puts. This mitigates the reduced voltage headroom challenges
encountered in an analog-voltage-domain approach enabling
ultralow voltage operation. In addition, this approach does
not require multiple clock sources (unlike frequency-domain
approaches), which results in reduced CDYN. The concept
of the time-domain MAC computation using PWM inputs
is illustrated in Fig. 1. In this example, the MAC operation

is performed by adding the products of a 3 × 3 weights
matrix and input pixel matrix [see Fig. 1(a) and (c)]. An input
pixel value is encoded into a PWM signal using a digital-
to-time converter (DTC). Then, the input PWM signal is
multiplied by the corresponding weight bit using an AND

gate. This time-encoded product signal is then passed onto
the time accumulator circuit [see Fig. 1(b)] to compute MAC
operation in the time domain. Sequentially, all input pixel
values are encoded as PWM signals, and its product with
respective weight bit is loaded on the time accumulator circuit.
Thus, all time-encoded products are applied onto the time
accumulator circuit, and the width of these timing pulses gets
accumulated to realize the MAC operation in the time domain
[see Fig. 1(d)].

C. Motivation for CTD Multi-Bit Input and Weight MAC
Operation

Complex CNNs, such as AlexNet [3] and VGG [26], com-
pute multi-bit input and multi-bit weight MAC operations to
achieve the state-of-art classification accuracy on complex data
sets, such as 1000-class ImageNet [3]. In our previous work
[8], [9], MAC operation with binary weights is demonstrated.
Earlier proposed techniques to perform multi-bit weight
time-domain MAC operation using either multiple MDLs
or a single configurable-length MDL incur high power/area
along with classification accuracy loss; thereby making the
time-domain MAC approach less feasible for complex CNNs
[8], [9]. There arises a critical need to devise better MDL
designs to perform energy-efficient multi-bit input/weight
MAC operation in the time domain to make it feasible for
complex CNNs. In this article, the TRS technique is proposed
to perform the multi-bit input and multi-bit weight MAC
operation with minimal MDL time residue, minimal area, and
power overhead while maximizing energy efficiency.

Moreover, one of the tradeoffs of the time-domain computa-
tion is its sequential nature, resulting in low MAC throughput.
In the conventional time-domain approach, as discussed in
our previous work [8], [9], the PWM signal is generated
synchronously consuming 2(n−1) clock cycles to time-encode
an n-bit input. PWM signal is held high for time duration
proportional to its magnitude and held low for the remaining
time duration (dead time), thereby resulting in a signifi-
cant throughput degradation. In order to overcome this low
throughput limitation, a CTD approach is proposed in this
work for compact input encoding, in which the total time
taken to time-encode an input is proportional to its magnitude
(realized by eliminating the dead time using a negative-edge
and zero-value detector circuit).

D. Motivation for PAC Operation

The CNN inference process requires the computation of an
enormous number of MAC operations, thereby making it chal-
lenging to implement in the energy-constrained edge devices.
For example, widely known CNNs, such as AlexNet [3] and
VGG [26], comprise of 60 million and 138 million filter
weights, respectively, which are used to compute 724 million
and ≈15.5 billion MAC operations [4]. Thus, reducing the
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number of MACs without compromising the classification
accuracy is highly desirable. In a typical CNN, a max-pooling
layer is used for the sub-sampling operation that chooses a
maximum MAC value across a small output window. For
example, in a 2 × 2 max-pooling operation, the maximum
value out of the four convolution outputs is chosen and
fed to the subsequent convolution layers. In other words,
the remaining three values are not used. In this article, a PAC
approach is proposed, in which these redundant MACs are
identified during the MAC operation and are not completely
computed to save energy. A comparison logic is added to keep
a track of all four MACs while accumulating the products
of inputs and weights with reduced precision. A given MAC
value is not further computed if it lags behind the maximum
MAC value by a certain threshold, thereby reducing # MACs.

E. Motivation for EEDF

A significant portion of the total accelerator energy is spent
in accessing the parameters and activations from either on-chip
or off-chip memory. Since deep CNNs comprise a large
number of parameters, it is not feasible to store all the acti-
vations and weights on-chip. This results in significant energy
consumption in off-chip memory accesses, which is one of the
critical factors affecting energy efficiency. The energy spent to
access the data from the off-chip memory is around 200×
compared with the MAC computation energy [4]. Despite
pruning the input data and filtering out zero weights and/or
inputs, a large number of MAC operations are still performed;
which leads to a large number of off-chip accesses. The
other critical component of power consumption in these net-
works is the on-chip memory buffer (SRAM) accesses. The
energy spent to access the data from an on-chip memory
buffer is around 6× compared with the MAC computation
energy [4]. Moreover, the number of on-chip data accesses
is significantly more than the number of off-chip dynamic
random access memory (DRAM) accesses, making the on-chip
memory access an important concern for energy-efficient edge
computation.

III. PROPOSED COMPAC CNN ENGINE DESIGN

A. Architecture Overview

The proposed COMPAC CNN engine supports 32 filters,
a CTD controller, multiple address generators, registers, and
a 67-kB on-chip SRAM to perform a pooling-aware 8-bit
input and 8-bit signed weight MAC operation for the AlexNet
CNN in the time domain (see Fig. 2). The overall operation
is briefly discussed as follows. First, the input activations and
the weights of 32 filters are accessed from the off-chip DRAM
memory (Xilinx VC707 FPGA resources) using a 32-bit input
data bus and stored in the global on-chip buffer (SRAM) with
a storage capacity of 67 kB. The input activations are then
accessed from the global buffer and stored locally in 144 input
activation cyclic shift registers (each 32-bit wide). The address
generator and controller are used to access the input activations
from the on-chip SRAM and efficiently broadcast them to the
activation registers such that each activation is accessed only
once from on-chip SRAM and stored in multiple registers,

Fig. 2. Proposed COMPAC CNN engine system-level architecture.

