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Abstract: 

A 12.8Kbit Static Random Access Memory (SRAM) array is 
demonstrated in 40nm CMOS for charge-domain vector-matrix 
multiplication (VMM). While conventional compute-in-memory (CIM) 
approaches rely on the indirect convolution algorithm, the proposed 
Systolic-RAM performs a form of direct convolution which eliminates 
the need for data duplication and near-memory registers. For this 
purpose, bitcells feature additional read/write ports configured to 
move data directly from one neighboring bitcell to the next. Circuit 
details for implementing signed analog multiplication within the array 
are discussed. Quantized neural network training methods are used 
to effectively mitigate non-ideal analog effects and achieve test 
accuracy near that of a floating-point network. The 12.8Kbit VMM 
test chip configured for 8-bit 5x5 convolution achieves 175(113) 
peak(continuous) multiply-accumulate (MAC) operations per clock 
cycle and consumes 3.0mW at 100MHz. 

Motivation: 

Data movement significantly impairs power performance in von 
Neumann systems when large amounts of data are exchanged 
between computer memory and processing units (referred to as the 
memory wall bottleneck). CIM approaches attempt to reduce data 
movement energy and latency overheads by performing key 
computations in parallel within the memory array (Fig.1). Although 
adequate bit-resolution is commonly considered a leading measure 
of CIM performance [1], few works have elaborated on the data 
movement power, duplication, and restructuring required to realize 
convolution within CIM macros [2]. Duplication occurs since the 
indirect convolution method required for VMM-based accelerators 
uses an image-to-column (IM2COL) transformation [3,4]. This 
means conventional methods do not physically adopt the concept of 
sliding kernel (the stride) within hardware and require significant data 
caching at the CIM array periphery to support peak throughput. The 
data overhead becomes more detrimental for large kernels. For a K-
by-K kernel with stride=1, each activation will belong to K2 unique 
stride locations and would be duplicated in K2 columns of the 
resulting IM2COL matrix. For example, convolution using a large 
kernel (such as 11x11) will require data to be duplicated (>100 times) 
within an activation stationary CIM array, significantly reducing its 
data density and performance. Such data duplication and data pre-
conditioning should be considered as a substantial factor in 
determining the energy efficiency of convolution computations. 

Systolic-RAM Design: 

Systolic-RAM computes convolutions without data duplication by re-
cycling data between neighboring SRAM bit-cells. The process 
consists of two alternating phases: Φ1 (data movement) and Φ2 
(compute). Fig.2A illustrates how adjacent stride-regions are 
computed simultaneously. After computation, vertical stride is 
achieved in a Φ1V phase by cycling data through buffered-6T (B6T) 
bitcells to exchange K pixels from one stride location to the next 
(Fig.2B) while reusing K*(K-1) pixels from the previous computation. 
When a horizontal kernel translation is required (Fig.2C), Φ1H phase 
is used to insert new data from 8T bitcells into the B6T datapath. 
Fig.2D illustrates both these translations within the B6T/8T cell 
structure. 

This digital data movement allows Systolic-RAM to perform several 
MAC products every clock cycle. Seven unique 5x5-pixel regions of 
the input image are computed simultaneously for a total of 175 
operations per cycle (Ops/Cy). This corresponds to the highlighted 
regions in Fig.2E. Total effective Ops/Cy varies based on application. 
For example, configuring this design for a ResNet layer (which 
requires padding for input/output sizes to be identical) achieves a 
continuous 113 [Ops/Cy] (24025 effective operations in 155 compute 
cycles + 56 digital write cycles) when padded for 31x31 input/output 
images. In these cases, additional rows/columns can be added for 
increased parallelism. 

Analog MAC is achieved using multiplicative digital-to-analog 
(MDAC) structures positioned in the back-end-of-line (BEOL) above 
the array. In the Φ2 (compute) phase, the kernel data is broadcast 
as an analog differential bit-line voltage to modulate the MDAC. The 
MDAC’s inputs are selectively switched to either bit-line based on the 
digital data in the bitcells. The resulting output charge produced is 
proportional to the product of signed 8-bit kernel and signed 8-bit 
input data. Fig.3 demonstrates the DAC and large-signal ring 
amplifier used to drive the bit-line capacitive load, while Fig 4. depicts 
the layout of the capacitive MDAC structure above the array.  While 
the differential analog datapath rejects common mode interference, 
parasitic capacitance in the MDAC results in significant non-linearity. 
To mitigate this effect, 3D parasitic extraction is performed and 
notches in the MOM-CAP structure are adjusted to tune input 
capacitances and preserve final output linearity [5,6].   

