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The unprecedented growth in deep neural networks (DNN) size has led to massive 
amounts of data movement from off-chip memory to on-chip processing cores in 
modern machine learning (ML) accelerators. Compute-in-memory (CIM) designs 
performing analog DNN computations within a memory array, along with peripheral 
mixed-signal circuits, are being explored to mitigate this memory-wall bottleneck: 
consisting of memory latency and energy overhead. Embedded-dynamic random-access 
memory (eDRAM) [1,2], which integrates the 1T1C (T=Transistor, C=Capacitor) DRAM 
bitcell monolithically along with high-performance logic transistors and interconnects, 
can enable custom CIM designs. It offers the densest embedded bitcell, a low pJ/bit 
access energy, a low soft error rate, high-endurance, high-performance, and high-
bandwidth: all desired attributes for ML accelerators. In addition, the intrinsic charge 
sharing operation during a dynamic memory access can be used effectively to perform 
analog CIM computations: by reconfiguring existing eDRAM columns as charge domain 
circuits, thus, greatly minimizing peripheral circuit area and power overhead. Configuring 
a part of eDRAM as a CIM engine (for data conversion, DNN computations, and weight 
storage) and retaining the remaining part as a regular memory (for inputs, gradients 
during training, and non-CIM workload data) can help to meet the layer/kernel dependent 
variable storage needs during a DNN inference/training step. Thus, the high cost/bit of 
eDRAM can be amortized by repurposing part of existing large capacity, level-4 eDRAM 
caches [7] in high-end microprocessors, into large-scale CIM engines.  
 
This work demonstrates a 65nm CIM prototype that repurposes 1T1C eDRAM columns 
as charge domain circuits to perform DNN computations (Fig. 16.2.1). The key attributes 
of which are, (1) support of in-eDRAM DNN analog computations: such as data 
conversion, dot-product, averaging, pooling, and rectified linear unit (ReLU) activation; 
(2) support for 8b input and 8b signed/unsigned weight multiply-accumulate-averaging 
(MAV) operations; (3) a modified WL controller to configure some of the 1T1C eDRAM 
columns as charge-sharing compute units in CIM mode; (4) performing dot products 
with non-destructive weight reads, thus avoiding weight duplication, extra control logic 
and not requiring a pre-initialized array; (5) an in-eDRAM adaptive dynamic-range 
successive-approximation (SAR) analog-to-digital converter (ADC) using narrow range 
of dot-product distribution to minimize the ADC latency/energy; and (6) quantify eDRAM-
CIM benefits in an advanced eDRAM technology node.  
 
The eDRAM-CIM based DNN computations and dataflow are shown in Fig. 16.2.2. An 
8b digital input, XIN, and its 1’s complement are converted to differential analog voltages, 
Va and Va_bar, which are centered around ½VDD, in two conversion steps (4b/conversion). 
Two 1T1C eDRAM columns are used as digital to analog converters (DACs) for the 
conversion: DACPOS for Va and DACNEG for Va_bar. Next, a MAV operation is performed by 
first reading all 8b weights from the eDRAM array. The most significant bit W7, 
representing the sign bit, is used to select between the differential voltage Va or Va_bar. 
The dot products are performed using 2:1 multiplexers and sampled on the binary scaled 
eDRAM capacitors depending on the weight bit position. Using this method, the 
read/write/refresh operations for the weight array are unaffected. Averaging, ReLU, and 
average/max pooling computations are performed with comparators and additional 1T1C 
eDRAM bitcells, as charge sharing steps, to generate the MAV output (VMAV). Figure 
16.2.3 shows the captured oscilloscope waveforms from the 65nm prototype test-chip 
(Fig. 16.2.7) demonstrating the eDRAM-CIM functionality and the dataflow. 
 
For the eDRAM based DAC design, the lower 4 bits of an 8b digital input, which are 
stored in different portion of the array, are first loaded into a 1T1C DAC column in a 
thermometer scaled fashion (Fig. 16.2.3). Conversion is performed by activating all WLs 
of this column simultaneously. Since the bitcells in this column are initialized just before 
charge sharing, the bitcell charge leakage would be minimal. A similar step is performed 
for the higher 4 bits with a 16C sampling capacitor to reflect its scaling factor. A 
programmable gain amplifier is used to compensate for any potential gain error. Finally, 
Cx1 and Cx16, where the two-step converted analog voltages are stored, are added using 
a charge-sharing step to realize differential analog voltages Va and Va_bar. The measured 
DAC dynamic range matches the simulations for both XIN (Va) and its 1’s complement 
(Va_bar) and the measured dynamic non-linearity (DNL) is within 1 LSB at lower input 
values.   

In the final step, a SAR ADC is realized by comparing VMAV with a reference voltage  
(VREF), which is successively refined in each SAR step by initializing the DAC column 
bitcells appropriately before a charge sharing operation (Fig. 16.2.4). To mitigate the 
ADC energy and area overheads, a 1T1C eDRAM-based adaptive dynamic-range ADC is 
devised, by leveraging the narrow VMAV distribution. By trimming infrequent appearing 
VMAV values and skipping the subsequent SAR steps, ADC energy is reduced by  
1.14× at 60% clipping threshold. The 1T1C bitcells in the VREF generation DAC column 
can be set to be always ON/OFF while being initialized, such that VREF can be bounded 
between adjustable low and high voltage bounds (VLB and VHB ) depending on the VMAV 
distribution for a specific convolution layer. For illustration, in Fig. 16.2.4, ADC dynamic 
range is set between ¼VDD and ¾VDD. This configuration saturates the quantization of 
very low or very high VMAV at 64 or 191 (out of 256) codeword values, respectively, 
without undergoing subsequent SAR cycles. The VMAV values, within the bounded range, 
are quantized using the remaining non-clipping 128 levels. In addition, a 2b/cycle 
conversion technique is implemented using 3VREF comparisons/cycle; thereby, 
shortening the ADC conversion latency to minimize the effect of VMAV capacitor leakage 
during SAR cycles. This improves the adaptive ADC throughput by 1.14× while incurring 
a 3.79% (1.21%) drop in Top-1 (Top-5) CIFAR-10 classification accuracy using 8b 
integer operands.  
 