thereby optimizing the total number of on-chip accesses.
The pulse generator generates 16 free-running PWM signals,
one of which gets selected in the pulse-selection module
depending upon the input activation value. To improve the
throughput, a CTD approach is proposed in this work, where
the pulse generation occurs asynchronously, to eliminate the
dead time using a CTD controller. The four time-encoded
PWM inputs for X1–X4 are sent to all 32 filters to perform
the MAC operations in the time domain. Each filter comprises
of four 16-unit long MDLs, a 24-bit counter, a 24-bit shifter,
nine 32-bit shift registers for weight bit storage, nine 32-bit
cyclic shift registers to store the sign bit of the weight, three
24-bit comparators to perform comparison during PAC and
max-pooling operations, an ReLU activation controller, and
an MDL/residue controller for the reliable and correct MDL
operation. The 8-bit input/weight MAC operation is computed
sequentially by accumulating the products of time-encoded
input with the most significant weight bit and repeating it
for the next less-significant weight bits. The weight bit and
the sign bit are optimally accessed from the on-chip global
buffer using an address generator and stored locally in 18
32-bit registers of each filter. The pooled output value of
each filter is stored in the global-buffer, and once the MAC
computation for all the input activations stored on-chip for
32 filters is completed, the output activations are sent through
a 32-bit output data bus and stored off-chip (FPGA VC707).
This process is repeated until all the MAC operations for the
entire input activation map and for all the filters are computed,
for each convolution layer.

B. Multi-Bit Input and Weight MAC Using MDL With TRS

1) Background: Time-Domain MAC Computation Using
MDL: The concept of an MDL to perform 1-bit weight
time-domain MAC operation with reduced switching capac-
itance for an energy-efficient edge computing was discussed
in our previous work [8], [9]. MDL is comprised of a
string of gated delay units (termed MDL units). The MDL
design is derived from the concept of a time register used
in high-precision time-to-digital converters, which can per-
form time addition and time storage using a string of delay
cells [27]. Each MDL unit is controlled by an EN signal. The
product of time-encoded input activation and weight bit acts
as an EN signal. MDL acts as a forward (backward) delay line
for positive (negative) weight when EN is held high and retains
the MDL state when EN is held low. The 0−→1 transition is
detected at either end of the MDL (node A or node E) when a
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Fig. 3. 8-bit input/weight MAC operation in time-domain using a single
16-unit MDL (with TRS), counter, and shifter.

Fig. 4. Proposed concept of TRS on MDL for multi-bit weight/input MAC
operation.

string of “0’s” followed by a string of “1’s” is propagated. The
delay variations in MDL due to process variations (random
errors) or temperature changes (systematic error) are mitigated
by the addition of a calibration unit in MDL. Thus, a finite
MDL length along with an up–down counter can be used
to perform signed time accumulation of a long duration to
perform MAC operation.

2) Proposed Multi-Bit Input/Weight MAC Operation in Time
Domain: The multi-bit weight time-domain MAC operation
is performed by sequentially accumulating the products of
time-encoded input with each weight bit, using a single
fixed-length MDL (see Fig. 3), thereby overcoming the limi-
tations of multi-bit weight time-domain MAC, as discussed in
our previous work [9]. The counter value and the time residue
on MDL are scaled by a factor of 2 to match its bit precision,
before accumulating the product of the input with the next
less-significant weight bit (see Fig. 3). The counter value is
scaled by a factor of 2 using a shifter (left shift by 1), whereas
time residue on MDL is scaled by a factor of 2 using the
TRS technique, as discussed in Section III-B3. This process
is repeated until the products of time-encoded input with all
the weight bits are accumulated (see Fig. 3).

3) Concept of TRS: The time residue on each MDL needs
to be scaled by a factor of 2, before accumulating the products
of input activation with the next less-significant weight bit on
MDL (to match the precision). This scaling has been realized
efficiently using a lookup table approach (see Fig. 4). The
TRS lookup table comprises of three MDL states when MDL
is 25% fill, 50% fill, and 75% fill. The state of the MDL is
first determined by observing the start (node A), middle (node
M), and end (node E) nodes of the MDL, and then, the scaled
residue state is chosen from one of the TRS lookup table MDL
states (see Fig. 4). For instance, the time residue on MDL is
40.62% of the MDL full-length delay, which needs to be scaled
by a factor of 2. The desired scaled residue is 40.62% × 2 =
81.25%. The nearest residual value of this desired scaled value

Fig. 5. Proposed MDL with TRS features for multi-bit weight/input MAC
operation.

Fig. 6. (a) Proposed MDL unit with TRS features for multi-bit weight/input
MAC operation. (b) Switch configurations for the proposed MDL supporting
multi-bit weight/input MAC operation.

is chosen, which is 75% of the full-length MDL delay, thereby
minimizing the time residue loss (see Fig. 4). The simulation
results of the AlexNet CNN on 1000-class ImageNet data set
have shown ≈3% improvement in the top-five classification
accuracy with the proposed TRS technique compared with the
baseline MDL approach (wo/TRS).

4) Implementation of TRS in MDL: The bi-directional MDL
is designed to support the TRS for multi-bit weight MAC
operation (see Fig. 5). The state of each MDL unit [see
Fig. 6(a)] is controlled by observing the start (node A), middle
(node M), and end (node E) nodes of the MDL such that the
time residue loss is minimized to achieve high classification
accuracy. MDL unit acts as a forward (backward) delay unit
for positive (negative) weight when EN is held high and retains
MDL state when EN is held low during normal MDL operation
(controlled using switches S1—S3) and sets its logic node
value to 0 or 1 to scale the residue on MDL during the TRS
phase (controlled using switches S4 and S5). Fig. 6(b) lists
down the switch configurations (S1–S3 and S6–S9) for the
memory and delay phases of the MDL operation. The basic
operation of the memory and delay phases is briefly discussed
in Section III-B1. A comprehensive account of the working
principle of MDL has been presented in our previous work [9].

