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Abstract—ML accelerators have a broad spectrum of use-
cases that pose different requirements on accelerator design for
latency, energy, and area. In the case of systolic array-based
ML accelerators, this puts different constraints on Processing
Element (PE) array dimensions and SRAM buffer sizes. 3D
integration packs more compute or memory in the same 2D
footprint, which can be utilized to build more powerful or energy-
efficient accelerators. However, 3D also expands the design space
of ML accelerators by additionally including different possible
ways of partitioning the PE array and SRAM buffers among
the vertical tiers. Moreover, the partitioning approach may
also have different thermal implications. This work provides a
systematic framework for performing system-level design space
exploration of 3D systolic accelerators. Using this framework,
different 3D-partitioned accelerator configurations are proposed
and evaluated. The 3D-stacked accelerator designs are modeled
using hybrid wafer bonding technique with a 1.44 µm pitch of 3D
connection. Results show that different partitioning of the systolic
array and SRAM buffers in a 4-tier 3D configuration can lead
to either 1.1-3.9X latency reduction or 1-3X energy reduction
compared to the baseline design of the same 2D area footprint.
It is also shown that by carefully organizing the systolic array
and SRAM tiers using logic over memory, the temperature rise
with 3D across benchmarks can be limited to 6°C.

Index Terms—3D integration, energy-efficient, systolic acceler-
ators, thermal

I. INTRODUCTION

MACHINE Learning (ML) algorithms are composed
of both computationally and memory-intensive ma-

trix multiplication operations. Systolic array architectures [1]
achieve high throughput with modest bandwidth for matrix
multiplication operations and hence make a good choice for
ML acceleration. Systolic array-based ML accelerators have
seen deployment in data-centers [2] [3] as well as in mobile
platforms [4] [5]. As the ML application space continues
to expand with big data and as the Neural Network (NN)
models continue to grow bigger to achieve higher accuracy,
the accelerators must scale to meet the increasing demands of
computation and energy-efficiency.

At the same time, the typical gains in energy-efficiency that
dimensional scaling has brought over the past several decades
are slowing down [6] [7] [8]. 2D enhanced architectures
[9] place dies side-by-side and interconnect them through
mediums such as a silicon interposer [10], or embedded bridge
[11] [12] to achieve higher interconnect densities compared
to mainstream packages. 3D architectures like hybrid wafer
bonding [13] [14] directly stack two or more dies on top
of each other without using the agency of the package,

This manuscript was submitted for review on 04/28/2021.
R. Mathur, A. Kumar, L. John and J. P. Kulkarni are with the Department

of Electrical and Computer Engineering, The University of Texas at Austin,
TX, 78712 USA (e-mail: rahul.mathur@utexas.edu).

further reducing distances and increasing interconnect densi-
ties between dies. 3D architectures may offer complementary
gains to traditional dimensional scaling for achieving high
performance, low power, high bandwidth, fast time-to-market,
all in a small footprint. Larger 2D dies can be replaced by a
few smaller ones with potentially higher manufacturing yields
[15] [16]. Besides, 3D allows heterogeneous integration of
parts from different technologies instead of having to redesign
every component for a specific process [17]. As 3D tech-
nologies evolve, increasingly finer pitches of 3D connections
become viable [18] [19]. This opens interesting possibilities
for designers to partition and fold designs onto multiple tiers
[20] [21]. Deep Neural Network (DNN) processing is heavy in
computation and data movement [22]. 3D makes it possible to
pack more compute or memory in the same 2D footprint while
reducing interconnect delay and power by bringing the blocks
closer. Hence, 3D provides an opportunity to build powerful
and energy-efficient accelerators.

