IEEE Custom Integrated Circuits Conference

3D-Split SRAM: Enabling Generational Gains in Advanced CMOS

R. Mathur^{1,3}, M. Bhargava¹, H. Perry¹, A. Cestero², F. Frederick¹, S. Hung¹, C. Chao¹, D. Smith², D. Fisher², N. Robson², X. Xu¹, P. Chandupatla¹, R. Balachandran¹, S. Sinha¹, B. Cline¹, J. P. Kulkarni³

¹Arm Inc, Austin, TX, USA. ²GLOBALFOUNDRIES, NY, USA. ³University of Texas at Austin, TX, USA.

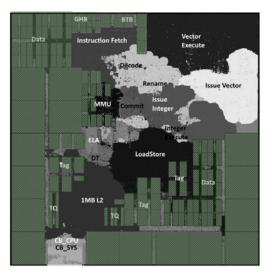
03/19/2021

Presenter Bio

Rahul Mathur is currently pursuing his Ph.D. at the University of Texas at Austin, TX, USA. He is pursuing a Ph.D. part-time while working at ARM Austin where he has been since 2012. At Arm, he has led multiple memory compilers at sub-10nm foundry platforms. He has filed 15 US patents and serves in the Patent Review Committee of Arm. His research interest is System-Circuit-Device Design Methodologies for 3D-IC. He is a senior member of IEEE.

Outline

- 2D SRAM Challenges
- Motivation for 3D-Split SRAM
- 3D-BEOL
- 3D Split-SRAM Macro Design
- Measurement Results
- Summary



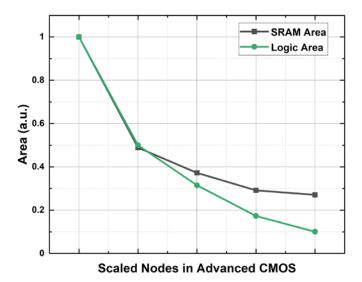
2D SRAM Challenges

Capacity demands

- Data deluge arising AI, IoT, automotive etc.
- Increasing demand for larger SRAM capacities.
- SRAM area dominates the floorplan of modern CPUs.

Floorplan of Arm CPU in a FinFET technology¹. Caches occupy ~50% area (green highlight).

¹R. Christy et al., 2020 ISSCC, San Francisco, CA, USA, 2020, pp. 148-150

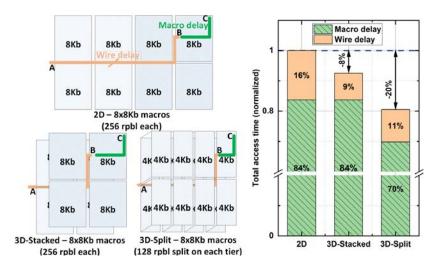


2D SRAM Challenges

Scaling trends

- SRAM scaling challenged by:
 - Gradual shrinking of critical pitches
 - High contact resistance
 - Constrained design rules
 - WL/BL resistance
- To extend SRAM scaling gains:
 - Stacking standalone SRAMs
 - 3D-Split-SRAM

Logic still scales at ~40-45% per node, SRAM scaling lags at ~20-25%.

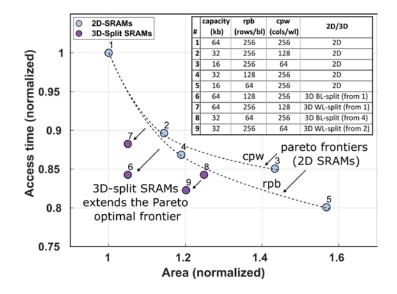


MOTIVATION

3D Stacked Vs 3D-Split

- 3D-Stacked SRAM: Memory macro on top of each other.
 - Access-time gain ~8%
- 3D-Split SRAM: splitting the WL/BL of a SRAM block across 3D tiers.
 - Access-time gain ~20%
 - Reduction in BL/WL RC

2D & 3D configurations of 64Kb L1 cluster. Simulation in 12nm @SS/(V_{NOM} -10%)/-40°C. Wire delay ~200ps/mm.

