
IEEE JOURNAL OF SOLID-STATE CIRCUITS 1

Ising-CIM: A Reconfigurable and Scalable Compute
Within Memory Analog Ising Accelerator

for Solving Combinatorial
Optimization Problems

Shanshan Xie , Graduate Student Member, IEEE, Siddhartha Raman Sundara Raman , Member, IEEE,

Can Ni, Member, IEEE, Meizhi Wang, Graduate Student Member, IEEE, Mengtian Yang ,

and Jaydeep P. Kulkarni , Senior Member, IEEE

Abstract— Combinatorial optimization problems (COPs) find
applications in real-world scientific, industrial, and societal sce-
narios. Such COPs are computationally NP-hard, and performing
an exhaustive brute force search for the optimal solution becomes
untenable as the COP size increases. To expedite the COP
computation, the Ising model formalism is used, which abstracts
spin dynamics in a ferromagnet. The spins are orientated to reach
the minimum energy state, representing the optimum COP solu-
tion. Previous Ising engine designs utilized dedicated annealing
processors or additional digital arithmetic circuits next to the
memory bitcells. These custom circuits or processors cannot be
repurposed for other applications, incurring significant area and
power overhead. In contrast to the prior approaches, this work
presents a reconfigurable and scalable compute-within-memory
analog approach for Ising computation (called Ising-CIM). This
area-efficient approach repurposes existing embedded memory
bitcell columns and peripheral circuits to perform analog domain
Hamiltonian calculations on the bitlines minimizing area and
power overhead significantly. A 13.18-Kb silicon prototype,
implemented in a 65-nm CMOS process, demonstrates the Ising-
CIM concept and functionality using a 100 × 64 pixel image
in a max-cut COP. The Ising-CIM design achieves 48-µm2/spin
unit spin area and 1091× speedup in annealing time compared
to the CPU.

Index Terms— Analog computation, compute-in-memory,
Hamiltonian, hardware accelerator, Ising model, max-cut
problem, simulated annealing.

I. INTRODUCTION

COMBINATORIAL optimization is a branch of mathemat-
ical optimization that focuses on finding the optimal or

nearly optimal solutions among a finite but extensive collection

Manuscript received December 15, 2021; revised March 21, 2022 and
May 12, 2022; accepted May 13, 2022. This article was approved by Associate
Editor Meng-Fan Chang. This work was supported in part by the NSF
CAREER Award, in part by the Intel Rising Star Faculty Award, and in
part by the Micron Foundation Faculty Awards. (Corresponding author:
Shanshan Xie.)

The authors are with the Department of Electrical and Computer Engineer-
ing, The University of Texas at Austin, Austin, TX 78712 USA (e-mail: sxie@
utexas.edu; s.siddhartharaman@utexas.edu; can5@utexas.edu; wang.mz@
utexas.edu; mengtian.yang@utexas.edu; jaydeep@austin.utexas.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSSC.2022.3176610.

Digital Object Identifier 10.1109/JSSC.2022.3176610

of possibilities [1]. The combinatorial optimization prob-
lems (COPs) find many social and industrial data-intensive
computing applications. Examples include optimization of
mRNA sequences for COVID-19 vaccines [2], [3], semicon-
ductor supply chains [4], [5], and financial index tracking [6],
to name a few. Such COPs are predominantly NP-hard [7]
(NP = Non-deterministic Polynomial-time), and performing
an exhaustive brute force search becomes untenable as the
COP size increases. An efficient way to solve COPs is to let
nature perform a potentially exhaustive search in the physical
world using an approach based on the Ising model, which can
map different types of COPs [8]. The Ising model describes
spin dynamics in a ferromagnet [9], wherein spins naturally
orient to achieve the lowest ensemble energy state of the Ising
model, representing the optimal COP solution [10].