Traditional 2D systolic array design involves careful par-
titioning of the silicon real estate between the PE units and
SRAM buffers to balance the throughput and external mem-
ory transfer bandwidth. 3D accelerator design additionally
involves the optimal distribution of the increased silicon real
estate available in the same 2D footprint between the PE
units and memory. Further, the power density of systolic
accelerators is high due to their desired high computing
capability and closely packed PEs. This is exacerbated in 3D
due to higher logic integration density which may lead to
worse thermal characteristics [23]. Hence, the designer must
take into account the thermal implications when partitioning
the accelerator components among 3D tiers. A systematic
methodology for navigating the 3D systolic accelerator design
space accounting for the thermal issues is necessary. This
paper makes the following contributions to address this issue:

‚ Provide a systematic framework to navigate the design
space of 3D systolic array-based ML accelerators under
different workload conditions.

‚ Perform system-level analysis to evaluate and compare
different 3D-partitioned accelerator approaches for per-
formance, power, and thermal characteristics.

‚ Provide insights and takeaways for system designers to
perform thermal-aware design of such 3D accelerators.

The remainder of the paper is organized as follows: Section
II provides background and prior work on 3D integration
technologies and systolic architectures. Section III describes
the 2D baseline design and different 3D partitioned configu-
rations. Section IV delineates the simulation framework used
to perform performance, power, and thermal analysis. Section
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V describes the experimental setup. Section VI presents re-
sults from a comparative analysis of different 3D accelerator
configurations. Section VII provides concluding remarks.

II. BACKGROUND AND PRIOR WORK
This section provides a brief overview on various 3D

IC technologies. A refresher is also provided on the basic
principles of a systolic array-based DNN accelerators.

A. Overview of 3D Integration Technologies

Traditionally, two or more dies are flip-chip attached to an
organic package substrate and interconnected with the agency
of the package. Certain 2D enhanced (also referred to as 2.5D
integration) utilize an interposer made of silicon, glass or,
ceramic for high-density communication between separate dies
mounted side by side (figure 1a). The interposer may contain
Through Silicon Vias (TSVs) [24] which are essentially holes
etched out in the silicon wafer and then filled with a conductive
metal like copper.

3D stacked ICs involve a die containing TSVs attached to
the package substrate using conventional flip-chip technology
and a second die, fabricated separately and bonded to the first
die using micro bumps [25] or hybrid wafer bonds [13]. This
leads to a back-to-face (B2F) configuration, as the back of
the first die is bonded to the face of the second die (figure
1b). Similarly, other configurations like back-to-back (B2B)
and face-to-face (F2F) are possible, especially when multiple
dies are stacked in this manner. Compared to 2.5D (lateral)
integration, 3D stacking worsen thermals due to increased
power density with die overlap, and heat dissipation from tiers
away from the heat sink is a challenge [26].

Monolithic 3D ICs consist of multiple device layers fab-
ricated sequentially on the same die and connecting using
Monolithic Inter-tier Vias (MIVs) which are essentially the
same size as intra-tier vias [27]. MIVs offer better parasitics
and a higher integration density compared to TSVs due to
their smaller size [28]. Since monolithic 3D enables the
finest pitch of 3D connection, it holds the most promise.
However, more breakthroughs in low-temperature processing
to fabricate transistors in the upper layers while preserving the
transistors and Back end of line (BEOL) of the lower layer
are desired [29]. Monolithic 3D suffers from limited lateral
thermal conductivity due to the absence of substrate on upper
layers. Besides, high device integration density and thin layers
lead to strong tier-to-tier thermal coupling [30].

This work uses 3D stacked ICs using hybrid wafer bonding
technology to model the design of 3D ML accelerators.

Fig. 1: (a) 2D enhanced: Side-by-side die stacked over inter-
poser (2.5D) and (b) 3D: Memory die stacked directly on the
logic die using hybrid wafer bond (WB) technology.

Fig. 2: A typical systolic array-based accelerator system.

