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https://www.keirex.com/e/Kti072_SecurityMeasure_e.html

Side Channel Analysis

• Easy physical access 

• Inexpensive 

• High successful rate

https://www.keirex.com/e/Kti072_SecurityMeasure_e.html
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Motivation: Susceptibility to the ground bounce
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• Ball grid array (BGA) pins near to crypto core may reveal circuit VSS bounce that can 
be used for side-channel analysis
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Simulation flow

15

𝑁e = No. of encryptions
𝑁n = No. of VSS nodes



Simulation results on a 128-bit AES computing core

16

• Correlation attack shows key byte 1 
is revealed using 6000 traces
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• Implement a 128b Advanced Encryption 
standard (AES) core

• Simulated VSS bounce waveforms for 
correlation attack
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Principle of Galvanic Isolation (GI)

• Isolates two electrical systems, preventing direct current flow and breaking ground loops 
between two circuits. 

18

• Transformer:

- Primary (input) side potentially lethal transient 

voltages and currents 

- Secondary side is completely isolated for safety

N:1

SecondaryPrimary

Transformer: Isolated 

energy transfer



Principle of Galvanic Isolation (GI)

• Isolates two electrical systems, preventing direct current flow and breaking ground loops 
between two circuits. 
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• Transformer:

- Primary (input) side potentially lethal transient 

voltages and currents 

- Secondary side is completely isolated for safety

- Flyback converter:

- Inductor based Galvanic Isolation topology

- Protecting low voltage devices from high 

voltages transients
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• Apply capacitor based Galvanic Isolation 
topology to minimize ground bounce 
susceptibility

• Primary side: external power domain

• Secondary side: crypto core power 
domain

Proposed GI AES
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22

Galvanic Isolation

Crypto Logic 

Compute Domain

External 

Power Domain

L1 L2

GND1 GND2

VTOP

VBOTVSS

VCC

Capacitor 

Bank

128 bit 

AES 

Core

Scan Chain Interface 

Power Management Unit Control

Data



• Apply capacitor based Galvanic Isolation 
topology to minimize ground bounce 
susceptibility

• Primary side: external power domain
• Scan chain Interface

• Power management unit

• Secondary side: crypto core power 
domain

• Capacitor bank

• A 128-bit AES core

Proposed GI AES
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Galvanic isolation decouples AES 
engine compute domain and 
external power domain completely
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• 3D illustration:

- AES in deep N-well, isolated P-
substrate, powered by 𝑉𝑇𝑂𝑃 𝑉𝐵𝑂𝑇

- Capacitor bank (*2 layers drawn for 
illustration purpose)

- PMU and scan chain interface

Proposed GI AES

24

*MoM capacitors (only two metal layers are 
shown for illustration purpose)

3D illustration of AES in deep 
N-well and capacitor bank, 

PMU and scan chain interface



GI-AES Architecture: System overview
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• Scan chain interface for data exchanging

GI-AES Architecture: Main blocks

26

Scan chain



• A 128b AES Engine for data encryption

• Operating in 𝑉𝑇𝑂𝑃/𝑉𝐵𝑂𝑇 power domain

GI-AES Architecture: Main blocks

27

AES Engine



• Capacitance based galvanic isolation

• Power AES in 𝑉𝑇𝑂𝑃/𝑉𝐵𝑂𝑇 domain during encryption

GI-AES Architecture: Main blocks

28

Capacitor 
Bank



• Control capacitor bank to maintain functional 𝑉𝑇𝑂𝑃/𝑉𝐵𝑂𝑇 voltage range

GI-AES Architecture: Main blocks

29

PMU



GI-AES Architecture: Design techniques

• Header and footer transistors: decouple 𝑉𝑇𝑂𝑃/𝑉𝐵𝑂𝑇 rail from VCC/VSS rail

• Isolate the external and the internal power domain (AES).
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• Deep N well: covering the AES engine, isolating the local substrate

AES ground is completely isolated

GI-AES Architecture: Design techniques

31
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GI-AES Architecture: Design techniques

