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Abstract—The unprecedented growth in Deep Neural Net-
works (DNN) model size has resulted into a massive amount
of data movement from off-chip memory to on-chip process-
ing cores in modern Machine Learning (ML) accelerators.
Compute-In-Memory (CIM) designs performing DNN compu-
tations within memory arrays are being explored to mitigate
this ‘Memory Wall’ bottleneck of latency and energy overheads.
Among the incumbent embedded memories, the Static Access
Random Memory (SRAM) built using high performance logic
transistors and interconnects can enable custom CIM designs
while offering low pJ/bit access energy, high-endurance, high-
performance, and high- bandwidth. The wordline and bitline
voltages and pulse-widths are modulated to realize analog or
digital domain multiply-and-accumulate (MAC) computations
using multiple SRAM bitcell variants. This paper describes
the trends in recent CIM-SRAM designs utilizing such analog
and digitally-intensive approaches. In an analog CIM-SRAM
design,the inputs/activations are transformed into analog voltage
or pulsewidth and applied on wordlines and/or bitlines. Multi-
bit MAC computations often involve peripheral data converter
circuits which need to be optimized significantly to minimize
the area and energy overheads. On the other hand, digitally-
intensive CIM-SRAM approaches try to avoid analog circuits
by implementing smaller bit-width wordline/bitline computations
and utilize sense amplifiers for performing basic logic operations
and/or employ small digital logic block next to the SRAM column
I/O circuits forming compute-in/near SRAM designs. Key design
trends in both the approaches and qualitative comparisons are
presented with a perspective on future CIM-SRAM designs.

I. INTRODUCTION AND MOTIVATION

Deep learning has become ubiquitous in the modern world

and has been hugely successful in performing tasks like

computer vision, image recognition, object detection, machine

translation and speech recognition[1]-[3]. The share of the

machine learning computations is on a steep climb inside the

datacenters of the major companies. One major limiter of deep

learning in the present scenario is its computation intensity,

requiring very high-performance computing resources and

long training times. These compute applications increasingly

require a large number of external memory accesses which

in turn requires a high bandwidth (BW) wireline interface

from the compute core to the outside world, which may

include several DRAM chips and ASICs[4]-[5].The recent

surge in custom-designed HW for AI applications has further

exacerbated the BW and memory-access latency problems of

the traditional 2D Von-Neumann chips. While computation is a

huge bottleneck for the Convolutional (CNN) layers, custom

designed inference processors have shown promising results

on the Deep Learning computations as compared to CPUs

and GPUs. A strategic shift from the traditional resource

and power hungry Von-Neumann architecture-based machines

is required. Employing “Compute in Memory” (CiM) is a

promising step which would effectively save these smart IOTs

a large number of memory accesses thereby reducing their

energy costs considerably.

A whole new class of smart embedded devices in the mobile

form-factor have been in resurgence and these devices form a

significant portion of consumer electronics these days (Smart-

phones, IOTs, smart drones, smart cars, factory automation

robots etc). It is very critical to have these computations and

memory resources available in these edge devices because

most of the times these devices are resource and battery limited

and computation on the cloud is deemed unreliable by the fact

that it faces key issues such as high latency, limited bandwidth,

security and privacy while transferring user’s personal data

to the cloud. Furthermore, in the conventional Von-Neumann

systems, the inference processor regularly polls for the re-

quired weight and input data from DRAM or lower level

caches causing considerable energy and latency overhead and

achieving very less locality.

II. SRAM-BASED COMPUTE-IN-MEMORY SYSTEMS

The architectures integrating some forms of memory and

computation started emerging as early as 1970s. These archi-

tectures aimed at reducing the amount of incurred energy and

throughput cost based on the unnecessary data movements that

was required in a traditional Von-Neumann machine. All of

these qualifying architectures use the SRAM memory arrays

with a dual purpose, one as a storage bank for weights of

the neural network’s filters and second as compute engine to

calculate MAC or Multiply and average(MAV) of the stored

weights with the provided inputs. In the very initial task, these

approaches more or less differ in the way of providing input

feature vector to the SRAM compute macros and hence a

detailed comparative discussion on the same follows in the sec-

tion IV. Furthermore, the next important task being MAC/MAV

operation itself, there are varied memory architectures, bitcells

and approaches used by different research groups for
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Paper Reference (SRAM type) Analog
based
CIM

Bitwidth
Inputs/Weights

Inputs applied to: DAC
used:

ADC used and type: SRAM data
storage
format

All
Dig-
ital

[7] In-Mem Compute (6T) Yes 5b/1b (+1,-1) WL voltage Yes Comparator SA Column Major No
[8] DIMA (6T) Yes 8b/8b WL (PWM) No Yes (8b) Column Major No

[9] Algorithm-dependent CIM (6T) Yes 1b/1b (+1,-1 wts
and activations)