Nonetheless, some of the ideas discussed in this paper around
efficient partitioning of a ML accelerator design into 3D tiers
can be helpful to design for other 3D IC technologies as well.
Next, we will discuss the basic principles of operation of a
systolic array-based ML accelerator system.
B. Systolic ML Accelerators

A systolic array consists of a simple and regular grid of
PEs wired together using the nearest-neighbor interconnect
[31] [32]. Data from banked scratchpad memory made of
SRAMs is injected from the edges of the array in a rhythmic
pipelined manner (similar to a systolic beat). The PEs perform
the same operation on their inputs, typically multiply and
accumulate, and pass the intermediate results or the original
inputs to adjacent PEs. The key idea is to exploit data re-use
so that fewer data transfers from memory are needed. Further,
purely local data movement (neighbor to neighbor) means
simpler interconnect and control. PEs operating in parallel
achieve high computational concurrency. Moreover, systolic
architectures are modular making them easy to floorplan and
scale. Figure 2 shows a high-level diagram of a typical systolic
system with an array of PEs and scratchpad memory for
storing input, filter, and output.

DNN computation is a highly parallel workload of dense
matrix multiplication operations between the input matrix
(or the output of the previous layer) and the filter matrix.
Systolic array architectures can effectively leverage the abun-
dant data reuse opportunity in DNNs by using their local
data shifting movement and keeping the PEs busy to provide
high throughput. Each PE performs a simple multiply-and-
accumulate (MAC) operation, while data is streamed through
the array in a pre-defined synchronized dataflow. An example
of dataflow is weight stationary where weights of the filter
matrices corresponding to each DNN layer are pre-loaded
from the filter memory into the systolic array before any
matrix multiplication operation is performed. Input data is
then streamed in from the input memory and the array ele-
ments perform matrix multiplication with the weights already
stored in them. The output data is continuously accumulated,
passed through activation and/or quantization functions before
eventually being stored in the output memory. The cost of
fetching data from memory is amortized over several compute
cycles leading to high energy-efficiency. The systolic array
has been utilized as the underlying fabric to achieve orders
of magnitude gains in performance and energy-efficiency over
traditional CPUs, and GPUs for DNN acceleration [2] [3] [5].
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III. 2D AND 3D SYSTOLIC ARRAY ACCELERATORS

Traditional 2D systolic array design involves selecting an
appropriate size and dimension of the PE array as well as the
size of memory, which would store the NN input feature maps
(IFMAP SRAM), filters (FILTER SRAM), and output feature
maps (OFMAP SRAM). In theory, a designer can choose an
arbitrary number of PEs. One would expect that a large number
of PEs improves the local data reuse, especially for compute-
limited (or large) networks. This may lead to an increase in
the throughput of operations, thereby reducing the number of
total cycles (latency) needed to process the network. However,
for applications targeting small networks, a large PE array
can increase the latency of NN computation as inputs have
to traverse the entire length and height of the array before
the output is ready. Regarding buffer sizing, a larger SRAM
would minimize expensive data transfers to main memory
(DRAM). But again, over-provisioned SRAMs can lead to area
and cost inefficiencies. In summary, designers must consider
the aforementioned trade-offs for both the PE array and SRAM
buffer sizes, keeping in mind the target application workload
to achieve an optimal design. For this study, the baseline
2D accelerator was selected to have a 32x32 PE array and
128KB of Filter, IFMAP, and OFMAP SRAM each, which is
representative of common DNN inference use-case [4].

3D systolic accelerator design further involves distributing
the additional silicon real estate available within the same 2D
footprint between PE elements or SRAM buffers to balance
network throughput and external memory transfers. Moreover,
the partitioning method of the PE array and SRAM buffers
among the vertical tiers may have thermal implications. In
order to evaluate and compare 3D accelerators with different
partitioning styles, design points described in Table I are

TABLE I: List of 2D and 3D accelerator configurations.

