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AI edge devices require local intelligence for the concerns of latency 
and privacy. Given the accuracy and energy constraints, low-power 
convolutional neural networks (CNNs) are gaining popularity. To  
alleviate the high memory access energy and computational cost of 
large CNN models, prior works have proposed promising 
approaches including in-memory-computing (IMC) [1], mixed-signal 
multiply-and-accumulate (MAC) calculation [2], and reduced 
resolution network [3]-[4]. With weights and activations restricted to 
±1, binary neural network (BNN) combining with IMC greatly 
improves the storage and computation efficiency, making it well-
suited for edge-based applications, and has demonstrated state-of-
the-art energy efficiency in image classification problems [5]. 
However, compared to full resolution network, BNN requires larger 
model thus more operations (OPs) per inference for a certain 
accuracy. To address such challenge, we propose a mixed-signal 
ternary CNN based processor featuring higher energy efficiency than 
BNN. It confers several key improvements: 1) the proposed ternary 
network provides 1.5-b resolution (0/+1/-1), leading to 3.9x 
OPs/inference reduction than BNN for the same MNIST accuracy; 2) 
a 1.5b MAC is implemented by VCM-based capacitor switching 
scheme, which inherently benefits from the reduced signal swing on 
the capacitive DAC (CDAC); 3) the VCM-based MAC introduces 
sparsity during training, resulting in lower switching rate. With a 
complete neural network on chip, the proposed design realizes 97.1% 
MNIST accuracy with only 0.18uJ per classification, presenting the 
highest power efficiency for comparable MNIST accuracy. 
Fig. 1 shows the chip architecture and neural network topology of the 
proposed accelerator. The data path consists of 1 digital CNN layer 
at the input, 2 mixed-signal CNN layers followed by max-pooling 
layers, 1 SRAM bank to store image data, and 1 mixed-signal fully 
connected (FC) layer at the end. All weights/biases are trained on 
TensorFlow and loaded to on-chip memory before classification. The 
weight memory is integrated with computations to mitigate the data 
movement cost. To exploit hardware parallelism and regularity, the 
number of channels for each CNN layer is 32 with 2×2 filters. Before 
feeding into the chip, the 8-bit pixel values from MNIST dataset will 
be quantized to a tri-level picture and zero-padding to 30x30. The 
input layer CONV1 takes the ternarized data and compute the results 
digitally. The 128 pixels image data for the next convolution layer are 
generated in one clock cycle by stacking four 32-channel 
computational logics. Once the 256b data is ready at the CONV1 
output, the 32-channel parallel switched-capacitor (SC) neuron 
CONV2 will process the data then pass it into the max-pooling logic. 
The results are stored in SRAM for CONV3, which is implemented 
the same way as CONV2. Then CONV3 outputs are accumulated in 
the FC layer 32 channels. Once data loading is completed, the final 
result is computed with the weights of all the digits. 
Fig. 2 shows the comparison between the mixed-signal BNN and the 
proposed ternary neural network (TNN). The weighted sum of 
multiplication results from filters and input pixels are computed by 
charge distribution, then the voltage at the charge conservation node 
passes into a comparator, which acts as the step type activation. In 
the binary case, +1/-1 are mapped as VREFP and VREFN in voltage 
domain, and the 2-level quantization is done by one comparator. In 
the proposed tri-level computation, 0/+1/-1 are represented by VCM, 
VREFP, VREFN, respectively. Based on simulation, the introduction of 
VCM reduces voltage swing on CDAC, thus providing 31% MAC 
power saving. In addition, extra sparsity can be introduced during 
training by enforcing more zero weights, resulting in further switching 
activity reduction. The tri-level quantization at the summing node is 
performed with a pair of differential comparators. The local 1.5b 
multiplier consists of 2 SRAM cells with stored weights, 2 logic gates 
as activation inputs, and a 1.5-b CDAC output. The 2 standard 6T 
SRAM cells are directly connected to computation logic and remain 
stationary during inference, amortizing the power from charging bit-
line. With 0/+1/-1 coded as 0X/10/11, the 1.5b multiplication is 
performed efficiently by 1 AND and 1 XOR. Two comparators with 

positive/negative thresholds 
VREF+/VREF- perform ternary 
activation function. According to 
Monte-Carlo simulation, the 
comparator exhibits an offset with 
8.1mV standard deviation. One-
time foreground calibration is 
performed to suppress the offsets 
to be within 1LSB. The calibration 
bits are loaded in SRAM during chip power-up. The convolution of a 
32-channel image with a 2×2×32 filter requires 128 capacitors, and 
32 capacitors are employed for the bias section. 
Fig. 3 shows the data flow from the output of CONV1 to the input of 
CONV3. To boost the area efficiency, the 1.5b multiplier is designed 
with maximum density. The digital logic are routed with M1 to M3, 
while M4 to M6 above the transistors are used to implement the 
CDAC. Once 1 channel of MAC calculation and activation is 
completed, the image pixel is latched at comparator output, and then 
stored in 1 of the 4 D flip-flops. When 4 of the 32-channel pixels are 
all computed and loaded into the registers, the max-pooling layer will 
be enabled to generate results. A 1352 bytes, 64b wide SRAM is 
placed at the output of max-pooling layer to store the entire frame of 
CONV2 output image with a size of 13×13×32. Before this image is 
picked up by CONV3 and apply sliding window convolution, an 
interchange multiplexer is implemented to reduce memory access by 
2x. For CONV3, the data flow is the same as CONV2, and the 
12×12×32 output image will be downsampled to 6×6×32 for FC layer. 
Although demonstrated with 4-layer, 32-ch architecture for 
lightweight applications, the proposed ternary neuron can be 
extended to fit in deeper neural network models. 
Fig. 4 illustrates the architecture of FC layer. Each row represents 
one 32-channel image pixel. A total of 1152 pixels will be loaded after 
36 activations of the previous max-pooling layer. All weights memory 
for number 0~9 is stored near multipliers and will be selected 
sequentially. Raw prediction logits are mapped to the charge on C1 
/C2. In the first cycle, the voltage representing number 0 will be 
redistributed and stored on C1, then the weights for number 1 are 
selected and the neurons acts again leaving the resulted voltage on 
C2. Based on the compared results, C1 or C2 with higher voltage is 
kept, and the other one will be reset for storing the logit of the next 
number. After 9 comparisons, the final classification result is chosen 
as the number leaving highest voltage on C1/C2. 
The prototype, fabricated in 40nm LP CMOS, occupies an active 
area of 0.96 mm2. Measurement results, power breakdown and 
testing setup are shown in Fig. 5. The accuracy is evaluated on 
MNIST dataset. This chip operates at 549 FPS with 0.7V DVDD, 
0.8V AVDD, and 0.9V VREFP, leading to 0.18uJ/classification. The 
measured classification accuracy is 97.1%, which is 0.8% lowered 
than the ideal software model due to circuit noise, mismatch, and 
charge leakage. This work efficiently realizes the wide vector 
summation in charge domain, while [1][3] suffer from high switched 
capacitance of digital adders, and [4] consumes static current. 
Compared to [2] and [5] using BNN, it benefits from fewer 
OPs/inference and less switching activity. Moreover, this work 
performs all operations on chip, while [1],[3]-[5] have only MAC 
operation. It consumes only 0.18uJ total energy for MNIST 
classification, which is the smallest to our best knowledge for 
comparable classification accuracy. 
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Fig. 1.  Architectural diagram of the proposed chip. 
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Fig. 2. Switch-capacitor ternary neuron architecture. 
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Fig. 3. Datapath from CONV1 output to CONV3 input. 
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