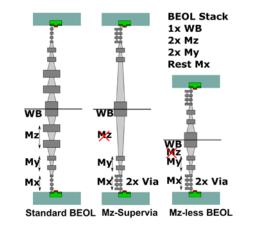


MOTIVATION

2D Vs 3D-Split

- 3D-Split SRAM Vs 2D
 - Fast access-time
 - Low area
 - Lower leakage power
- Feasibility and efficacy depend on:
 - Pitch restrictions of 3D-BEOL
 - RC parasitics of 3D-BEOL

Access time vs Area for 2D and 3D-split macros.

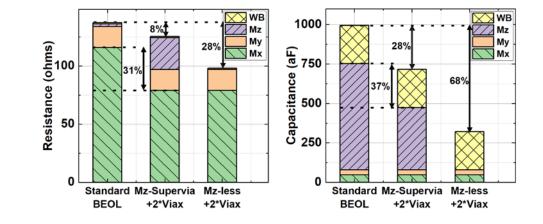


3D-BEOL

Extraction study

- Goal: Analyze metal stack in 12nm FinFET
 - Assess the RC overhead of 3D-BEOL
 - identify opportunities of 3D-BEOL RC improvement.
- Two approaches to optimize BEOL RC for 3D-Split SRAMs:
 - M_z-Supervia
 - M_z-less BEOL

BEOL	Description
Standard	Default. Multiple M_x , two M_y and two M_z layers.
M _z -Supervia	M_{χ} limited to 0.1 μm x 0.1 μm + 2X vias in M_{χ} layers.
M _z -less BEOL	M _z layers eliminated + 2X vias in M _x layers.

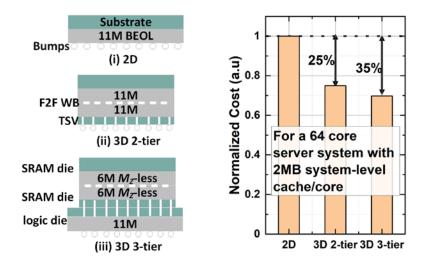


3D-BEOL

Extraction study

- M_x contribute 84% of the total resistance.
 - $2x \text{ VIA}_x$ vias reduces resistance ~31%
- M_z constitute 68% of the total capacitance
 - Not used in SRAM signal routing

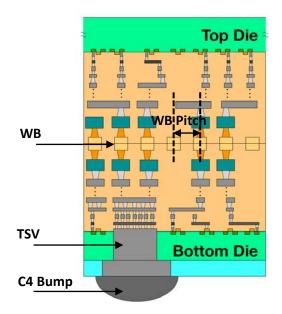
RC analysis with proposed DTCO of 3D-BEOL



Cost Analysis

- SRAMs typically only require:
 - Mx layers for signals
 - My layers for power
 - Mz-less BEOL ideal for 3D-Split SRAMs
- Cost reduction ~25-35%:
 - smaller (better yielding) dies
 - simplified metal stack
 - optimized process

Cost-comparison at 12nm of a 3-tier system.

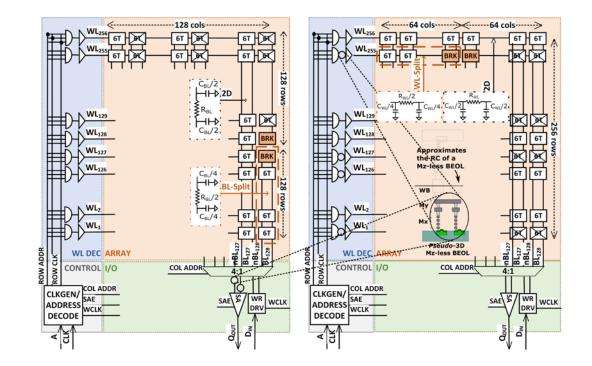


3D-BEOL

Wafer bond (WB) Pitch recommendation

- Steady improvement in WB technology finer WB pitches.
- Pitch limitations can be alleviated:
 - Staggering the locations of WB
 - Requires extra routing
- WB pitch requirement
 - 3D-split SRAMs must be ~1 μm
 - GF 12nm 3D test-vehicle WB pitch ~5.76 μm
 - Pitches on ~1 μ m on foundry roadmap.