# PE SRAM Description
1 32x32 128KB 2D Baseline
2 64x64 128KB 4-Stack PE next to 1-stack SRAM
3 32x32 512KB 1-stack PE next to 4-stack SRAM
4 32x32 512KB 1-stack PE under 4-stack SRAM
5 32x32 512KB 1-stack PE over 4-stack SRAM
6 64x64 512KB scale-up, 4-stack PE, 4-stack SRAM
7 4x(32x32) 4x(128KB) scale-out, 4-stack PE, 4-stack SRAM

Fig. 3: High-level floorplan showing different approaches of
partitioning SRAM buffers (blue) and PE array (yellow) in the
2D and 3D accelerator configurations.

Fig. 4: (a) An example PE array in 2D (b) PE array folded
in 3D with vertical connections between PEs across tiers
(config 2 and 6) (c) Separate smaller PE arrays operating
independently (config 7).

selected. The 3D configurations considered were limited to
4 stacks of PE array or SRAM. Increasing SRAM stacks has
diminishing returns in energy reduction, and increasing PE
stacks leads to worsening thermals, as explained in section
VI. It must be noted that while a 4x larger 2D design with
increased compute or memory resources is possible, a 4-tier
3D system packs equivalent resources in the same footprint
as the baseline 2D accelerator. The physical design of a 3D
system will incur lower 2D interconnect delay and power due
to shorter distances and fewer buffers compared to a 4x larger
2D system but may incur an additional 3D interconnects delay
and power.

3D configurations selected for further analysis include mul-
tiple PE array tiers (configuration 2) or multiple SRAM tiers
(configuration 3-5), a scaled-up version (configuration 6), and
a scaled-out version (configuration 7) of the 2D baseline
accelerator. The floorplans for all design points are shown
in Figure 3. It should be noted that configurations 3, 4, and
5 have the same amount of overall compute and memory
resources but differ in the method of how these resources
are partitioned among vertical tiers. Scaling-up simply means
a larger system folded into multiple tiers, while scaling-out
means multiple smaller systems in separate tiers [33]. In
contrast to configuration 6, the different tiers in configuration
7 do not share the same SRAM and only share an off-
chip DRAM. As shown in figure 4(c), the scale-out version
does not require any connections in the vertical direction
between PE elements in different tiers as the four systolic
arrays operate independently in this configuration. Vertical
connections would still be needed to transfer the data from
DRAM to SRAM in different tiers and for power and ground
lines.

IV. SIMULATION FRAMEWORK

The simulation framework developed and used in this work
is depicted in Figure 5. It comprises two flows which are
explained in this section.

A. Power and performance analysis flow

An open-source simulator SCALE-Sim [33] is chosen for
the power and performance analysis. Accelerator design pa-
rameters such as PE array dimensions, SRAM buffer sizes, and
dataflow can be selected and mapped to a list of configuration
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Fig. 5: Simulation framework for 3D systolic accelerators.

files. Simulation benchmarks are translated to topology files
having a layer-wise description of the network. The simulator
runs a stall-free DNN inference and after processing the
entire network, reports the latency in cycles, array utilization,
SRAM accesses, DRAM accesses, and DRAM bandwidth
requirements.

The power of different configurations is computed from
the layer-wise average utilization of the PEs and average
bandwidth for SRAM and DRAM reads/writes provided by
SCALE-Sim in conjunction with the technology data from [34]
(Table II). DRAM accesses can contribute a major part of the
total energy [35]. For 3D accelerators, the DRAM transfers
may incur an additional energy overhead in transferring data
to accelerator components in different tiers. The energy per bit
overhead for F2F is reported as 0.013 pJ at nominal voltage
[14]. The energy overhead of F2B over F2F is reported as 12X
[36]. Hence, to incorporate an average case impact of vertical
interconnect energy on the overall DRAM access energy of a
4-tier system, 1.35 pJ per byte (one F2F, one F2B) is added
to all DRAM transfers of 3D accelerator configurations.