One of the approaches to design Ising hardware is to
abstract spin dynamics with a mathematical model (called
Hamiltonian) and update spins iteratively to minimize the
Hamiltonian. Spin update computation involves numerous
memory read and write operations. Consequently, iterative
Ising model computing with conventional Von Neumann archi-
tectures, as shown in Fig. 1, requires frequent off-chip memory
accesses, resulting in degraded performance and high power
consumption. For minimizing the off-chip memory accesses,
prior approaches have demonstrated compute-near-memory
(but not within memory) designs, which performs massively
parallel computations near the memory bitcells with dedicated
digital arithmetic circuits [7], [11]–[14]. Previous compute-
near-memory-based Ising accelerators have reported up to
26 000× speedup [11] and ∼1000× lower energy [13] than
CPUs. These custom designs implement multiple instances
of digital arithmetic logic (i.e., full adder and XNOR logic)
adjacent to unit memory segments, as depicted in Fig. 1.
It incurs a significant area overhead, increasing the hardware
cost, and can degrade the bitcell density by a factor of
3×–10×. Moreover, when scaling up the spin count, these
designs adopt a multi-chip approach [13], which reintroduces
the off-chip access latency and energy penalties. Despite
impressive performance benefits, the need for dedicated digital
arithmetic and off-chip memory access overheads has limited

0018-9200 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 28,2022 at 14:45:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8411-3050
https://orcid.org/0000-0002-3563-8560
https://orcid.org/0000-0002-7051-2250
https://orcid.org/0000-0002-0258-6776

2 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 1. Comparison of the proposed CIM Ising approach with von-Neumann
and near-memory compute methods.

the adoption of compute-near-memory-based Ising designs in
modern SoCs. Therefore, there is a critical need for energy-
efficient and cost-effective (area efficient) hardware designs to
advance the COP accelerator development.

The concept of compute-in-memory has been widely
adopted for deep neural networks [15]. However, in a neural
network, the outputs from the previous layer need to be fed
into the next layer. Therefore, partial sums or temporary stor-
age resources are needed. In contrast, the Ising computation is
naturally more suitable for the compute-in-memory operation
because each spin state (which is 1 bit) can be mapped
to a physical memory bitcell, and after each Hamiltonian
iteration, one-bit spins can be updated locally. This allows
the spins to be stored stationary inside the memory array with
minimum intra-memory data movement. In addition, the local
spin update process reuses available sense amplifiers (SAs)
in the memory array and performs a local 1-bit read-modify-
write operation to eliminate the need for any analog-to-digital
converters (ADCs).

This article proposes a reconfigurable and scalable compute-
within-memory (CIM) Ising approach to perform Hamiltonian
computations in an analog domain within a memory array with
minimal circuit changes. It maps Hamiltonian computations
onto available memory wordline (WL) and bitline circuits. The
key contributions of this work are as follows.

1) A unique analog domain CIM approach is demonstrated,
which mitigates the off-chip data movement between
CPU and memory by performing Ising computations
directly within the memory array.

2) All Ising computations are performed by reconfigur-
ing the existing peripheral circuitry (i.e., SA and WL
drivers) within a memory array without requiring dedi-
cated digital arithmetic circuits. Therefore, the memory
arrays can be configured as regular memory arrays
used in non-Ising computations and can be reconfigured

Fig. 2. Ising model formalism.

seamlessly as Ising CIM engines, which significantly
eliminates the area overhead due to a dedicated Ising
accelerator digital arithmetic circuits.

3) The local write-after-read mechanism is leveraged for
updating one-bit spin states, minimizing the intra-
memory movement for reading/writing the spins in
King’s graph. In addition, this approach eliminates the
need for a dedicated ADC since the Hamiltonian com-
putation results are used to write back (update) the
spin bits.

4) The concept of “ghost cells” is leveraged [16] for
seamlessly mapping large Ising models across multi-
ple memory banks, thus enabling scalable Ising-CIM
designs for solving complex COPs.

5) The proposed Ising-CIM design supports multi-bit preci-
sion for King’s graph coefficients (J) by leveraging the
available read-assist circuits to generate optimum read
WL (RWL) underdrive voltage.

6) 65-nm CMOS silicon prototype measurements demon-
strate 6×∼17× spin area reduction and 4× annealing
time speedup compared to prior hardware approaches.
Compared to the CPU annealing time, the Ising-CIM
accelerator can improve the annealing time by 1091×
as the number of spins increases to 144 K.

This article is organized as follows. Section II introduces
the background of this work, including the Ising model and
prior approaches. Section III presents the overall Ising-CIM
architecture, within-memory XNOR operation, computational
dataflow, ghost cell concept, and simulated annealing in the
Ising-CIM design. Section IV presents a 65-nm silicon proto-
type measurement results in detail. Section V concludes this
article by highlighting key design attributes of the proposed
Ising-CIM approach.