Measured Results: 

The measured multiplication characteristics (Fig.5a) demonstrate a 
74% reduction in worst-case DAC DNL with only 45% reduction in 
amplitude. Least squares regression was used to extract the relative 
significance of each bit and demonstrate the linearity improvement 
(Fig.5b). Noise and nonlinearity with respect to input and weight were 
modeled as a differential convolution layers in Pytorch to match the 
characteristics in (Fig.5a). A gradient-blocking technique for 
quantization was used for autograd and network re-training [7]. 
Pretrained ResNet-18 convolutional neural network (CNN) using 
float32 demonstrated 91.9% test accuracy on CIFAR-10 dataset 
[4,8,9]. Immediately after 8-bit quantization, test accuracy was 90.3% 
using the calibrated MDAC and 81.6% with the uncalibrated MDAC. 
After retraining for 3 epochs, test accuracy recovered to 91.6% (0.3% 
below float32 baseline) with calibration but only 86.2% for the 
uncalibrated MDAC (Fig.5c). 

SystolicRAM performs convolution at 14.4 bit-TOPS/W for 100MHz, 
1.1V (Fig.6). We found the largest contributor of power in 
SystolicRAM to be the ring amplifier topology chosen since the Φ1 
reset (RST) phase requires the input and output of inverter-like 
structures to be shorted together (Fig.4). Changing devices in this 
design to have a high-threshold voltage (HVT) is estimated to yield a 
static power reduction of 25x for digital elements (logic and bitcells) 
and 2x for analog components resulting in a projected FOM of 35.8 
bit-TOPS/W. The proposed approach can improve data/energy-
efficiency, bit-precision, and supported kernel size of VMM macros 
used for convolution computations. 

Conclusion: 

Systolic-RAM demonstrates the first in-memory direct convolution 
engine as an all-in-one approach to data-efficient convolution. 
Systolic-RAM makes good use of BEOL wiring for analog 
multiplication and charge sharing over the SRAM with little silicon-
area overhead. This works demonstrates the importance of DAC 
calibration and use of state-of-the-art quantization neural network 
methods to recover near-ideal CNN classification performance in 
analog compute systems. 
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Fig. 1: (A) Conventional systems suffer from von Neumann 
bottleneck. (B-C) Weight/activation-stationary CIM requires 
duplicating or buffering of data. (D) Systolic-RAM requires minimal 
near-memory circuitry and eliminates need for data duplication. 

 

 

 
 

Fig. 2: (A-C) Vertical and horizontal translation of the kernel 
corresponds to (D) data movement between neighboring bitcells. 
Kernel data is broadcast along bit-lines (blue) and modulate the 
BEOL MDAC to perform multiplication with data in the bitcells. (E) 
The resulting charge output represents the multiplicative product 
and is accumulated horizontally along 7 charge share lines. 
 

 

 
 
Fig. 3.: (TOP) Schematic for large-signal ring amplifier for broadcast 
of analog data on bit-lines [10]. Output stage is biased using current 
mirrors to mitigate PVT effects. (BOTTOM) Test chip showing in-
memory data movement and differential multiplication waveforms. 
 

 
 

Fig. 4. (TOP) Circuit equivalent for C2C DAC with floating voltage 
shield [11]. (Bottom) Notches are adjusted for improved linearity. 
Adjacent DACs share a single output for charge accumulation. 
 

 
 

Fig. 5. (A) Measured multiplication characteristics and (B) 
corresponding bit-significance for calibrated and uncalibrated DACs 
demonstrate significant linearity improvement. (C) Re-training 
curves demonstrate good recovery to baseline performance after 3 
epochs with calibration. (D) Visualized effect of convolution on test 
image. (E) Effect of non-linearity on CIFAR-10 predictions prior to 
retraining, based on 10,000 test images.  

 

 
 

Fig. 6. Detailed energy/performance breakdown considers figure of 
merit (FOM) as bit-resolution times terra-operations per second per 
watt (TOPS/Watt). Majority of power is consumed by short-circuit 
current in the ring amplifier (RA) [10]. 
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Fig. 7.: (A) 12.8k-bit test chip and (B) separate 16-bit test structure. 
(C) Demonstration of how a single pixel is duplicated in the IM2COL 
matrix and (D) corresponding equations for direct and indirect 
convolution. Matrix dimensions relevant to this work are provided. 
Reference 4 provides detailed description for dimensionality and 
memory impact of IM2COL; see “torch.nn.Unfold”. 
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