Power consumed in the PE array is calculated using the
following equation:

TABLE II: Technology data from [34] used in conjunction
with SCALE-Sim outputs for power calculations.

PE SRAM DRAM
Tech. node 14/16 nm 14/16 nm 28 nm

Energy 0.3 pJ [1.1, 1.5] pJ 120 pJ
Area 525 um2 32502 um2/32 KB N/A (off-chip)

PPE “

řn
i“1putilpiq˚arr h˚arr w˚e mac˚cycpiqq

cycles˚ 1
freq˚100

(1)

where, n is the number of layers in the network, util(i) is
the average utilization of the PE array for computing layer
i (between 0-100), cyc(i) is the number of cycles taken for
computing layer i, arr h and arr w are the PE array height and
width respectively, freq is the frequency of operation, (e mac)
is the energy consumed per 8-bit multiply-accumulate (MAC)
operation. The e mac of 0.3 pJ (Table II) is per cycle energy
consumed in the PE at 1 GHz, based on a place-and-routed
design of an 8-bit precision MAC in 16nm process node [34].

SRAM power is calculated using the following equation:

PSRAM “

řn
i“1ppsrd bwpiq˚e srd`swt bw˚e swtq˚cycpiqq

cycles˚ 1
freq

(2)

where, n is the number of layers in the network, srd bw(i),
swt bw(i) are the average SRAM read and write bandwidth
in bytes per cycle for the execution of layer i, cyc(i) are the
number of cycles taken for computing layer i, (e srd) and write
(e swt) are the SRAM energy consumed in access of byte-
wide data. The e srd of 1.1 pJ and e swt of 1.5 pJ (Table II)
is based on 32KB SRAM macros generated from an industry-
standard memory compiler at 16nm and takes both dynamic
and static energy into account [34].

DRAM power is calculated using the following equation:

PDRAM “

řn
i“1ppd ifpiq`d filtpiq`d ofpiqq˚e mem˚cycpiqq

cycles˚ 1
freq

(3)

where, n is the number of layers in the network, d if(i),
d filt(i), d of(i) are the average bandwidth to access input
feature map, filter, and store output feature map in DRAM for
the layer i respectively, and (e mem) is the DRAM energy
consumed per byte access. The e mem of 120 pJ (Table II) is
based on off-chip DRAM accesses energy per byte assuming
an LPDDR3 interface [35].

Performance in terms of latency of different 2D and 3D
configurations is computed from the layer-wise cycle count
provided by SCALE-Sim. For configurations 1-6, the total
number of cycles to complete the entire benchmark is com-
puted by summing the cycles taken to complete each network
layer. Since the computation in the vertical tiers is parallel in
configuration 7, the sum of cycles per network layer can be
directly computed by simulating a single tier. Performance in
terms of throughput can be calculated in Tera Operations Per
Second (TOPS) using the following equation:

TOPS “ util˚arr h˚arr w˚2
1

freq˚100
(4)

where, util is the average utilization of the PE array for
computing the NN (between 0-100), arr h and arr w are
the PE array height and width, respectively, and freq is the
frequency of operation. The delay overhead of 3D F2F vertical
interconnect can be „5 ps at nominal voltage [14]. The energy
overhead of a F2B connection (through TSVs) over F2F is
3.2X [36]. Hence, to incorporate a worst-case impact of the
vertical interconnect delay on the frequency of a 4-tier system,
42 ps (two F2F, two F2B) is added to the cycle time (1/freq)
of 3D accelerator configurations.
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Fig. 6: Tile-based power map used for thermal analysis.