II. BACKGROUND

A. Ising Model

The Ising model [9] is a mathematical model of ferromag-
netism in statistical mechanics [17], which models spin–spin
interactions with nearest neighbors, as shown in Fig. 2. The
spin (σ) can be one of the two states: +1 for up-spin (↑)
and −1 for down-spin (↓). The Ising model can be emulated
by leveraging natural coupling phenomena using quantum bits,
lasers, or coupled oscillators [18]–[20]. Each one necessitates
specialized hardware and a method for converting physical

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 28,2022 at 14:45:23 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: ISING-CIM: A RECONFIGURABLE AND SCALABLE COMPUTE WITHIN MEMORY ANALOG ISING ACCELERATOR 3

TABLE I

COMPARISON OF ISING MODEL HARDWARE DESIGNS

state information to digital bits. Alternatively, Ising spin
dynamics can be simulated as a computational data flow real-
ized in CMOS technologies. In this case, Ising spin dynamics
are represented mathematically in terms of a spin interaction
coefficient (J) and an external magnetic field (hi) affecting
the energy state of all individual spins (Hσ)

H = −
�

i j

Ji jσiσ j −
�

i

hiσi . (1)

The computing steps involve minimizing the Hamiltonian (H)
energy function expressed in (1), where σi represents the target
spin, σ j is the neighboring spin, and Ji j is the interaction
coefficient. Here, i and j correspond to spin indices of a
representative 3 × 3 matrix connected as King’s graph [21]
(see Fig. 2), and the target spin σi interacts with its eight
neighboring spins σ0∼7

Hσ = −
�

j

Ji j ∗ σ j − hi . (2)

The Ising model-based Hamiltonian computation to reach the
minimum energy state is performed in two steps: 1) local
spin update based on the neighboring spins and 2) annealing
process to avoid being stuck in local minima. In (2), Hσ

is defined to represent the local energy for a given tar-
get spin. If Hσ exceeds a certain threshold (0 in Fig. 2),
then the spin state (σi) is updated to −1. Otherwise, it is
updated to +1, as shown in (3). This iterative process is the
first step of minimizing the energy state, called local spin
update [7], [22]

σi =

⎧⎪⎨
⎪⎩

−1, if Hσ > 0

+1, Hσ < 0

+1/ − 1, Hσ = 0.

(3)

B. Prior Work

Ising model hardware designs aim to achieve the optimal
solution for a given COP by emulating Ising spin dynamics
using either: 1) physical systems that tend to evolve toward
their lowest energy state or 2) by mathematically abstract-
ing spin dynamics as a Hamiltonian function and solving it
iteratively.

1) Physical Ising Models: Table I shows the previous
implementations of such physical systems, including quan-
tum, photonic, and coupled oscillators. D-wave, a quantum
annealing-based quantum computer, is presented in [18],
which utilizes quantum bits (qubits) to encode one, zero,
or both information simultaneously. However, the design
necessitates a cryogenic operating temperature (∼15 mK),
which results in substantial cooling power costs (25 kW) [7].
The optical Ising machine, on the other hand, embeds spin
states into a binary phase modulator of an optical field.
With spin couplings set by input amplitude modulation and
a feedback scheme, global minima of the spin energy can be
determined using light propagation [19]. However, large size
optical components and special fabrication requirements may
limit the scaling of the photonic Ising approach to large COPs.

In contrast to the above two approaches, CMOS coupled
oscillator design has the advantages of room temperature
operation and miniaturization without compromising accuracy.
The coupled oscillator dynamics settle to a steady state,
and the phase of coupled oscillators determines the ground
state of the Ising model [20], [23]–[25]. However, coupled
oscillator approaches consume significant dynamic power due
to the constant toggling of the oscillator nodes. Furthermore,
these physical systems are susceptible to process variations,
and unintentional spurious coupling events can cause ground
state fluctuations. As a result, scaling to large COPs can be a
challenge for physical systems emulating Ising spin dynamics.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 28,2022 at 14:45:23 UTC from IEEE Xplore. Restrictions apply.

4 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 3. SoC floorplan, Ising-CIM architecture, and King’s graph mapping to perform the accurate Ising CIM computations.