In order to realize energy and area-efficient implementation
of the TRS, only three nodes (nodes A, M, and E) are observed
to determine the desired MDL state with scaled time residue.
There are 128 TRS controllers (one per each MDL), each
occupying a core area of 96 um2. Thus, the TRS modules
occupy 0.0123 mm2, contributing to a 0.71% increase in
the total core area. The power and latency overheads of the
TRS are insignificant compared with the MAC accumulation
phase, which comprises of many clock cycles [equals filter
dimensions × channels × 7.15 cycles (to time-encode 8-bit
input)]. This efficient lookup table-based TRS approach has
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TABLE I

LOOKUP TABLE FOR THE PROPOSED TRS APPROACH

resulted in ≤±25% of MDL full-scale delay, thereby results
in high classification accuracy. The logic values on nodes A,
M, and E are observed to determine the initial state (time
residue) of the MDL. The phase of the MDL, i.e., whether it
is holding a positive or negative residue, is also determined
from the MDL controller. The switch S4 and S5 values for
the MDL unit 1, units 2–8, and units 9–16 along with the
counter increment/decrement signal are generated from the
TRS controller to scale the time residue on MDL such that the
final residue loss is minimized (see Table I). Besides ensuring
minimal accuracy loss, it is also ensured that weights can be
reused to reduce the on-chip data accesses. This requires a
co-design of the TRS controller and weight address generator
to scale the time-domain approach for multi-bit weight MAC
operation. It should be noted that the residue loss can be
further minimized by designing a relatively complex TRS
controller with a higher area/power overhead, which observes
more number of MDL internal nodes and outputs more sets
of S4/S5 switch values to precisely control MDL state. This
would lead to lower time residue loss and better accuracy.

C. Proposed CTD Approach

1) Concept of CTD Approach: In the conventional
time-domain approach as discussed in our previous work [8],
[9], the PWM signal is generated synchronously consuming
2(n−1) clock cycles to time-encode an n-bit input. PWM is
held high for the time duration proportional to its magni-
tude and low for the remaining time duration (dead time),
thereby resulting in a significant throughput degradation [see
Fig. 7(a)]. A CTD approach is proposed for the compact input
encoding in which the total time taken to encode an input
is proportional to its magnitude only [see Fig. 7(c)]. This is
achieved by eliminating the dead time (time duration when
a PWM signal is held low). The proposed CTD approach
combines the throughput benefits obtained by skipping the
zero-magnitude input activations [see Fig. 7(b)] and elimi-
nating the dead time for the input activations that have a
magnitude less than the maximum value (2n − 1 for an n-bit
input).

2) Implementation of CTD Approach: The proposed CTD
approach is implemented using a negative-edge and zero-value
detector circuit (see Fig. 8). The proposed COMPAC CNN
engine performs an on-chip 2 × 2 max-pooling by computing
four MAC values simultaneously. Each MAC value is obtained
by computing a dot product of input activation (X1–X4) with

Fig. 7. (a) Conventional time domain approach. (b) Conventional time
domain approach with zero-skipping. (c) Proposed concept of the CTD
approach in the COMPAC CNN engine.

Fig. 8. Circuit implementation of the CTD approach in the COMPAC CNN
engine.

the weight matrix. These input activations are stored in the
input activation shift registers: 16 free-running PWM signals
are generated in the pulse generation module such that the
pulsewidth of each consecutive signal increases by to, where to
equals the half period of the input clock. Thus, the pulsewidth
of the PWM signal varies from 0 × to to 15 × to.The
pulse generation scheme of the proposed work generates
different PWMs based on synchronous input clock operation.
The pulse generation approach is not based on a logic path
delay difference, which is susceptible to pulse shrinking and
expansion due to process variations. Thus, no such shrinking
and expansion effects are expected in pulse generation. The
pulse-selection module comprises one 16:1 MUX. The 4-bit
input activation value serves as the four select lines of this
16:1 MUX to select one of the 16 PWM signals, based on
input activation magnitude. Four pulse-selection modules are
used to time-encode four 4-bit input activation values (X1–X4).
These time-encoded input activation signals are passed through
a four-input OR gate to find the time-encoded input with a
maximum pulsewidth (or_signal). This signal is passed to the
negative edge and the zero value detector to determine the
negative edge or zero-magnitude value. Once any of these
two events occur, a trigger signal (stop_pulse) is generated
on the next edge of the input clock (adding a delay of half
input clock period), and the pulse generator is stopped on the
next subsequent clock edge. Then, the next input activations
are applied to the next subsequent clock edge by shifting
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the input activations from the shift registers, by asserting an
apply_inputs signal. Finally, the pulse generator starts on the
next subsequent clock edge.

Thus, the proposed CTD approach time encodes the input
activations in an asynchronous manner and incurs a time
overhead of two input clock cycles (half-cycle each for trigger
generation, stopping the pulse generator, applying the next
inputs, and starting the pulse generator) to ensure a reliable
time encoding (without any glitches) of input activations.
Thus, the time taken to encode input activation equals (max(X1

to X4) ×to) + 2 × input clock cycle period (time overhead) in
the proposed CTD approach, whereas it takes (2(n−1) × to) +
1 × input clock cycle period (time overhead to ensure no race
around condition and/or glitch formation) in the baseline MDL
approach [8], [9].

The conventional time-domain approach, as discussed in
our previous work [8], [9], employs a pulse generator module
(generating 16 pulses in MSB phase and 16 pulses in LSB
phase) and a pulse selector module (four 2:1 Muxes and a
16:1 MUX), whereas the proposed CTD approach employs
a smaller pulse generator module (16 pulses only), a smaller
pulse selector module (16:1 MUX only), and a CTD controller.
The CTD circuit occupies a core area of 920 um2, whereas the
conventional time-domain pulse approach occupies 642 um2.
Thus, CTD results in a core area overhead of 278 um2, which
is 0.016% of the total core area. Furthermore, CTD modules
consume a total power of 18.72 µW, whereas the conventional
time-domain approach consumes 14.78 µW, thereby resulting
in a power overhead of 3.94 µW and amounting to ≈3% of
the total core power.