B. Thermal analysis flow

To the first order, the temperature rise in 3DIC is primarily
proportional to the effective power density in the 2D footprint
[23]. Floor plan dimensions of different 2D and 3D config-
urations are calculated based on the PE and SRAM area at
14/16 nm technology node from table II. A spatial tile-based
power map is created for each tier by using the power data
computed for PE and SRAM regions in conjunction with the
respective floor plan dimensions. Figure 6 depicts a typical
tile-based power map which is essentially a division of the
entire tier into equal-sized tiles. The power of each tile is
the sum of the power associated with the blocks within the
tile. The power map contains the metal density and thermal
conductivity properties of all the layers in the BEOL stack.
Abstracting the power consumed by the PEs and SRAM in
terms of per-tier power maps allows us to mix and match
different tiers and build and analyze thermal characteristics
for different 3D configurations with relative ease.

Cadence Celsius Thermal Solver [37] is used to run static
thermal simulations. The tool uses the power map file along
with a complete physical description of the package stack-
up, bumps, molding compound, lid, thermal-interface material
(TIM), and a detailed description of the vertical stack, i.e.,
devices, interconnects, and dielectrics along with their thermal
conductivity properties. The package comprises 10 build-up
layers with overall dimensions of 10x10 mm2 with an 11x11
mm2 copper lid on top. TSVs of diameter 5 µm are modeled
at every 50 µm in the die stack-up. Thermal simulations are
run for different benchmarks with the same package and die
size assumptions maintained for all the configurations for a
fair comparison. However, a significant change in package
thermal design power (TDP) (for instance, configurations 2-7
vs. configuration 1), the heat spreader dimensions may need
to be redesigned, and boundary conditions may have to be
re-calibrated. Setting up realistic boundary conditions for the
tool is critical for getting accurate results. Thermal boundary
conditions calibrated with actual hardware measurement data
using on-die temperature sensors are sourced from [38]. The
tool generates thermal heat maps and maximum temperature
data of different dies in each configuration.

V. EXPERIMENTAL SETUP

SCALE-Sim is configured with micro-architecture features
like PE array dimension, aspect ratio, memory buffer sizes
for different 2D and 3D accelerator configurations listed in
Table I. The simulator, by default, only supports a 2D systolic
configuration. 3D design points of configurations 2-6 can be
mapped to SCALE-Sim using their respective PE and SRAM
sizes as specified in table I. Configuration 7 is equivalent to
four separate systolic systems and can be mapped to SCALE-
Sim with PE and SRAM size of configuration 1 with the
benchmarks split 4-way along their output channels. The
dataflow is set to weight stationary. Although this limits the
design space explored, it still enables for a like to like com-
parison between different 3D accelerator configurations. The
topology files having a layer-wise description of the network
like input and filter dimensions, input channels, number of
filters, and strides are setup for SCALE-Sim for some common
NN benchmarks like AlexNet [39], AlphaGo Zero [40], Deep
Speech 2 [41], Faster R-CNN [42], GoogLeNet [43], Neural
Collaborative Filtering (NCF) [44], ResNet-50 [45], Sentiment
Seq-CNN [46], and Transformer [47]. The geometric mean of
results from all benchmarks is included to illustrate the overall
difference between configurations across all benchmarks. The
metric for performance is the number of cycles required
to process the benchmark (measure of latency) and TOPS
(measure of throughput). The metric for energy-efficiency is
TOPS/W. The metric for thermal is the maximum temperature
increase in °C relative to the coolest point of the 2D baseline.

VI. RESULTS

This section presents the simulation results comparing
different 3D accelerator configurations. Insights are drawn
for optimal partitioning strategy for energy, performance and
thermal for different network workloads.

A. Energy

Intuitively, it can be said that stacking multiple SRAM tiers
would lower the DRAM transfers bringing down the total
energy (Figure 7), especially for memory-limited networks.

Fig. 7: Reduction in total energy by sweeping SRAM stacks
of configuration 3 for different NN benchmarks (log scale).



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JXCDC.2021.3092436, IEEE Journal
on Exploratory Solid-State Computational Devices and Circuits

Fig. 8: Energy comparison among configurations for different neural network workloads. The DRAM energy split includes the
vertical interconnect energy overhead for the 3D configurations.