2) Iterative Ising Models: CMOS Ising designs map the
COP into an Ising model and solve iteratively (1), which are
easy to design, manufacture, and scale. Yamaoka et al. [14]
presented a CMOS annealing implementation that uses the
interaction of connected spins to move toward the low-
est energy level. Dedicated arithmetic circuits (i.e., XORs,
switches, and majority voting circuits) are employed along
with SRAM bitcells.

Recently, a digital annealing processor (AP) [7] has been
presented based on the compute-in(near)-memory spin opera-
tor and register-based spins to increase energy efficiency and
reduce annealing time. This design eliminates the need for
static random access memory (SRAM) read/write operations
to access the adjacent spin values and mitigates the need
for a local SA triggering to read coefficients from SRAMs.
However, this approach adds custom digital arithmetic circuits
(four transmission-gate-based XNORs and seven full-adders)
in each column along with four SRAM bitcells, and the
Hamiltonian computation needs to wait for the partial sum
to propagate.

Another COP approach implements a fully connected
annealer based on the stochastic cellular automata algo-
rithm [12]. Although some promising innovations are shown
(i.e., delta-driven simultaneous spin update and all-to-all con-
nected interactions), this digital annealer design implements
dedicated digital arithmetic logic resulting in a compute-near-
memory design, which would degrade the memory bitcell
density. In addition, in a compute-near-memory design, the
energy for moving the data from SRAM to the annealer
logic still remains a challenge. Similarly, a 144-Kb AP chip
was demonstrated in another recent approach [13], which
implements a 9 × 16k spin system using flip-flop-based
structures to connect multiple AP chips through the inter-chip
interface. Each AP chip consists of an Ising core, an inter-
chip interface, and a controller. These custom arithmetic
circuits and dedicated processors incur area overhead and
degrade the memory density, thus increasing hardware costs.
Moreover, these extra arithmetic circuits are not utilized
during non-COP computations, making it costly to adopt
compute-near-memory approaches in modern, area-optimized,
and high-density memory arrays.

In contrast to prior approaches, this work explores a
reconfigurable and scalable CIM design by repurposing the
existing embedded memory array and peripheral circuitry for
performing Ising Hamiltonian computations.

III. PROPOSED ISING-CIM APPROACH

A. Architecture Overview

This section presents a unique CIM design that fundamen-
tally avoids extra digital arithmetic circuits and utilizes the
inherent features and structures within a memory array to per-
form Ising model computations. Fig. 3 shows the big picture
of the proposed Ising-CIM accelerator architecture in an SoC
design. It is realized by utilizing the baseline cache memory
by reconfiguring the available bitcell columns to perform Ising
model computations, such as Hamiltonian, spin update, and
annealing process. A part of the embedded memory can be
configured as an Ising-model engine. On the other hand, the
remaining portion of the memory array can be utilized for non-
Ising workloads as standard cache memory. Reconfiguring the
existing memory array for Ising model computations avoids
the area overhead of custom Ising circuits.

Fig. 5 shows the Hamiltonian computation mechanism in the
analog domain using either an SRAM bitcell or an embedded
Dynamic RAM (eDRAM) bitcell having a dedicated read
port. Spins (σs) and J coefficients are initially stored in
the embedded memory bitcells. During Ising computation,
J coefficients are read and applied to the RWLs of the spin
array. The mapping between a J coefficient and analog RWL
voltage is listed in Table II. J = −1 is mapped to VSS, and
J = +1 is mapped to VRWL, where VRWL is an optimized
underdrive voltage (<VDD). The underdrive voltage VRWL is
selected so that Hσ > 0 or Hσ < 0 (3) can be differentiated
using an SA. When the VRWL voltage is too low (e.g., 400-mV
RWL case in Fig. 4), the RBL discharge rate is reduced,
and thus, the RBL voltages for different Hσ ’s are overlapped,
as shown in the Monte Carlo simulation (see Fig. 4). In this
case, local spin update cannot be performed accurately since
the SA cannot distinguish whether Hσ is larger or smaller
than zero. When VRWL voltage is closer to VDD, although the
RBL voltages are saturated to VSS for negative Hσ values,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 28,2022 at 14:45:23 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: ISING-CIM: A RECONFIGURABLE AND SCALABLE COMPUTE WITHIN MEMORY ANALOG ISING ACCELERATOR 5

Fig. 4. Monte Carlo simulation of RBL voltages distribution for different
Hσ values {−8, −6, −4, −2, 0, 2, 4, 6, 8} when VRWL = 700 and 400 mV
at VDD = 1 V under cold (−40 ◦C) temperature.