Figure 16.2.5 shows the simulated and measured Top-1 and Top-5 CIFAR-10 
classification accuracy as a function of the ADC clipping threshold using a neural network 
having 4 convolution, 2 pooling, and 2 fully connected layers. The ADC clipping decision 
incurs extra cycles for comparing VMAV with VLB and/or VHB thresholds, and incurs 
additional energy for low clipping thresholds. As clipping threshold is increased to an 
optimal point (0.6) the ADC energy drops by 1.14×. 
 
Figure 16.2.6 compares the eDRAM-CIM design with prior multi-bit CIM designs using 
the CIFAR-10 dataset [3-6]. The test-chip measurement setup, die-micrograph, macro 
area, and energy breakdown are shown in Fig. 16.2.7. In the scalability analysis, the 
presented eDRAM-CIM approach when adopted to an advanced eDRAM technology node 
[2,7], shows promising energy efficiency and throughput metrics; suggesting its 
potential for deployment in large-scale energy-efficient CIM  designs to mitigate the 
memory bottleneck challenges. 
 
Acknowledgement: 
The authors would like to thank Clifford Ong for technical discussions and Intel for  
funding support.  
 
References: 
[1] G. Fredeman et al., “A 14nm 1.1Mb Embedded DRAM Macro with 1ns Access,” IEEE 
JSSC, vol. 51, no. 1, pp. 230–239, Jan. 2015. 
[2] F. Hamzaoglu et al., “A 1Gb 2GHz 128Gb/s Bandwidth Embedded DRAM in 22nm 
Tri-Gate CMOS Technology,” IEEE JSSC, vol. 50, no. 1, pp. 150–157, Jan. 2014. 
[3] J. Su et al., “A 28nm 64Kb Inference-Training Two-Way Transpose Multibit 6T  SRAM 
Compute-in-Memory Macro for AI Edge Chips,” ISSCC, pp. 240–242, 2020. 
[4] X. Si et al., “A 28nm 64Kb 6T SRAM Computing-in-Memory Macro with 8b MAC 
Operation for AI Edge Chips,” ISSCC, pp. 246–248, 2020. 
[5] C.  Xue et al., “A 22nm 2Mb ReRAM Compute-in-Memory Macro with 121-
28TOPS/W for Multibit MAC Computing for Tiny AI Edge Devices,” ISSCC, pp. 244–246, 
2020. 
[6] S. K. Gonugondla et al., “A 42pJ/decision 3.12TOPS/W robust in-memory machine 
learning classifier with on-chip training,” ISSCC, pp. 490-492, 2018. 
[7] N. Kurd et al., “Haswell: A Family of IA 22nm Processors,” IEEE JSSC, vol. 50, no. 
1, pp. 49-58, Jan. 2015. 
[8] A. Biswas et al., “CONV-SRAM: An Energy-Efficient SRAM With In-Memory Dot-
Product Computation for Low-Power Convolutional Neural Networks,” IEEE JSSC, vol. 
54, no. 1, pp. 217-230, Jan. 2019.

978-1-7281-9549-0/21/$31.00 ©2021 IEEE



249DIGEST OF TECHNICAL PAPERS  •

ISSCC 2021 / February 17, 2021 / 9:23 AM

Figure 16.2.1: Big picture: compute-in-SRAM and compute-in-eDRAM comparison, 
design highlights, high-level array structure, and step-by-step eDRAM-CIM 
dataflow.

Figure 16.2.2: Overall circuit schematic of eDRAM-CIM performing majority of DNN 
computations: digital-to-analog conversion (DAC), multiplication, averaging, 
pooling, ReLU, and analog-to-digital conversion (ADC).

Figure 16.2.3: eDRAM-CIM dataflow demonstration with oscilloscope waveforms, 
in-eDRAM DAC circuit schematics, functional oscilloscope waveforms, simulated 
and measured DAC characteristics including DNL.

Figure 16.2.5: Simulated and measured CIFAR-10 dataset Top-1 and Top-5 
classification accuracy variation with the in-eDRAM ADC clipping threshold along 
with neural network details.

Figure 16.2.6: Comparison with prior works supporting multi-bit input and weight 
integer operands and using CIFAR-10 dataset. FoM is calculated based on input 
precision, weight precision and energy efficiency.

Figure 16.2.4: In-eDRAM SAR ADC with VREF generation, ADC operation waveforms, 
ADC characteristics and DNL, VMAV distribution with and without clipping and its 
effect on ADC accuracy, throughput and energy.
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Figure 16.2.7: Test-chip measurements summary, characterization setup, die 
micrograph with functional blocks highlighted, area and energy/MAV breakdown 
and scaling analysis to 22nm tri-gate eDRAM technology.