• Capacitor banks: charge pump based voltage doubler circuit

32
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• 𝐶0 as the main capacitor and multiple smaller capacitor pairs

• Multi-stage voltage doubler circuit

GI-AES Architecture: Design techniques
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• Three operation phases: Precharge, Compute, Charge sharing

GI-AES Architecture: Design techniques
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• Three operation phases: Precharge, Compute, Charge sharing

GI-AES Architecture: Design techniques
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• Capacitor bank powers AES Core
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• Three operation phases: Precharge, Compute, Charge sharing

GI-AES Architecture: Design techniques
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3

Precharge phase:
• Header and footer are connected
• All capacitors are fully charged to VCC/VSS

Compute phase:
• Header and footer are disconnected
• Capacitor bank powers AES Core
• Voltage boostings are triggered sequentially

Charge sharing
• Discharge capacitors to mask real charge 

consumption
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GI-AES Architecture: Design techniques

37

4

4• Dual rail sense amp: trigger the next boosting stage if 𝑉𝑇𝑂𝑃 and 𝑉𝐵𝑂𝑇 are below 𝑉𝑟𝑒𝑓

• Current signature remain the same in each cycle, not prone to SCA



GI-AES Architecture: Design techniques

• Charge share transistor: discharges all the capacitors to certain predefined voltage.

• Uniform on 𝑉𝑇𝑂𝑃 and 𝑉𝐵𝑂𝑇 before each precharge cycle

38
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GI-AES Architecture: Design techniques

Dual rail sense amp (uniform current signature) as a level shifter to transfer signal 
from voltage level VTOP/VBOT to voltage level VCC/VSS .

39
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Die photo, Measurement Summary

• Technology: 40 𝑛𝑚 CMOS

• Power@1.2𝑉: 23 𝑚𝑊

• Area(𝑚𝑚2):
• AES Core 0.032

• Level Shifter 0.00795

• PMU 0.00136

• Capacitor Switches 0.00429

• Capacitor Bank 0.178

• Total Area 0.2236

41
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VSS Bounce SCA Measurement: Setup

• VSS bounce waveforms and cipher text collected by the oscilloscope are used for SCA
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• Oscilloscope measurement show successful multiple voltage boosting

VSS Bounce SCA: Stand alone charge pump circuit

44
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• 6 major steps in one GI AES operation and successful 𝑉𝑇𝑂𝑃/𝑉𝐵𝑂𝑇 boostings are 
demonstrated in the oscilloscope measurements

VSS Bounce SCA: Flow chart & Timing diagram 
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VSS Bounce SCA Measurement
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• Four randomly located VSS nodes for ground bounce monitoring



VSS Bounce SCA: Correlation attack
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• Target on the last encryption round

• Baseline AES Key Byte 1 is revealed with 
5000 traces. 

• The correct key has a distinct high 
correlation value.
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VSS Bounce SCA: Correlation attack
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Correlation attack results• Target on the last encryption round

• Baseline AES Key Byte 1 is revealed with 
5000 traces. 

• The correct key has a distinct high 
correlation value.

• GI AES :

• The secret key is not revealed within 3 
million traces

• Improving power SCA resilience by >600X



VSS Bounce SCA: Test vector leakage assessment (TVLA)
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• Run encryption on two data sets, each containing 20,000 fixed plaintexts and 
20,000 random plaintexts. 
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VSS Bounce SCA: Test vector leakage assessment (TVLA)
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• Run encryption on two data sets, each containing 20,000 fixed plaintexts and 
20,000 random plaintexts.
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EM SCA Measurement Setup

• The EM SCA attack uses a 10-mm H-field probe 1-mm above the package.
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EM SCA Measurement & Correlation EM Attack (CEMA)

• EM waveforms at the last encryption cycle
- CLK: 15 𝑀𝐻𝑧

- Correlation EM Attack window size 100 𝑛𝑠
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EM SCA Measurement & Correlation EM Attack (CEMA)