Fig. 5. Hamiltonian analog computation mechanism.

the voltage difference between maximum VRBL (@Hσ = 0)
and minimum VRBL (@Hσ = 2) is larger, leading to increased
sensing margin for local spin update. This also shows the
benefit of using analog computation for local spin update
since it only requires one reference comparison (3), instead
of accurately distinguishing each Hσ value from −8 to +8,
at the same time. The spin state (σ) of −1 (down-spin) is
mapped to bitcell node value of VSS, whereas spin state of +1
(up-spin) is mapped to bitcell value of VDD. The unit capacitor
(Cσ) in Fig. 5 is used to perform charge domain Hσ analog
computation directly on a bitline. This computation is achieved
by repurposing the available bitcell columns in the normal
mode of operation (non-CIM) as a charge domain circuit in the
Ising-CIM mode by activating multiple WLs simultaneously
to discharge the capacitor Cσ . The discharge current reflects
the multiplication between a spin state and a J coefficient. The
charge sharing among different RBLs reflects the summation
in the Hσ equation.

B. In-Memory XNOR Ising Operation

The main operation in (2) is the multiplication between a
spin state σ and a J coefficient of King’s graph, which is
an XNOR operation between σ and J . Table III shows the

TABLE II

SPIN σ AND J COEFFICIENT MAPPING TO AN ANALOG VOLTAGE

TABLE III

IN-MEMORY XNOR (J *σ) ISING OPERATION

Fig. 6. In-memory XNOR operation example for read bitline discharge and
preserve cases.

in-memory XNOR concept by storing both σ and σ inside the
memory array and applying J and J on different RWLs. When
σ and J are both LOW or both HIGH, the expected result for
the multiplication is +1. In this case, the read port of one of
the bitcells discharges the capacitor Cσ , as shown in Fig. 6.
On the other hand, when σ and J have different values, the
J × σ result is −1. Therefore, none of the bitcell read ports
is turned on to discharge the capacitor Cσ because either the
RWL or the bitcell storage node is LOW to preserve the bitline
voltage.

C. Ising-CIM Hamiltonian Computation

The Ising-CIM computational data flow consists of Hamil-
tonian computation, spin update, and annealing process to
reach the global minima. It is computed in five steps, as illus-
trated in Fig. 7. Each step is described as follows.

Step 1 (Precharge): All RBLs are precharged to the supply
voltage (VDD) through PMOS transistors with an active-low
PRECHARGE signal. This step ensures that all parallel bitline
computations start from the same voltage level (VDD).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 28,2022 at 14:45:23 UTC from IEEE Xplore. Restrictions apply.

6 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 7. Overall Ising-CIM circuit schematics, data flow, and timing diagram for performing Hσ computation and spin update.

Step 2 (Memory Read for −Ji ∗σi Computation): Step 2 in
Fig. 7 illustrates −Ji ∗ σi computation for a target spin σ .
J coefficients associated with the neighboring spins are first
read from other section of memory array and then applied
onto RWLs by reconfiguring the RWL address decoder.
In the first iteration, J0, J3, J5, and their complement values
(J0, J3, and J5) are applied onto six RWLs through the
WL controller module to perform the multiplication with the
second column (σ0, σ3, σ5, and their complementary values).
The HIGH (LOW) value of the J coefficients turns on (off) the
RWL. If the RWL turns on, the read port of the bitcell is turned
on/off depending on the bitcell storage node value, the spin
state (σ). This achieves the in-memory XNOR operation for
the Hamiltonian computation. Since J coefficients are applied
to RWLs and RWLs, and drive the entire rows in the array,
SP�0 : n� (SP = sample) is used to ensure that the bitline
voltage is only sampled to its respective sampling capacitor
(Cσ) on the second column. In contrast, sampling capacitors
from other columns remain disconnected from the other RBLs.
In the second iteration, J1, J6, and their complementary values
(J1 and J6) are applied to the RWL controller to perform the
multiplication with the spins in column 3. However, in this
iteration, row 1 and row 4 (see Fig. 7) are always OFF because
the corresponding bitcells in these rows store the target spin
(or its complement value), which is not part of its Hamiltonian
computation. In other words, only the neighboring eight spins
in King’s graph are part of the Hamiltonian computation,
as shown in Fig. 2 and (2). The third iteration follows a
similar step, where J2, J4, J7, and their complement values
(J2, J4, and J7) are applied on RWLs, and the multiplication