Fig. 9: Latency comparison among configurations for different neural network workloads

Figure 8 compares the total energy of configurations 1-7 listed
in Table I across different benchmarks and also illustrates
the breakdown of energy between computations, SRAM, and
DRAM transfers. As expected, configurations 3-6 which con-
tain 4-stack SRAM reduce the total energy to process the
network compared to configuration 1 (2D baseline). However,
the energy reduction factor varies widely between benchmarks
from 1.0x for NCF to 3.8x for Deep Speech 2. NCF being
relatively small already fits within a single SRAM stack and
additional SRAM stacks in 3D bring no benefit. Configuration
6 (scale-up) achieves the lowest energy since it also contains
4 stacks of PEs along with 4 stacks of SRAMs increasing the
local data reuse within the PEs hence minimizing both SRAM
and DRAM transfers. Configuration 7 (scale-out) operating on
partitioned output channel requires input feature maps to be
duplicated in the SRAMs, causing multiple DRAM accesses
to fetch the same input data leading to high total energy.

B. Performance

The number of cycles taken to complete a benchmark should
decrease with the increase in the number of PEs, especially
for compute-limited (large) networks. As expected, figure 9
shows that configurations 2, 6, and 7 which contain 4-stack
PE arrays take fewer cycles to process the network compared
to configuration 1 (2D baseline). However, the speedup varies
widely between benchmarks from 1.1x for NCF to 3.9x for
AlexNet. NCF has much smaller layer features like IFMAP
dimensions compared to AlexNet and is unable to utilize the
additional PE tiers to achieve any more compute parallelism.
Configuration 7 (4x scale-out of 2D) shows slightly better

TABLE III: Power-Performance comparison of accelerator
configurations for geomean of all benchmarks

Configuration TOPS TOPS/W
1 (2D baseline) 1.59 0.64

2 (4-PE, 1-SRAM) 4.76 1.05
3, 4, 5 (1-PE, 4-SRAM) 1.53 0.98

6 (scale-up: 4-PE 4-SRAM) 4.76 1.53
7 (scale-out: 4-PE 4-SRAM) 3.74 0.50
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Fig. 10: Heat maps under the ResNet-50 benchmark for (a) Configuration 2 (4-stack array) (b) Configuration 3 (4-stack SRAM).
The tier dimensions are in mm. All temperatures are relative to the coolest point on configuration 1 (2D baseline) for ResNet-50.

TABLE IV: Maximum system temperature for different configurations across all benchmarks relative to the coldest point in
2D Baseline for Sentimental Seq-CNN benchmark

Configuration ∆. T p°C)
AlexNet AlphaGoZero DeepSpeech2 FasterRCNN GoogLeNet NCF ResNet Sentiment Transformer

1 (2D baseline) 4.4 4.0 3.3 4.0 3.9 2.1 3.9 0.3 4.1
2 (4-PE next to 1-SRAM) 23.5 21.8 9.1 22.4 20.4 6.5 22.3 2.3 22.3
3 (1-PE next to 4-SRAM) 7.0 6.5 5.3 6.6 6.4 3.8 6.4 0.8 6.3
4 (1-PE under 4-SRAM) 7.2 6.6 5.5 6.7 6.6 3.9 6.6 0.8 6.5
5 (1-PE over 4-SRAM) 5.6 5.1 4.2 5.2 5.0 2.9 5.1 0.5 4.9

6 (scale-up 4-PE 4-SRAM) 24.8 21.5 9.0 22.2 20.3 6.5 22.1 2.1 21.9
7 (scale-out 4-PE 4-SRAM) 23.4 21.4 5.8 20.0 16.2 2.4 19.9 2.8 20.9

performance than configuration 6 (4x scale-up of 2D) for some
benchmarks such as AlexNet, AlphaGo Zero, and ResNet-
50. This is due to fewer cycles for filling up the smaller
independent PE arrays of configuration 7 compared to a single
larger folded PE array of configuration 6 which suffers from
this overhead at the start of computation of each layer. For
other benchmarks such as Deep Speech 2, which contain a
small number of output channels and large input feature maps,
configuration 7 loses its advantage and suffers from low PE
utilization. The power-performance in TOPS and TOPS/W
(including the delay and energy overheads of the vertical
interconnects for 3D configurations) is presented in table III.