3) Simulation Results of CTD on AlexNet CNN: The pro-
posed concept of the CTD approach is validated for all the
five convolution layers of the AlexNet CNN on 1000 images
of the ImageNet validation data set (1000 class). One image
is randomly chosen from each class of the validation data
set. The time encoding of an 8-bit input (X[7:0]) con-
sumes 14.71 input clock cycles on an average (over five
convolution layers) using CTD, whereas the conventional
time-domain approach consumes 129 cycles when simulated
on AlexNet over 1000 images, thereby improving the through-
put by 88.60% compared with the conventional time-domain
approach [see Fig. 9(a)]. To further improve the throughput,
an 8-bit input is time encoded using CTD in two phases: four
MSBs (X[7:4]) and four LSBs (X[3:0]) of input activation,
as shown in Fig. 9(b). Thus, the time encoding of 8-bit input
(X[7:0]) in two phases (4 bits each) on the AlexNet over
1000 images consumes 7.15 input clock cycles on an aver-
age, further improving the throughput by 51.40%, compared
with the CTD encoding of an 8-bit input activation in a
single phase.

D. PAC to Reduce # of MACs

1) Concept of PAC: A generic CNN comprises of a pooling
layer to perform a sub-sampling operation. For instance,
in 2 × 2 max-pooling, only the maximum value among the
four (2 × 2) MACs is fed to the next layer, and the remaining
MAC outputs are not used (see Fig. 10). In the proposed

Fig. 9. Throughput Improvement in the proposed CTD approach to
time-encode 8-bit input activation in (a) one phase of 8 bit and (b) two phases
of 4 bit.

Fig. 10. Proposed concept of the PAC operation.

PAC approach, these redundant MACs are identified during
the MAC operation and are not completely computed to
save energy. MAC operation is computed in multiple phases
(accumulating products of input/weight with a smaller bit
width in each phase), separated by a comparison phase. In the
comparison phase, the MAC values that are smaller than the
maximum MAC value by a certain predefined threshold are
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Fig. 11. MAC computation process in (a) PAC Mode 1 and (b) PAC Mode 2.

TABLE II

THRESHOLD VALUES FOR DIFFERENT RUNS AND ALEXNET CONV.
LAYERS IN (A) PAC MODE 1 AND (B) PAC MODE 2

eliminated, and the remaining bits of these MACs are not
computed in subsequent phases, thereby reducing the total
number of bit-wise MACs. For example, the MAC operation
with four MSBs (X[7:4]) of the input activation and weight is
first computed (see Fig. 10). This is followed by a comparison
operation that identifies and eliminates those MAC values
(MAC1 and MAC2), which are smaller than the maximum
value by a certain predefined threshold. The non-eliminated
MAC values (MAC3 and MAC4) are then fully computed by
accumulating the products of four LSBs (X[3:0]) of the inputs
and weight.

2) PAC Modes in COMPAC CNN Engine: In this work, two
modes of PAC are proposed for the 8-bit input activation and
8-bit weight MAC operation. In PAC mode 1, input activation
and weight values are applied in four MAC phases (4 bits
of input and weight in each phase), with a comparison PAC
phase in between each MAC phase [see Fig. 11(a)], whereas
PAC mode 2 comprises of two MAC phases (computing MAC
for 4-bit input and 8-bit weight in each phase) separated by
a comparison PAC phase [see Fig. 11(b)]. It should be noted
that the chosen threshold values are multiples of 2n such that
the shifters and comparators can be reused during the PAC
phase operation, thereby eliminating the need for additional
circuitry.

3) Simulation Results of PAC on AlexNet CNN: The sim-
ulation results on the Alex Net CNN over 1000 ImageNet
validation data set images (one image randomly chosen from
each class) for different thresholds (see Table II) show up to
31.47% (21.79%) reduction in the number of non-zero input
activations MACs with a top-five classification accuracy loss
of 0.60% (0.90%) and a top-one classification accuracy loss
of 2.20% (1.90%) for the PAC modes 1 (2), respectively (see
Fig. 12). The reduction in the number of MACs translates

Fig. 12. Reduction in # of MACs and classification accuracy on AlexNet
for different threshold values in (a) PAC Mode 1 and (b) PAC Mode 2.

Fig. 13. Illustration of selecting optimal threshold value.

to power savings since the MDLs remain idle for those
MACs that are not completely computed. Thus, MDL power
is saved by the same amount by which the number of MAC
operations is reduced. The power overhead due to shifters and
comparators is insignificant compared with MAC computation
since the PAC phase (duration: two cycles) is followed by a
MAC accumulation phase, comprising of many cycles [equals
the filter dimensions ∗ channels ∗ 50.05 (cycles for 1 MAC)].
Thus, the power overhead of PAC circuit elements can be
ignored since they remain inactive most of the time, and
effective power savings equal reduction in MDL power.

Table II lists down the threshold values used in PAC
modes 1 and 2. The optimal values of these threshold val-
ues are determined using an empirical model discussed as
follows. First, for each PAC phase in PAC modes 1 or 2,
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TABLE III

COMPARISON OF NUMBER OF MACS, ACCURACY, AND ON-CHIP
ACCESSES OF THE PROPOSED PAC MODES 1 AND 2 WITH BASELINE,

NON-ZERO INPUT, AND PC [28] APPROACHES

the uncomputed MAC value (MAC value—partially computed
MAC value till a given PAC phase) is determined for each
pixel for a given convolution layer output over ImageNet
validation data set images. Here, the uncomputed MAC value
signifies the remaining MAC value, which would be added to
the partially computed MAC value after a given PAC phase.
Next, the frequency bin distribution of these uncomputed MAC
values for all the pixel values for a given layer is plotted (see
Fig. 13), where the X-axis represents the range of uncomputed
MAC values, and the Y -axis represents the frequency (number
of uncomputed MAC values). The lowest value on the X-axis,
which covers most of the area under the graph (most of the
bins), is chosen as the optimal threshold value for a given
PAC phase and convolution. The uncomputed MAC values
that lie to the left of this chosen threshold value on the graph
(case 1 in Fig. 13) would not result in incorrect output values
after max-pooling layer operation, thereby ensuring minimal
accuracy loss while maximizing the reduction in the number
of MACs.

