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The unprecedented growth in deep neural networks (DNN) size has led to massive
amounts of data movement from off-chip memory to on-chip processing cores in
modern machine learning (ML) accelerators. Compute-in-memory (CIM) designs
performing analog DNN computations within a memory array, along with peripheral
mixed-signal circuits, are being explored to mitigate this memory-wall bottleneck:
consisting of memory latency and energy overhead. Embedded-dynamic random-access
memory (eDRAM) [1,2], which integrates the 1T1C (T=Transistor, C=Capacitor) DRAM
bitcell monolithically along with high-performance logic transistors and interconnects,
can enable custom CIM designs. It offers the densest embedded bitcell, a low pJ/bit
access energy, a low soft error rate, high-endurance, high-performance, and high-
bandwidth: all desired attributes for ML accelerators. In addition, the intrinsic charge
sharing operation during a dynamic memory access can be used effectively to perform
analog CIM computations: by reconfiguring existing eDRAM columns as charge domain
circuits, thus, greatly minimizing peripheral circuit area and power overhead. Configuring
a part of eDRAM as a CIM engine (for data conversion, DNN computations, and weight
storage) and retaining the remaining part as a regular memory (for inputs, gradients
during training, and non-CIM workload data) can help to meet the layer/kernel dependent
variable storage needs during a DNN inference/training step. Thus, the high cost/bit of
eDRAM can be amortized by repurposing part of existing large capacity, level-4 eDRAM
caches [7] in high-end microprocessors, into large-scale CIM engines.

This work demonstrates a 65nm CIM prototype that repurposes 1T1C eDRAM columns
as charge domain circuits to perform DNN computations (Fig. 16.2.1). The key attributes
of which are, (1) support of in-eDRAM DNN analog computations: such as data
conversion, dot-product, averaging, pooling, and rectified linear unit (ReLU) activation;
(2) support for 8b input and 8b signed/unsigned weight multiply-accumulate-averaging
(MAV) operations; (3) a modified WL controller to configure some of the 1T1C eDRAM
columns as charge-sharing compute units in CIM mode; (4) performing dot products
with non-destructive weight reads, thus avoiding weight duplication, extra control logic
and not requiring a pre-initialized array; (5) an in-eDRAM adaptive dynamic-range
successive-approximation (SAR) analog-to-digital converter (ADC) using narrow range
of dot-product distribution to minimize the ADC latency/energy; and (6) quantify eDRAM-
CIM benefits in an advanced eDRAM technology node.

The eDRAM-CIM based DNN computations and dataflow are shown in Fig. 16.2.2. An
8b digital input, Xy, and its 1’s complement are converted to differential analog voltages,
V,and V, ., which are centered around %2/ in two conversion steps (4b/conversion).
Two 1T1C eDRAM columns are used as digital to analog converters (DACs) for the
conversion: DACpqs for V, and DACygg for V; uar. Next, @ MAV operation is performed by
first reading all 8b weights from the eDRAM array. The most significant bit W,
representing the sign bit, is used to select between the differential voltage V, or V, ..
The dot products are performed using 2:1 multiplexers and sampled on the binary scaled
eDRAM capacitors depending on the weight bit position. Using this method, the
read/write/refresh operations for the weight array are unaffected. Averaging, ReLU, and
average/max pooling computations are performed with comparators and additional 1T1C
eDRAM bitcells, as charge sharing steps, to generate the MAV output (Vjyay). Figure
16.2.3 shows the captured oscilloscope waveforms from the 65nm prototype test-chip
(Fig. 16.2.7) demonstrating the eDRAM-CIM functionality and the dataflow.

For the eDRAM based DAC design, the lower 4 bits of an 8b digital input, which are
stored in different portion of the array, are first loaded into a 1T1C DAC column in a
thermometer scaled fashion (Fig. 16.2.3). Conversion is performed by activating all WLs
of this column simultaneously. Since the bitcells in this column are initialized just before
charge sharing, the bitcell charge leakage would be minimal. A similar step is performed
for the higher 4 bits with a 16C sampling capacitor to reflect its scaling factor. A
programmable gain amplifier is used to compensate for any potential gain error. Finally,
C,; and G,y where the two-step converted analog voltages are stored, are added using
a charge-sharing step to realize differential analog voltages V, and V, ... The measured
DAC dynamic range matches the simulations for both X,y (V) and its 1’s complement
(V;_par) @and the measured dynamic non-linearity (DNL) is within 1 LSB at lower input
values.