WL (digital); WLL,
WLR

No Multi-Level Sense-
Amp (3b)

Column Major No

[10] Twin-8T SRAM (8T) Yes 2b/5b (4b I/P
possible)

WL (Even Odd
Dual-Channel)

No Yes; named C2PU Column Major No

[11] BNN CIM (6T) Yes 1b/1b WL (digital) No Sense-Amp Based Column Major No
[12] Two-Way-Transpose SRAM (6T) Yes 2b,4b,8b/4,8b WL (digital) No SOGE-SA Column Major No

[13] CONV-SRAM (10T) Yes 6b/1b Bitline (Va) Yes Serial-Integrating
ADC;

Row Major No

[14] 7nm TSMC CIM (8T) Yes 4b/4b Wordline (Bin.
weighted comp.
caps)

No 4b Flash ADC; Column Major No

[15] Thinker-IM RNN-CIM (6T) No 1b/1b (XNOR) Wordline (digital) No 3b VSA (Var. Refer-
ence);

Column Major Yes

[16] CSRAM bit-serial (8T) No (Arbitrary upto
32b/32b)

Wordline (digital) No No (Digital peripheral
ckts);

Column Major Yes

[17] CASH-RAM (8T) Yes 5b/2b; ternary
wts(+1/0/-1)

Bitline (Va) Yes Yes; Row Major No

[18] 1-to-8bit configurable CIM (6T) Yes Both
Configurable
from 1b to 8b;

Serial-Inps WL
(digital)

No Yes (Self-Reference
Multi-level Reader);

Column Major No

[19] Charge-domain CIM MOM caps (6T) Yes 1b to 1b; WL (digital) No Yes (SAR-like); Column Major No

TABLE I: Survey of Compute In Memory Architectures

optimizing the energy and throughput requirements of the

heavy CNN computations involved and also keeping the

feasibility and technology scaling of the macros in mind.

Difference also lies in the number of weight bits ac-

commodated by the CIM macro. A detailed discussion and

comparative analysis are presented in the section V for the

same. Lastly, the partial sums calculated in charge domain

and/or voltage domain are resolved back to digital values

using innovative ADC architectures which use the locality and

types of the computations involved to their advantage. There

are also efforts to directly calculate post activation function

processed outputs which is usually done by innovative circuit

techniques applied in conjunction with sense-amplifiers and

similar column-based circuitry. There is also a class of CIM

macros which performs the functions related to input applica-

tion and output partial sums resolution in an all-digital fashion

by using an assortment of bit-serial computation techniques.

The review of this third part is provided in detail in the section

VI of this paper.

III. FEEDING IN THE INPUT F-MAPS/ACTIVATIONS

Most of the SRAM CiM systems are weight-stationary

i.e. the kernel/filter values are stored in the SRAM arrays.

Subsequently to perform convolutions the quantized input

pixel values (Input Feature Maps or IF-Maps) are fed into

the SRAM array using different techniques based on the

underlying macro architecture. These techniques are discussed

in details as follows:

A. Wordline based IF-Maps

One of the earliest approaches was taken by Zhang et al[7]

was to drive the WLs of the 6T SRAM bitcell array with

analog voltages representing the feature values xi, leading to

the corresponding bit-cell currents IBC,I. These currents rep-

resenting the IF-Maps values were thought of as multiplying

with the weight stored (+1 or -1). The resulting aggregated

discharge from all bitcells in a column was resolved by a

comparator providing sign thresholding. In another notable

approach called deep in-memory architecture (DIMA)[8], mul-

tiple rows of the standard 6T SRAM array were accessed

using pulsewidth modulated (PWM) WL signals and which

processed the resulting bitline (BL) voltage drops ΔVBL

via column pitch-matched low-swing analog circuitry in the

mid-logic area. Multi-bit precision (8-b) for both weights

and inputs for the above-mentioned algorithms and upto 53x

(Energy Delay product) EDP reduction in measured results

was demonstrated. In both of the above techniques multi-

row WLs were asserted per bitline precharge as the weights

were stored in a column major format. Another notable paper

using the WL based IF-Maps inputting is [9] where binary

DNN with 0/1-neuron and +/-1weight are implemented. Since

both weights and inputs are quantized and constrained to 1-bit

values, the authors do not employ WL DACs or WL PWM

circuitry. Si et al in Twin-8T SRAM CIM paper[10] also apply

the input (IN) to the read-WL (RWL) which supports binary

(0V and Vwll3) or 2b-(4 levels: 0V, Vwll1, Vwll2 and Vwll3).