There is a tradeoff between classification accuracy and
a reduction in the number of MACs. A higher threshold
value results in a lesser reduction in the number of MACs,
thereby having a low chance of predicting the incorrect max-
imum MAC value, leading to lesser accuracy loss, as shown
in Fig. 12. Table III summarizes the number of MACs, top-
one/top-five classification accuracy, and the on-chip SRAM
access overhead for the AlexNet CNN without/with PAC
modes. The proposed PAC approach results in an on-chip
SRAM access overhead of 60.53% (8.03%) for the PAC
modes 1 (2) (see Table III). It should be noted that the
proposed PAC approach does not affect the off-chip DRAM
accesses. Considering the on-chip access overhead, PAC still
results in overall energy reduction. PAC mode 2 results in a
21.79% reduction in the number of MAC operations, which
translates to a reduction of 145.12 million MAC operations
(total MACs = 666M for AlexNet). This is achieved at an
on-chip access overhead of 14.67–13.58 MB = 1.09 MB (refer
Section IV-C). Assuming that the on-chip access energy is 6×
times the MAC compute operation [4], it translates to the MAC
compute overhead of 1.09 ∗ 1024 ∗ 1024 ∗ 6 = 6.86 million
MACs. Therefore, the net MAC savings using the proposed
PAC Mode 2 approach are 145.12 − 6.86 = 138.26 million
MACs (equals 20.76% of total MACs). Thus, the tradeoffs
between the reduced number of MACs, classification accuracy
loss, and on-chip access overhead need to be carefully ana-
lyzed. Note that the proposed PAC technique is independent of

underlying MDL-based time-domain implementation and can
be applied for other digital/analog MAC implementations.

4) Comparison of PAC With Precision Cascading (PC)
[28]: Kim and Seo [28] proposed a PC approach to reduce the
bit-wise MACs for the convolution layers that are followed by
a max-pooling layer. The goal of the PC approach is similar
to the proposed PAC approach, i.e., not to fully compute the
redundant MACs. In the PC approach, the MAC value is
computed in eight rounds, computing MAC for 8-bit weight
and 1-bit input value in each round. The maximum MAC
value is predicted if it exceeds the remaining MAC values
by at least 1. Thus, the PC approach may lead to higher
MAC savings at reduced classification accuracy compared with
the proposed PAC approach since it has higher chances of
predicting incorrect maximum MAC value having a discard
threshold of only 1. We compared the PC approach with the
proposed PAC approach for the # of MACs and classification
accuracy on the AlexNet CNN. The simulation results on the
AlexNet CNN over 1000 ImageNet data set images show
that the PC approach results in 9.15% fewer # of MACs
(202.5 million instead of 222.9 million) at a cost of 7% drop
(70.5% instead of 77.5%) in the top-five classification accuracy
compared with the PAC-1 mode proposed in this work (see
Table III).

E. EEDF for Optimal Data Movement

In deep neural networks, such as AlexNet and VGG, mil-
lions of MAC operations are computed using a large number
of weight parameters and input activations. Significant energy
is spent on accessing these parameters and activations. All
the activations and parameters cannot be stored on-chip due
to limited on-chip SRAM capacity, resulting in significant
off-chip access energy. COMPAC proposes an EEDF to reduce
the on-/off-chip accesses. The input activations and weights for
any given convolution stride are stored on an on-chip SRAM,
as given by (1), such that all the column values for the accessed
row are utilized in the MAC operation, thereby minimizing
the total number of on-chip accesses (see Fig. 14). This is
achieved by saving the slice (part) of input activation/weight
in each row such that the width (w) and height (h) of the
slice do not exceed the convolution stride. The depth (d)
of the slice is chosen such that it maximizes the storage
utilization of the SRAM array. In the proposed COMPAC
CNN engine implementing the AlexNet CNN, 256 column-
wide SRAM banks are used. The w, h, and d values (width,
height, and depth of the slice storing input activations and
weight parameters in a single SRAM row) are set as 4, 2, 3 and
1, 1, 32 for the convolution layers 1 and 2–5, respectively

w × h × d × data-width ≤ # of columns in SRAM Array

where, w and h≤convolution stride. (1)

Besides optimally mapping the parameters and activations
to the SRAM array for the time-domain MAC computation,
the proposed COMPAC CNN engine comprising of 11 SRAM
banks (B1–B11) with an on-chip capacity of 67 kB provides
configurable bank architecture to maximize the input activa-
tion and weight reuse for different convolution layers of the
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Fig. 14. Convolution-stride-aware data storage technique for optimal
on-/off-chip accesses.

TABLE IV

CONFIGURABLE SRAM BANK STRUCTURE TO STORE INPUT

ACTIVATIONS, WEIGHTS, AND OUTPUT ACTIVATIONS

FOR ALEXNET CNN

AlexNet CNN. The configurable bank architecture helps in
achieving the optimum number of accesses by allocating more
space to the input activations for convolution layer 1 and to
the weight parameters for the layers 2–5 (see Table IV).

1) On-Chip Access Reduction Techniques: The on-chip
SRAM accesses are optimized using a configurable SRAM
bank architecture that supports the convolution-stride-aware
mapping of the input activations and weights. Furthermore,
input activations, weights, and partial sum data movement are
further optimized, as discussed in the following.

The input activation values (X1–X4) stored on the SRAM
array are accessed and temporarily stored in the input activa-
tion shift registers. The inputs are accessed from these registers
while performing time encoding and the MAC operations.
Typically, a convolution stride is less than a filter window
size. Therefore, a lot of input activation values (X1–X4)
are replicated when stored in these shift registers. To save
the on-chip input activation accesses, the inputs from the
SRAM array are broadcasted to these shift registers such that
each input activation is accessed only once and stored in
multiple input shift registers (if required), as shown in Fig. 15.
Furthermore, inputs (X1–X4) are shared across 32 filters
(F1–F32 implemented in COMPAC) to perform four MACs
per each filter (see Fig. 15).

Each filter comprises four MAC engines, each supporting an
MDL, a counter, and a shifter to perform the MAC operation.
Four MAC operations are performed using the same weight
(stored in weight register of a filter) and different input
activation (X1–X4). Thus, the weight value is reused across the
four MACs for each filter, as shown in Fig. 16. As discussed
earlier, multi-bit input/weight MAC operation is performed
sequentially by adding the product of time-encoded input pulse
with each weight bit (wt[6]–wt[0]). The MAC operation is

Fig. 15. Proposed input activation reuse techniques in COMPAC CNN
engine.