C. Thermal

Figure 10 shows the steady-state heat maps of configuration
2 (4-stack PE array) and configuration 3 (4-stack SRAM) to
highlight the difference in thermal characteristics of logic-
over-logic and memory-over-memory. Both configurations are
running the ResNet-50 benchmark. The temperature values are
relative to the coolest point on configuration 1 (2D baseline).
The heat maps clearly emphasize that the PE array part of the
die runs hotter by around 5°C. It can be further observed that
the maximum temperature of configuration 2 is about 13°C
higher than configuration 3. This is because the average power
density of the 3D stack of PE array is higher compared to the
SRAM stack. Table IV compares the maximum temperature
rise of different configurations across all benchmarks. The
benchmarks have varied size of underlying NN model leading
to different average array utilization and SRAM accesses
causing different rise of temperatures. Configurations 2, 6,
and 7 which employ 3D stacking of the PEs (logic-over-logic)

suffer from a temperature rise of up to 24.8°C relative to the
coolest point on configuration 1.

The increase in temperature can have an impact on the
overall energy of the accelerator. For example, assuming the
coolest point on the 2D baseline to be 75°C, an increase in
temperature by 25°C has a marginal effect on transistor on-
state current but increases the off-state current by 1.9X (Figure
11). Configuration 7 partially avoids overlapping hotspots by
staggering the PE array and SRAM between tiers but fares
only slightly better. Configuration 3 and 4 which stacks mul-

Fig. 11: Effect of temperature rise on the on-state current
(black line) @SS/VNOM-10% and off-state current (red line)
@FF/VNOM+10% of a transistor with standard VTH option at
14/16nm (0.8V VNOM)
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tiple tiers of SRAM are only up to 7.2°C hotter. Furthermore,
changing the ordering and stacking the PE array on top of
the SRAM stack as in the case configuration 5 (logic-over-
memory) limits the temperature rise to only up to 5.6°C
making it the best choice from a thermal standpoint. The
reason behind this is that the tier containing PE array is
significantly hotter than ones containing SRAM and placing it
on top reduces its relative proximity to the heat sink.

In summary, 3D stacking of PE arrays (configurations 2,
6, and 7) can reduce the latency of the network computation,
but the speedup depends on the network size. Further, these
configurations suffer from the worst thermal characteristics
due to logic-over-logic stacking. On the other hand, stacking
multiple SRAM tiers (configurations 3, 4, 5, and 6) lowers the
DRAM transfers making them a good choice where energy-
efficiency is important. Furthermore, stacking PE array on top
of the SRAM stack (configuration 5) in a logic-over-memory
fashion can not only achieve low energy but also mitigate the
thermal impact of 3D.

VII. CONCLUSION
Systolic accelerators have been deployed for training and

inference, on edge devices as well as on the cloud for a
wide variety of workloads. These use cases may constrain
accelerator requirements for latency, energy, and area dif-
ferently. 3D integration packs more compute or memory in
the same 2D footprint allowing more powerful and energy-
efficient accelerators. However, it also presents more options
to the designer for partitioning the PE array and memory
among 3D tiers. Since different choices may have different
performance, power, and thermal implications, it becomes
imperative for designers to understand the trade-offs under
different application workload conditions. In this work, a
systematic methodology for navigating the 3D systolic accel-
erator design space is presented. Using this framework, 3D
configurations with different partitioning styles are evaluated
and compared providing several insights and takeaways for
designers. This work can pave the pathway for future thermal
aware 3D systolic accelerator designs.
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