results with σ2, σ4, σ7, and their complementary values are
sampled on the fourth column Cσ capacitor. As shown in
the timing diagram in Fig. 7, RWL_EN turns on three times
to perform the above three iterations, and SP�2� ∼ SP�4�
turns on one by one for discharging the corresponding Cσ .
Multiple such computations can be performed in parallel when
J coefficients are the same for the target spins on the same
row. In addition, for more complex COPs, parallelism can be
achieved by arranging the memory array into sub-arrays and
performing parallel computation on each sub-array.

Step 3 (Hamiltonian Computation Using Charge-Sharing):
In the illustration shown in Fig. 7, C S�2� and C S�3� turn
on to activate the charge share operation among the three
sampling capacitors (Cσ s) in columns 2–4, performing the
summation for eight neighboring spin and J coefficient pairs’
multiplication, as expressed in the Hamiltonian equation (2).
By using a bus signal (C S�0 : n − 1�) to control the charge
share operation, Cσ ’s on the other columns are isolated for a
specific King’s graph calculation.

Step 4 (Spin-Flip Threshold Comparison): The existing SA
in the peripheral memory circuit is utilized. By asserting
SA�3�, the voltage (VCσ

) at Cσ in column 3 is compared with
a reference voltage VREF (VREF = VDD/2). One of the available
memory columns can be used to generate the VREF inter-
nally by turning on multiple RWLs for a certain pre-defined
pulsewidth for discharging the RBL to the target reference
voltage. Fig. 8 shows the circuit diagram, simulation waveform
to illustrate the concept, and Monte Carlo simulations for VREF.
In addition, the number of turned on RWLs, RWL pulsewidth,
and WL underdrive voltage can be tuned for calibrating VREF.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 28,2022 at 14:45:23 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: ISING-CIM: A RECONFIGURABLE AND SCALABLE COMPUTE WITHIN MEMORY ANALOG ISING ACCELERATOR 7

Fig. 8. Reference voltage (VREF) generation.

Fig. 9. Multi-bit precision J coefficient Hamiltonian computation circuit
diagram, operation truth table, and Monte Carlo simulation.

For calibration, a known sequence of spins needs to be fed into
the array to monitor the SA output. In this case, a dedicated
VREF generation circuit can be avoided, which further reduces
the area overhead and hardware implementation cost.

Step 5 (Spin-State Update): The updated spin state is stored
in another bitcell row without disturbing the original target
spin in row 1. This is because the initial value of the target
spin is still required, as it is a part of King’s graphs of its
neighboring spins and would be used for computations of
Hσ of respective neighboring spins. In this case, RWL�7� is
turned on to read the row-7 bitcell values on the RBLs. After
that, all SAs turn on, except for column-3, to not disturb the
computation result at the output of column 3 SA. At the same
time, WWL�7� and UPDATE signals are also turned on to
pass the write port data to bitcells, including the updated spin
value.

D. Multi-Bit Precision J Coefficients

For multi-bit J coefficient computation, the data flow is
similar to the single bit J coefficient computation. Initially, the
bitlines are precharged to VDD, and the spins and their com-
plement values are stored in the bitcells, as shown in Fig. 9.
The first six bitcells in the column are storing the spin, and

Fig. 10. Ghost cell concept.

the bottom three bitcells are storing its complementary value
(“X3” means that three bitcells are used). Each J coefficient
bit is fed onto the corresponding RWL, and the J coefficient
for the first three bitcells is always “1” to generate a constant
three unit current offset. When spin equals “+1,” the discharge
current varies from 3× to 6× depending on the J coefficients.
In this case, the RBL is discharged to a voltage ranging from
VDD-3VX to VDD-6VX , as shown in the table in Fig. 9, where
VX is a unit discharge voltage. After each bitline voltage is
established, charge-share and the similar steps described in
Section III-C are performed for the Hamiltonian computation.
Compared with single bit J coefficient computation, spin
values are stored across the column without sharing the same
bitline. Therefore, eight computations are required for the eight
neighboring spins. For performing multi-bit J computation,
the WL underdrive voltage needs to be optimized for the SA
to distinguish between Hσ ≤ 0 and Hσ > 0. Monte Carlo
simulations are performed to verify the RBL voltage for each
Hσ case under local variations, and for illustration purpose,
other Hσ results are not shown in Fig. 9.