Fig. 16. Proposed weight-reuse techniques in the COMPAC CNN engine.

Fig. 17. Proposed output activation reuse techniques in the COMPAC CNN
engine with zero partial sum movement.

computed by accumulating products of input pulsewidth with
the highest significant weight bit (stored locally in weight shift
register), and the products of these inputs with less-significant
weight bits are computed in subsequent cycles. However,
the weight sign bit (wt[7]) is accessed only once from the
SRAM and stored locally in a weight sign cyclic shift register.
The sign bits are rotated to reuse for the different weight
bits (wt[6]–wt[0]), thereby reducing the on-chip access energy
in accessing the sign bit of the weight (see Fig. 16). The
weight/input activation reuse and configurable bank architec-
ture schemes are implemented using the address generators,
controllers, and bank select logic that occupy 0.025 mm2

(1.44% of the total core area). The power overhead of these
elements can be ignored since only 0.00431 cycles (discussed
in Section IV-C) are consumed on an average for each MAC
operation (compute time equals 50.05 cycles) to access the
on-chip data.

In the proposed COMPAC CNN engine, the MAC operation
is computed in the time domain by sequentially accumulating
the products of input activation with each weight bit. The
partial sum value is stored locally in the counter and is not
sent (received) to (from) the global buffer. Once all the prod-
ucts of input activation and weight are accumulated, the fully
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Fig. 18. Run length compression codes for the proposed COMPAC CNN
engine in RLC modes 1 and 2.

computed MAC output is written to the on-chip global buffer
(see Fig. 17). This results in a significant reduction in the
on-chip memory accesses of the output activations since there
is no partial sum movement.

2) Off-Chip Access Reduction Techniques: The off-chip
DRAM accesses are optimized using a configurable SRAM
bank architecture supporting convolution-stride-aware map-
ping of input activations and weights. In addition, the RLC
technique [4] can be used in the proposed COMPAC approach
to further reduce the off-chip DRAM accesses, by exploiting
the zeros in the input activations (due to preceding ReLU
activation layer) and weights. It should be noted that RLC
is not implemented in our test chip. However, simulations
supporting two different RLC codes are performed to evaluate
the off-chip DRAM access savings. Fig. 18 shows both the
modes of RLC encoding proposed for the COMPAC CNN
engine. There are two types of fields in an RLC compressed
output—“Run” and “Level.” The consecutive number of zeros
to a maximum run length of 15 is represented using a 4-bit
number in the Run field, whereas a 4-bit value is inserted
directly in the level field. Two (four) runs and Six (four)
levels are packed into a 32-bit word, which is sent through
a 32-bit input data bus in RLC modes 1 (2), respectively (see
Fig. 18). These two RLC modes are supported to maximize
the overall compression (minimize the total off-chip accesses)
for the weights/input activations for all the convolution layers
of the AlexNet. RLC Mode 1 is used to compress the weights
for all the convolution layers 1–5 and input activations of
convolution layer 1 (since the input activations have a lesser
number of zeros), whereas RLC mode 2 is used to compress
input activation for the remaining (2–5) convolution layers of
the AlexNet CNN (since the input activations for these layers
have a large number of zeros due to the preceding ReLU
activation layer). The simulation results of the RLC access
savings on the AlexNet CNN over the ImageNet data set are
discussed later in Section IV-D2.

IV. MEASURED RESULTS

A. Measurement Setup and Test-Chip Summary

Fig. 19 shows the die micrograph, test-chip summary,
and FPGA-based test measurement setup of the proposed
COMPAC CNN engine implemented using commercial 65-nm

Fig. 19. (a) 65-nm test-chip die micrograph. (b) Summary table. (c) and
(d) FPGA-based lab measurement setup. (e) Test-chip power breakdown.

CMOS technology. The test chip implements the AlexNet
CNN to classify 1000-class ImageNet data set and occupies a
total core area of 1.74 mm2. The overall CNN inference and
training methodology consists of: 1) training input data using
TensorFlow/Keras [29] software framework; 2) feeding trained
filter weights and input activation values for the convolution
layers 1–5 to the test chip using Xilinx Virtex-7 FPGA
VC707 Evaluation board [30] and Xilinx FMC XM105 Debug
Card [31]; 3) performing on-chip MAC, averaging, and pool-
ing operations for convolution layers 1–5 of the AlexNet;
and 4) FCN and soft-max layers computation in software
(TensorFlow). Due to limited on-chip global buffer capacity
and the number of filters, the input activations, the weights,
and the output activations (pooled MAV value) are not entirely
stored on-chip to compute all the MACs for any given con-
volution layer. The test chip supports MAC computation for
32 filters and a portion of input activation for any given
convolution layer. Thus, multiple iterations are performed,
each time feeding in weights (for 32 filters) and a portion
of input activations from the Xilinx FPGA/FMC board to
the test chip using a 32-bit input data bus and storing the
output activations from the test chip on the Xilinx FPGA
using a 32-bit output data bus. It should be noted that the
input activation and weight address generators/controllers are
designed in such a way that it optimizes for data accesses for
AlexNet CNN, and the off-chip data access address controller
supports only AlexNet CNN. These controllers can be made
flexible for supporting other CNNS for optimal data accesses.

B. Test-Chip Characterization

The functionality of scaling the time residue on the MDL
is validated on the 65-nm test chip. Fig. 20 shows the oscil-
loscope captured waveforms of the MDL nodes—A, M, and
E for the time accumulation and TRS modes. MDL operation
is performed while operating at a 400-mV core voltage and
a 1-V pad voltage. It can be observed that the state vector
on MDL is advanced resulting in transitions during the time
accumulation phase, whereas the state of MDL is changed
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Fig. 20. Experimental demonstration of TRS on bidirectional MDL on 65-nm
test chip.