This is used to generate the weighted cell current Imc. Kim et

al [11] also use the WLs to provide the 1bit (2levels: Vddl and

GND) input value and also trigger multiple WLs per precharge

to compute the product in terms of VBL. Su et al [12] present

a paper called Two-Way Transpose 6T SRAM which provides

the digital 2 bit input to the forward versions of the WLs

namely FWLM=IN[1] and FWLL=IN[0]. While [17] again

uses a DAC to convert the inputs to a Va to be applied on

WLs, another approach [18] sends inputs in a bit serial fashion

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 01,2021 at 20:15:33 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Input Feeding techniques (to Wordlines or Bitlines)

to a block of multiple WLs containing the corresponding

weights.

B. Bitline based IF-Maps

Another technique to provide input activations to the SRAM

macros emerged in the subsequent papers such as CONV-

SRAM where Biswas et al [13] feed the IFMP values (Xins)

into columnwise DACs, which convert the digital XN codes

to analog input voltages on the global read bit lines (GBRLs).

These GBRLs are shared by all the local arrays and they

provided the analog input voltage to the local bitlines of the

subarrays. This implements the fact that in CNN’s each input

is shared/processed in parallel by multiple filters. The authors

introduce the terms multiply and average(MAV) where-in they

compute the MAV of the dot products and a scaling factor of

Mk is applied after computing the entire dot product. Their

system allows 8bit signed inputs (1b sign) to be converted

into analog voltages which are then multiplied by the corre-

sponding 1bit filter weights. This approach is more robust to

the SRAM bit-cell Vt variations arising from their minimum

sized geometry. Unlike this technique the WL based IFMPs

relied on discharge current through SRAM cells Icell which

has a significant spread from its mean values (σ = 30%μ).

Now if Icell is used to modulate the analog voltage Va on the

bitline, there is a wide variation in the Va and it cannot be

controlled very well. But in this approach Biswas et al send

the Va directly to the bitlines using global DACs and since

the global DACs can be upsized, the variation due to them is

significantly less than that compared to the min sized bitcell.

C. Digital to Analog Converters to provide inputs values

Most of the papers discussed in the previous two sections

utilize Digital to Analog converter blocks (DACs) to convert

the multibit digital input values to corresponding analog

voltages Va. Zhang et al[7] used a DAC formed from binary-

weighted pMOS current sources. The resulting current IDAC is

converted into an output WL voltage by passing it through an

upsized replica of a bit-cell which contains a diode connected

access transistor device and this current is also mirrored by the

bit-cell. This VWL leads to the resulting bitcell currents which

discharge the BLs through the pull down transistors of bit

cells. Kang et al[8] rely on generating pulse width modulation

values on the wordlines. An on-chip pulse generator is used to

generate the binary weighted pulses which in turn discharges

the BL capacitance CBL depending on the stored bit. Khwa et

al [9] do not require explicit DACs because the binary neuron

activation values 0/1 are passed directly as WL 0/1 respectively

for 6T SRAM design and in 8T design complementary WLs

with digital input activations are used. Bit-Serial inputs in [18]

also means no DACs are required and [10] also employed

digital WL input values. Conv-SRAM [13] uses a DAC to

convert the digital input code to analog voltage which is based

on time to digital and digital to analog voltage generation.

Cascode pMOS stack biased to act as a constant current source

and is based on duration of the ON pulse (modulated based

on digital input code) that is provided to this circuitry. [17]

also use a DAC to convert inputs to a Va value to be applied

at the bitline.

IV. PARALLEL MULTIPLY AND ACCUMULATE/AVERAGE

OPERATIONS IN CIM MACROS

Most SRAM arrays use either standard 6T bitcells or more

robust larger-footprint bitcells such as 8T and 10T cells. In

some CIM SRAM designs, 8T/10T cell designs are tuned to

make the bitcells bi-directional and also very robust to read

disturbs. Zhang[7] and Kang[8] employed standard 6T SRAM

cell to realize a CIM-SRAM macro; Biswas[13] used a 10T

bitcell with decoupled read and write ports to mitigate any

read/write disturbs. Khwa et al[9] demonstrated a CIM-SRAM

scheme with both 6T (Hybrid BNN) and 8T bitcells (XNOR-

BNN). Su et al[12] utilized foundry provided compact 6T-

SRAM bitcells which are reconfigured to be used as two-way

transpose macro with multibit weight dot products capability.

All of the above-mentioned architectures store the weights in a

column major format except the Conv-RAM which stores them

in a row major format. Si et al[10] adopted a Twin-8T SRAM

macro using 2 decoupled-read 8T bitcells avoids the read

disturb issue. The twin-cell are divided into a MSB bitcell and

a LSB bitcell. In [16] Wang implements an all-digital bit-serial

approach and used a special type of transposable 8T bitcell

which can be accessed by both vertical Compute wordline

and horizontal bitline. The computation is performed in both

the horizontal bitlines and pitch-matched compute logic at the

end of bitlines. This architecture also stores the data vectors

in a column major format. In a different approach, Valavi[19]

implements charge-domain CIM using backend capacitors. In

this case, along with a 6T bitcell, a backend MOM capacitor

is included which stores the output of XNOR computation

between the weight stored on the bitcells and the inputs applied

through a pair of PMOS transistors.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 01,2021 at 20:15:33 UTC from IEEE Xplore.  Restrictions apply. 