E. Ising-CIM Scalability

As the size of COP increases, the size of the Ising model
would scale up, which would necessitate a large capacity
memory bank to map the entire King’s graph. However,
memory banks in current CMOS technologies are typically
built to optimize WL and BL interconnect delays and have
limited bit capacity. This scalability aspect of the Ising model
is addressed by leveraging the concept of “ghost cells” [16]
(see Fig. 10), which splits a large King’s graph into multiple
sub-King’s graphs and maps the sub-graphs across various
memory banks for Ising-CIM computation. The bits (spins) of
a sub-King’s graph, which are at the edge of a given memory
bank, are duplicated in adjacent banks, and as the memory
bank size increases, the “ghost cells” overhead reduces. The
spins on these duplicated horizontal and vertical edges need to
be synchronous for the next Ising computation. Therefore, for
the horizontal duplicated row, the entire row data are passed to
the adjacent sub-array after all the spin update processes are
completed. For the vertical duplicated column, after each spin
update cycle for the edge spin, the updated spin is latched to
the adjacent column through the digital controllers. In order
to update the spin in a specific location in a column, a read-
modify-write step needs to be performed for the entire row.
In this case, the write data for the edge column are overwritten
by the new spin values, and the refresh operation is performed
on the other columns.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 28,2022 at 14:45:23 UTC from IEEE Xplore. Restrictions apply.

8 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 11. Ising-CIM silicon prototype die micrograph, area/power breakdown, test-chip summary, and FPGA-based lab experiment setup.

F. Annealing Process

To avoid the Hamiltonian energy function getting stuck in
local minima values, an annealing mechanism is adopted by
randomly flipping the spin states according to temperature-
dependent scheduling [7], thus changing the Hamiltonian
energy state. After the local spin update process is completed
for all the spins, a random number sequence with 1s and 0s
is fed into the AN�0 : n� port (shown in Fig. 7), which can be
generated externally by specifying the number of spins (N)
to be randomly flipped. The random sequence turns on the
inverting path when the number is 1 to flip the read bit and
turns on the non-inverting path when the number is 0 to
preserve the read bit. A regular read operation is activated for
the annealing process by precharging the RBL, turning on the
RWL, and firing all the SAs. Once the SA outputs are resolved,
the randomly flipped spin states are updated with a write-back
operation depending on the respective annealing enable bits
(AN and AN_b). The number N is controlled externally and
is decreased according to the annealing schedule [7], [22].
In the annealing scheduling, a linear (or exponential) cooling
schedule is defined, and the temperature (from the algorithm
perspective) decreases in each Ising iteration. The acceptance
of a new positive energy state depends on the comparison
between a random number generated uniformly in the inter-
val [0, 1] [26] and the cooling schedule. The process is
repeated until convergence is achieved, and the optimized
solution is found. Prior approaches [7], [11], [14], [22] have
implemented varied annealing mechanisms depending on the
hardware design. Therefore, in order to keep the annealing
process flexible and user-controlled, the randomness compo-
nent and the random bit-streams are controlled off-chip with
a scan–chain interface and FPGA in the proposed Ising-CIM
design. In this case, different annealing approaches can be
easily implemented, customized, and defined by users.

IV. MEASUREMENT RESULTS

A. Test-Chip Measurement Setup

Fig. 11 shows the 65-nm CMOS silicon prototype die
micrograph, measurement setup, and test-chip summary of

the proposed Ising-CIM design. The test chip implements
the CIM operations to compute the Hamiltonian, anneal-
ing process, and spin updates with King’s graph model.
The spin states are updated with a write-after-read step,
which intrinsically performs a refresh operation for the 3T1C
(T = transistor, C = capacitor) eDRAM bitcell used in this
memory macro. This relaxes the need for regular refresh opera-
tions during Hamiltonian computations, reducing the eDRAM
refresh power overhead. As long as the eDRAM refresh
interval is longer than the Hamiltonian iteration duration, Ising
operations are not required to be paused for a refresh since
the refresh operation is inherently and repeatedly triggered
during Hamilonian spin-state update steps. The bitcell density
improves with compact 3T1C eDRAM bitcells, which can
support larger size Ising models for the same memory macro
area. It is worth noting that the proposed Ising-CIM approach
also can be realized using 6T (with optimized WL underdrive
read assist techniques [27]) and/or 8T SRAM bitcells.