Fig. 21. Experimental demonstration of the CTD approach while operating
at 0.5-V core Vcc and 1-V pad Vcc on the 65-nm test chip.

to one of the predefined MDL states (using the TRS lookup
table), which has the time residue closest to the actual scaled
(×2) residue. For instance, the actual time residue during the
two TRS phases lies in the range of 0%–25% and 25%–50%
of the MDL full-length delay, which is scaled to 25% and 75%
of the MDL full-length delay values, respectively, to scale the
time residue, as shown in Fig. 20. These waveforms confirm
the successful operation of the TRS approach.

The experimental demonstration of the CTD approach in
COMPAC CNN engine on a 65-nm test chip, while operating
at a 0.5-V core Vcc, a 1-V pad Vcc, and a 1-MHz input clock

Fig. 22. Measured and simulated classification accuracy of the proposed
COMPAC CNN engine for AlexNet CNN on the 1000-class ImageNet data
set.

frequency, is shown in Fig. 21. Four 4-bit input activations
(X1–X4) are encoded in the time domain by selecting the
appropriate PWM signal from the pulse generation module,
as shown by the oscilloscope captures PWM X1–X4. The
stop_pulse control signal is generated on the next clock edge
whenever a negative edge or zero value is observed in the
or_signal (one of the time-encoded input signals with the
maximum pulsewidth). The pulse generation stops on the next
subsequent clock edge, and a new set of inputs is applied
to the pulse-selection module on the next to next subsequent
clock edge by shifting the values from the input activation
shift registers using an apply_inputs control signal. Finally,
the pulse generator starts its operation on the next clock edge,
thereby adding a total time overhead of two clock cycles in
the CTD approach. These waveforms (see Fig. 21) confirm
the successful operation of the proposed concept of the CTD
approach to improve the throughput in time encoding the input
activations.

C. Accuracy, Throughput, and Energy-Efficiency Results

The test-chip measurements on the AlexNet CNN over
ImageNet data set images (randomly chosen 1 image from
each class) achieve a top-five classification accuracy of 76.90%
(77.80%) and a top-one classification accuracy of 52.10%
(52.40%) with (without) the PAC approach (see Fig. 22).
In order to quantify COMPAC’s CNN engine classification
performance on the entire 50 000 ImageNet validation data set
images, the non-ideal circuit effects of MDL are incorporated
into the COMPAC CNN/Tensorflow simulation framework.
The simulation results achieve a top-five classification accu-
racy of 77.15% (77.86%) and a top-one classification accuracy
of 50.79% (51.40%) with (without) the PAC approach (see
Fig. 22), showing a classification accuracy loss within 1%
compared with the 8-bit fixed-point software implementation.

The proposed COMPAC CNN engine achieves a peak
throughput of 0.1278 GOPS on the AlexNet while operating
at a 0.72-V Vcc and a 25-MHz frequency and consuming
0.1224 mW of power (measured), thereby making it suitable
for an energy-efficient edge computation [see Fig. 19(b)].
The throughput is calculated as follows. There are 32 filters
on the test chip, each comprising of four MDLs. Thus,
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TABLE V

ON-/OFF-CHIP ACCESSES FOR THE PROPOSED COMPAC CNN ENGINE WITHOUT AND WITH PAC MODES FOR ALEXNET CNN

128 MDLs are operational at a time, each computing MAC
operation. Since each MAC operation is considered as two
operations (MAC), the total number of operations computed
in parallel is 128 × 2 = 256 operations. In the CTD
approach (case 2), as discussed in Section III-C, the total
time taken to compute a 8-bit input and a weight MAC
operation is 7.15 cycles (to time-encode an 8-bit input) ×7
(sequential accumulation with each weight bit, excluding the
sign bit) = 50.05 cycles. Thus, 256 operations are computed
in 50.05 clock cycles. The total latency overhead due to
on-/off-chip accesses is 0.007 cycles/operation (calculated by
dividing the total on-/off-chip accesses by a product of data
bus width and the total number of MACs). This is calculated as
follows. Without RLC, the off-chip DRAM access is 6.99 MB
to compute 666M MAC operations for AlexNet (see Table V).
The data bus is 32-bit wide. This translates to (6.99 × 1024 ×
1024 × 8)/(32 × 666 × 106) = 0.00275 cycles per MAC. The
weights and input activations are accessed on-chip for each
layer in parallel; hence, the latency overhead is the max (cycles
took to store inputs in registers and cycles took to store weights
in registers) = cycles took to store inputs in registers (since
input access > weight access). Thus, the total clock cycles
consumed to access the input activations for 666 million MAC
operations in AlexNet CNN are 10.94-MB/32-bit wide bus
(see Table V), translating to (10.94 ×1024 ×1024 ×8)/(32 ×
666 × 106) = 0.00431 cycles/MAC. Adding the on-chip and
off-chip access overhead, the latency overhead in accesses is
(0.00275 + 0.00431) = 0.007 cycles per MAC operation.

Thus, the measured throughput of the proposed COMPAC
CNN engine is 256 operations/(50.05+ 0.007 cycles × 40-ns
clock period) = 0.1278 GOPS. The measured peak energy
efficiency is then calculated by dividing the throughput by
the measured on-chip (excluding the leakage and off-chip
DRAM access power), as 0.1278 GOPS/0.1224 mW =
1.044 TOPS/W. It should be noted that the operating frequency
of 25 MHz is limited by the measurement test-infrastructure
and not fundamentally by the MDL-based time-domain
approach. Based on the post place and route simulations,
the proposed COMPAC design is functional up to 800 MHz
(potentially 32× higher throughput).

D. On-/Off-Chip Data Accesses for AlexNet CNN

1) On-Chip Data Accesses: Table V summarizes the
on-chip data accesses of the proposed COMPAC CNN engine

for input activations, weights, and output activations, over all
the five convolution layers of the AlexNet CNN with and
without PAC. The COMPAC data flow optimizes for input
activation/weight reuse and eliminates the partial sum data
movement. COMPAC data flow results in 13.58 MB of on-chip
data accesses to compute 666 million MAC operations for
the convolution layers 1–5 of the AlexNet CNN, leading
to on-chip access of 0.0214 bytes per 8-bit input/weight
MAC operation. As discussed earlier, PAC modes 1 (2) lead
to an on-chip access overhead of 60.53% (8.03%), thereby
leading to 21.80 MB (14.67 MB) of on-chip data accesses.
PAC mode 1 incurs higher overhead since both the weights
and inputs are accessed again, whereas only weights are
accessed again in PAC mode 2, leading to a lower on-chip
access overhead, compared with the baseline (wo/PAC)
approach.