• EM waveforms at the last encryption cycle
- CLK: 15 𝑀𝐻𝑧

- Correlation EM Attack window size 100 𝑛𝑠
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Parameters
ISSCC’17   

[3]

ISSCC'19 

[4]

ISSCC'20 

[5]
VLSI'20 [6]

This Work

Baseline Proposed Improvement

Technology 130nm 130nm 65nm 14nm 40nm -

AES Power (mW) 10.5 10.9 1.2 8%+ 10 23 -2.3X

AES Frequency 40MHz 80MHz 50MHz 100MHz 50MHz 40MHz -20%

Area (mm2) 10.002135 1.75 0.205 10%+ 0.032 20.0456 -1.425X

Countermeasure 

Type

Integrated 

Voltage 

Regulator

Digital 

LDO 

Regulator 

Current  

Attenuation 

Digital LDO, 

Arithmetic
-

Galvanic 

Isolation 

Improved 

Vcc, Vss, and 

substrate 

isolation

CPA MTD 

(1 Byte)
>100,000 8.4M 1B 1B 5,000 > 3M > 600X+

Time Domain 

Max |t-value|
2.5 11.9

5.2                    

(1M traces)

4.5                   

(250M)
24 3.7 6.5X

Frequency 

Domain          

Max |t-value|

4 - -
4.5                   

(250M)
97 3.9 25X

EM SCA MTD   

(1 Byte)
- 6M 1B 1B 9,000 > 2M > 220X+

1Area overheads only           2Area includes level shifters, PMU and capacitor switches

Comparison
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Conclusion

• VSS ground bounce can reveal the secret keys if tapped by the attacker.

• Proposed galvanic isolation technique for VCC, VSS and substrate isolation improves 
both power and EM resilience. 

• Measured results from a 128-bit AES core show

- >600X improvement against correlation power attack (CPA) 

- >220X improvement against coarse-grained EM SCA attack

- 20% lower frequency, 

- 2.3X more power

- 0.0136 𝑚𝑚2larger area.
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What will happen if you use the AES within a SoC, will be possible to isolate the full 
SoC?

It’s not applicable to isolate the full SoC. Because capacitor based Glavanic
Isolation design will require a huge capacitor bank to supply the full SoC, which is 
not area nor power efficient.

Isolating the AES core alone is sufficient to increase its resilience and because of 
the dual rial sense amp as level shifters, the AES core can exchange data with the 
SoC with no concerns.
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Parameters
ISSCC’09         

[1]

ISSCC’11      

[2]

ISSCC’17   

[3]

ISSCC'19 

[4]

ISSCC'20 

[5]
VLSI'20 [6]

This Work

Baseline Proposed Improvement

Technology 130nm 130nm 130nm 130nm 65nm 14nm 40nm -

AES Power (mW) 33.32 - 10.5 10.9 1.2 8%+ 10 23 -2.3X

AES Frequency 100MHz 50MHz 40MHz 80MHz 50MHz 100MHz 50MHz 40MHz -20%

Area (mm2) 1.37 1.886 10.002135 1.75 0.205 10%+ 0.032 20.0456 -1.425X

Countermeasure 

Type

SC Current 

Equalizer

Duplicated 

Data Paths

Integrated 

Voltage 

Regulator

Digital 

LDO 

Regulator 

Current  

Attenuation 

Digital LDO, 

Arithmetic
-

Galvanic 

Isolation 

Improved 

Vcc, Vss, and 

substrate 

isolation

CPA MTD 

(1 Byte)
10M 1M >100,000 8.4M 1B 1B 5,000 > 3M > 600X+

Time Domain 

Max |t-value|
- - 2.5 11.9

5.2                    

(1M traces)

4.5                   

(250M)
24 3.7 6.5X

Frequency 

Domain          

Max |t-value|

- - 4 - -
4.5                   

(250M)
97 3.9 25X

EM SCA MTD   

(1 Byte)
- 800,000 - 6M 1B 1B 9,000 > 2M > 220X+

1Area overheads only           2Area includes level shifters, PMU and capacitor switches

Comparison
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