In the final step, a SAR ADC is realized by comparing W,y With a reference voltage
(Vier), which is successively refined in each SAR step by initializing the DAC column
bitcells appropriately before a charge sharing operation (Fig. 16.2.4). To mitigate the
ADC energy and area overheads, a 1T1C eDRAM-based adaptive dynamic-range ADC is
devised, by leveraging the narrow Vj,y distribution. By trimming infrequent appearing
Vv Vvalues and skipping the subsequent SAR steps, ADC energy is reduced by
1.14x at 60% clipping threshold. The 1T1C bitcells in the Ve generation DAC column
can be set to be always ON/OFF while being initialized, such that Ve can be bounded
between adjustable low and high voltage bounds (1 and V) depending on the Vyay
distribution for a specific convolution layer. For illustration, in Fig. 16.2.4, ADC dynamic
range is set between Ylp, and %14, This configuration saturates the quantization of
very low or very high V., at 64 or 191 (out of 256) codeword values, respectively,
without undergoing subsequent SAR cycles. The Vj,ay values, within the bounded range,
are quantized using the remaining non-clipping 128 levels. In addition, a 2b/cycle
conversion technique is implemented using 3Vze comparisons/cycle; thereby,
shortening the ADC conversion latency to minimize the effect of 4, capacitor leakage
during SAR cycles. This improves the adaptive ADC throughput by 1.14x while incurring
a3.79% (1.21%) drop in Top-1 (Top-5) CIFAR-10 classification accuracy using 8b
integer operands.

Figure 16.2.5 shows the simulated and measured Top-1 and Top-5 CIFAR-10
classification accuracy as a function of the ADC clipping threshold using a neural network
having 4 convolution, 2 pooling, and 2 fully connected layers. The ADC clipping decision
incurs extra cycles for comparing V. with Vg and/or Vg thresholds, and incurs
additional energy for low clipping thresholds. As clipping threshold is increased to an
optimal point (0.6) the ADC energy drops by 1.14x.

Figure 16.2.6 compares the eDRAM-CIM design with prior multi-bit CIM designs using
the CIFAR-10 dataset [3-6]. The test-chip measurement setup, die-micrograph, macro
area, and energy breakdown are shown in Fig. 16.2.7. In the scalability analysis, the
presented eDRAM-CIM approach when adopted to an advanced eDRAM technology node
[2,7], shows promising energy efficiency and throughput metrics; suggesting its
potential for deployment in large-scale energy-efficient CIM designs to mitigate the
memory bottleneck challenges.
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Figure 16.2.1: Big picture: compute-in-SRAM and compute-in-eDRAM comparison,
structure, and step-by-step eDRAM-CIM
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Figure 16.2.3: eDRAM-CIM dataflow demonstration with oscilloscope waveforms,

in-eDRAM DAC circuit schematics, functional oscilloscope waveforms, simulated

and measured DAC characteristics including DNL.
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Figure 16.2.5: Simulated and measured CIFAR-10 dataset Top-1 and Top-5
classification accuracy variation with the in-eDRAM ADC clipping threshold along

with neural network details.
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Figure 16.2.2: Overall circuit schematic of eDRAM-CIM performing majority of DNN
computations: digital-to-analog conversion (DAC), multiplication, averaging,

pooling, RelLU,

and analog-to-digital conversion (ADC).
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Figure 16.2.4: In-eDRAM SAR ADC with Vg generallon, ADC operation waveforms,
ADC characteristics and DNL, Vy,, distribution with and without clipping and its
effect on ADC accuracy, throughput and energy.
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Test-chip
Summary
Technology 65nm CMOS
Supply Voltage (V) 112
Total eDRAM Size 16Kb
Bit-cell Size (um’) 22.08
Unit eDRAM Capacitor Size (fF) 13
N WMetal-oxide- | Capacitor-over-
DRAM Capacitor Type metal (MOM) | bitline (COB)
450 MHz
Input Clock Frequency (mz;g:n'ﬁd)
(simulation)
SeDRAM-CIM Macro Area (mm?) 57
GOPS/mm? 26
MAV Operation Latency (ns) 10 (2 cycles)
Input, Weight, Output Precision 8b, 8l
Dataset CIFAR-10
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Figure 16.2.7: Test-chip measurements summary, characterization setup, die
micrograph with functional blocks highlighted, area and energy/MAV breakdown

and scaling analysis to 22nm tri-gate eDRAM technology.
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