V. ANALOG TO DIGITAL CONVERTERS AND CUSTOM

SENSE AMPLIFIERS FOR ANALOG CIM-SRAMS

As discussed in the previous section, many CIM-SRAM

approaches use voltage or charge domain analog computing

which necessitate special Analog to Digital Converter (ADC)

architectures and specialized sense amplifiers based compara-

tors to resolve the analog MAC or MAV output into a digital

code. Earlier designs such as Zhang et al[7] relied on sense-

amplifier comparators accommodating rail-to-rail inputs to

sense and classify decisions based on bitline differential. On

the other hand, DIMA[8] uses a separate 8-bit ADC with Vres

= 1mV. This output is followed by a digital logic to realize

thresholding operation.Conv-RAM[13] use a serial charge-

sharing and integrating ADC which has Sense Amplifier based

on a StrongARM latch architecture. 7nm CIM[14] from TSMC

uses a 4 bit flash ADC with area efficient sense amplifier

instead of analog comparator to save on area and reduce

energy consumption. Sense Amplifiers were implemented in

[11] to resolving the Vsum to its digital codes bit by bit while

[15] uses a Serial-phase triple sensing controller to select the

reference voltages for 3bit voltage sense amplifier (VSA) and

provide control signals to it. [9] employs ADC-like 3 bit multi-

level sense amplifiers whereas [12] use a specially designed

block called small-offset gain-enhancement sense amplifier

(SOGE-SA) to tolerate small read margin. SAR-like ADC is

used in the paper implementing Charge-domain CIM using

MOM caps[19] but a specialized Self-Reference Multi-level

Reader block is used in [18] to resolve the psums into digital

code.

VI. ALL-DIGITAL AND BITSERIAL CIM ARCHITECTURES

Apart from the charge/current domain analog computation-

based architectures, there are also a few all-digital and/or bit-

serial architectures that have come to the forefront. One of the

forerunners in this domain was Eckert et al’s Neural Cache[20]

paper which used bit-serial architecture to re-purpose the cache

usually available in the cores to an efficient engine executing

convolutions, fully connected layer operations and pooling in-

cache. The paper relied heavily on bit-serial arithmetic and

the final computation (and and nor) performed on the data

stored in the activated WLs is performed in analog domain

but sensed immediately via SAs and converted to digital

bits. Some digital computation is performed by innovative

peripheral circuits near the SRAM array. Aga et al[21] in-

Compute Caches presented a precursor of the Neural Cache

idea. Wang et al[16] presented a compute SRAM (CRAM)

architecture which combined 8T transposable bit cell with

vector based, bit-serial in-memory arithmetic to accommodate

a wide range of bit-widths from single to 32 to 64 bits. This

paper also implemented a complete set of operations types

such as integer and FP addition, multiplication and division. It

achieved 30GFLOPs on 32-bit operands and energy efficiency

of 0.56TOPS/W for 8 bit multiplication at 0.6V and 114MHz.

VII. PERSPECTIVES AND CONCLUSION

The CIM-SRAM architectures are evolving at a very fast

rate since they are being actively explored for performing ML

centric computations with higher throughput and improved

energy efficiency. The CIM approach is promising for resource

constrained applications to minimize the energy overhead due

to data movements. The edge computing applications such as

IOTs, smart-drones, smart-phones, healthcare sensors etc. have

very stringent energy efficiency requirements. Going forward,

analog based CIM-SRAMs would need to address the issues

of non-ideality and energy and area overheads due to data

converters and the inherent Vt variations in the bitcells which

could affect the neural network accuracy. Bit-serial and all-

digital architectures can be useful in resource constrained edge

application where the on-board SRAM can be repurposed as a

CIM engine and hence the computations could be performed

using a small logic block in/near SRAM array. All-digital CIM

approaches can avoid the power and area overheads introduced

by the data converters in the analog CIM-SRAM designs. They

can also be amenable to process technology scaling and low-

voltage operation due to digital nature of computation. Digital-

intensive bit-serial CIM designs also require little tweaking of

the existing memory arrays and caches which could enable

easy integration into memory compilers. However, bit serial

approach can degrade the throughput of digital-intensive CIM-

SRAMs due to sequential nature of the computation which

would necessitate careful dataflow optimization. Furthermore,

limited I/O bitwidth can affect the parallelism in digital CIM-

SRAMs. Overall, an optimal design approach analog or digital

or a combination of thereof can lead to impressive gains in

energy efficient CIM-SRAMs for future ML accelerators.
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