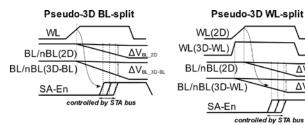
3D-stack cross-section



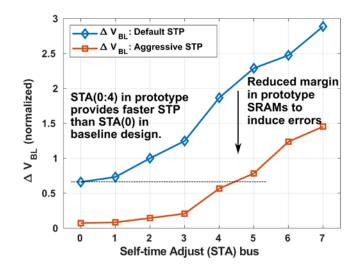
Integrated 2D and pseudo 3D-Split SRAM

Macro Design

- Layout of 2D SRAM reconfigured.
 - Capture effects of BLsplit and the WL-split 3D SRAM
 - A split by inserting break cells in rows or columns.
 - Effect of MZ-less BEOL by inserting a via structure and routing it back from top of M_Y.


Integrated 2D and pseudo 3D-Split SRAM

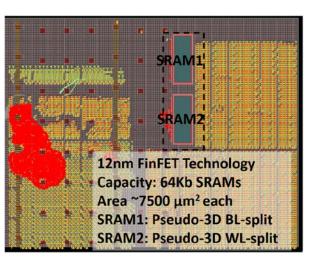
 $\Delta V_{BL_{2D}}$


ΔV_{BL_3D-WL}

Macro Design

- Margins controlled by Self-Time Path (STP).
 - STP re-tuned to push the margins.
- STP is also externally adjustable by the Self-Time Adjust (STA) bus.

Simulated read margin (ΔVBL)

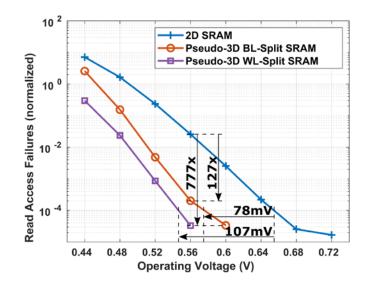


Integrated 2D and pseudo 3D-Split SRAM

12nm Testchip with GF

- Integrated macro
 - Even address for 2D row.
 - Odd address for 3D-split row.
- Enables accurate comparison
 - Proximity of design points.
 - Less impact of on-chip process variation.
 - Bitcell share same peripheral circuits.

Physical layout view of prototype SRAM macros fabricated in 12nm FinFET process.

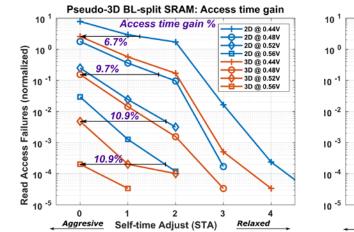


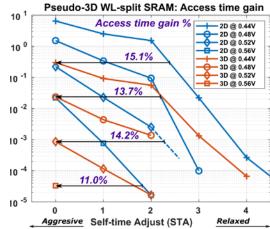
$\textbf{Results} - \textbf{V}_{\text{MIN}} \textbf{ improvement}$

Measured data

- Reduction in read access failures @0.56V
 - 127x for BL-split
 - 777x for WL-split
- Iso-read failure probability, $V_{\mbox{\scriptsize MIN}}$ gain:
 - 78mV for BL-split
 - 107mV for WL-split
- V_{MIN} gain can be traded off for performance.

Read errors (normalized) across 58 dies (2.7 Mb of SRAM) at room temperature.




Results – Access time improvement

Measured data

Gain in access time estimated by STA setting shift for iso-errors.

- At iso-read failure probability, performance gain:
 - BL-split: 6.7-10.9%.
 - WL-split: 11-15.1%
- The measured access time gain matches simulation estimate of ~15%.

Summary

- A comprehensive analysis of 3D-Split SRAM in an advanced CMOS node.
- Two separate approaches for reducing 3D-BEOL parasitics are proposed:
 - Mz-Supervia
 - Mz-less
- WB pitch requirements to enable 3D-Split SRAM shared.
- Measurement results from prototype 12nm FinFET SRAM macros, capturing effects of BLand WL-split designs and Mz-less 3D-BEOL are presented:
 - Vmin reduction ~107mV
 - Performance gain ~15%
 - BL-split SRAMs offer \sim 14% lower power due to reduced BL capacitance.
- Gains equivalent to the performance gains from one technology node dimensional scaling.