2) Off-Chip Data Accesses: Table V summarizes the
off-chip data accesses of the proposed COMPAC CNN engine
for the input–output activations and weights over all the five
convolution layers of the AlexNet CNN, with and without the
RLC technique. The proposed COMPAC data flow supports
configurable SRAM banks with 67-KB capacity, optimal map-
ping methodology to store the input activations and weights
for any given convolution stride on the SRAM bank, and RLC
techniques, to optimize for the off-chip data accesses. The
proposed COMPAC data flow results in 6.99 MB (5.41 MB)
of off-chip data accesses to compute 666 million MAC oper-
ations for the convolution layers 1–5 of the AlexNet CNN,
leading to off-chip access of 0.011 (0.0085) bytes per 8-bit
input/weight MAC operation without (with) RLC technique,
respectively.

E. Comparison With Prior Energy-Efficient CNN Accelerators

Table VI compares the proposed COMPAC CNN engine
with prior energy-efficient test chips [4], [14]–[18], imple-
menting the AlexNet CNN. The proposed COMPAC CNN
engine occupies the least area despite implementing it at a
relatively old CMOS technology node (65 nm) compared with
other test chips. The proposed COMPAC CNN supports an
on-chip global buffer of the least capacity and achieves an
energy efficiency of 1.044 TOPS/W (comparable and better)
compared with the other test chips at the iso-technology node.

The proposed COMPAC CNN engine results in 86.97%
reduced on-chip accesses (13.58 MB instead of 104.25 MB)
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TABLE VI

COMPARISON OF THE PROPOSED COMPAC CNN ENGINE WITH PRIOR
TEST CHIPS IMPLEMENTING ALEXNET CNN

TABLE VII

COMPARISON OF ON-/OFF-CHIP ACCESSES FOR THE PROPOSED COMPAC
CNN ENGINE WITH EYERISS [4] AND UNPU [17] APPROACHES

TABLE VIII

IMPACT OF THE KEY IDEAS OF THE PROPOSED COMPAC CNN ENGINE

ON PERFORMANCE, ENERGY EFFICIENCY, AND ACCURACY METRICS

compared with an Eyeriss approach [4], considering iso-8-
bit precision (see Table VII). The proposed COMPAC CNN
engine with PAC also results in significant on-chip access sav-
ings: 79.10% and 85.93% in PAC modes 1 and 2, respectively
(see Table VII); thereby making the proposed COMPAC CNN
engine much more energy efficient in terms of on-chip data
access energy compared with Eyeriss [4].

The proposed COMPAC CNN engine results in 29.74%
reduced off-chip accesses (5.41 MB instead of 7.70 MB) com-
pared with an Eyeriss approach [4], with lesser on-chip SRAM
buffer capacity (67 kB instead of 90.75 kB) and considering
iso-8-bit precision (see Table VII). The proposed COMPAC
CNN engine compared with UNPU design [17] has 11.32%
increased off-chip accesses (5.41 MB instead of 4.86 MB) at
iso-8-bit precision. However, the on-chip SRAM capacity of
the UNPU approach is approximately four times that of the
proposed CNN engine (256 instead of 67 kB), which resulted
in reduced off-chip accesses. Thus, the proposed COMPAC

CNN engine is much more energy-efficient in terms of off-chip
data access energy compared with the Eyeriss [4] and UNPU
[17] design approaches under iso-bit width and iso/smaller
on-chip SRAM capacity conditions. However, it should be
noted that the proposed COMPAC CNN engine design has
been optimized for AlexNet, whereas Eyeriss [4] and UNPU
[17] designs are more flexible in terms of supporting various
CNNs (and even RNNs for UNPU).

V. CONCLUSION

In this article, a COMPAC CNN engine for energy-efficient
edge AI computing is demonstrated in 65-nm CMOS technol-
ogy. Four major ideas are proposed in this work, which results
in better performance, accuracy, and overall energy-efficiency
(see Table VIII). The proposed COMPAC CNN engine sup-
ports TRS in the MDL to perform an energy-efficient multi-bit
input and weight MAC operation in the time domain while
still achieving high classification accuracy. A CTD approach
is proposed and deployed in COMPAC to improve throughput
in time encoding of the input activation. The simulation
results on the AlexNet CNN over 1000 ImageNet images
show a significant throughput improvement, consuming on,
an average, 14.71 and 7.15 input clock cycles to time-encode
an 8-bit input activation in two different CTD modes (see
Fig. 9). The PAC technique is proposed to reduce the number
of MACs. The simulation results on the AlexNet CNN over
1000 ImageNet images show up to 31.47% (21.79%) reduction
in the number of non-zero input activations MACs with a
top-five classification accuracy loss of 0.60% (0.90%), top-one
classification accuracy loss of 2.20% (1.90%), and an on-chip
access overhead of 60.53% (8.03%) for the PAC modes 1
(2), respectively (see Fig. 12 and Table III). The tradeoffs
between classification accuracy, reduction in the number of
MACs, and on-chip access need to be carefully comprehended
to achieve optimal overall energy savings. An EEDF for
optimal on-/off-chip memory accesses is also discussed in
this article. COMPAC data flow results in 86.97% reduced
on-chip SRAM accesses and 29.74% reduced off-chip DRAM
accesses compared with an Eyeriss [4], considering iso-8-
bit precision. The 65-nm CMOS test chip implementing the
AlexNet CNN achieved an energy efficiency of 1.044 TOPS/W
and a throughput of 0.1278 GOPS at 720 mV while operating
at 25 MHz. The top-five classification accuracy of 76.90%
measured over 1000 ImageNet images and 77.15% by sim-
ulating over 50 000 ImageNet images is achieved with the
proposed COMPAC approach. The simulation results taken
into account MDL circuit non-idealities over 50 000 Ima-
geNet validation set images show a classification accuracy
loss within 1% compared with the 8-bit fixed-point software
implementation.
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