The overall measurement setup, test-chip interface, and test
methodology consist of: 1) mapping a COP onto King’s graph
with J coefficients using Python [28] framework, as discussed
later in Section IV-B6; 2) feeding the generated J coefficients
to the test chip using Xilinx Virtex-7 FPGA VC707 Evalu-
ation board [29] and Xilinx FMC XM105 debug card [30];
3) oscilloscope demonstration of the Ising-CIM functionality,
as shown in Fig. 11; 4) performing on-chip Hσ computation,
including spin updates and annealing process; 5) Hamiltonian
energy calculation by reading the spins from the memory
macro; 6) performing statistical characterization to quantify
die-to-die variations on COP accuracy, and annealing time
metrics; and 7) power analysis of the Ising-CIM design, and
in Fig. 11, the power number includes the data movement
from IO pins to the digital controller and the RWLs of the
memory array. The cost-effective 65-nm test chip implements
100 × 64 spins supporting a 100 × 64 pixel image to evaluate
a max-cut COP. A larger COP can be realized either using
a large capacity memory macro or using the “ghost cell”
concept, which is discussed in Section III-E, by splitting the
image and storing the image segments into multiple memory
banks.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 28,2022 at 14:45:23 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: ISING-CIM: A RECONFIGURABLE AND SCALABLE COMPUTE WITHIN MEMORY ANALOG ISING ACCELERATOR 9

Fig. 12. Oscilloscope demonstration of Ising-CIM Hσ computational data
flow. Note that this clock frequency is not the maximum operating clock
frequency of the memory array.

Fig. 13. Oscilloscope demonstration of the simulated annealing functionality
by flipping 4’b0101 to 4’b0000.

B. Test-Chip Characterization
1) Ising-CIM Hσ Computation: Fig. 12 shows the oscillo-

scope waveforms demonstrating the Hamiltonian computation
dataflow described earlier in section III-C. Initially, the dig-
ital controller reads eight J coefficients of King’s graph by
asserting the Load_J signal four times. The rest of the signals
indicates successful Hσ computation dataflow. It should be
noted that the operating frequency is intentionally lowered for
the functionality demonstration with oscilloscope waveforms.
It is not the maximum operating clock frequency of the
memory array.

2) Simulated Annealing Demonstration: Fig. 13 shows the
oscilloscope demonstration of the simulated annealing steps.
Initially, the read data from the first row are 0101, and
the AN_EN�3:0� bits are set to 0101. After the simulated
annealing process, which is discussed in Section III-F, the data
that are read from the bitcell changed from 0101 to 0000.
It is worth noting that 4-bit simulated annealing waveforms
shown in Fig. 13 are for demonstration purposes, and it
is not the maximum memory I/O bandwidth for the test
chip. A scan–chain interface is implemented to perform the
memory read/write operations, as shown by SCAN_CLK and
SCANOUT signals in Fig. 13.

Fig. 14. Oscilloscope demonstration of RBL discharge for different discharge
currents performing analog charge domain Hamiltonian computations on the
bitline.

Fig. 15. Oscilloscope demonstration of various Hσ computation results
(−8 to +8). Note that the clock frequency is reduced only for capturing
the analog output waveform.

3) Hσ Computation Demonstration on RBL: Fig. 14 shows
the oscilloscope demonstration of Hσ on-bitline multiplication
as the RBL discharge rate for three different cases, assuming
that the spin states are all 1s. The bitline discharge current
rate is reflected on the capacitor (Cσ) voltage. Fig. 15 shows
various Hσ analog voltage from −8 to +8, which offers good
linearity across the entire range of J and σ multiplications of
a 3 × 3 King’s graph.

4) Process Variation Effects on Hσ Computation: As the
spin update is determined by comparing VCσ

with VREF, the
PVT variations can introduce uncertainty at the reference
boundary when the difference between VCσ

and VREF is
within the SA offset voltage. This can result in spin update
uncertainty, which may impact the number of annealing steps
to reach the global minima or result in a suboptimal COP
solution. To evaluate the impact of the process, temperature,
and voltage variations, Monte Carlo simulation, as shown in
Fig. 16, is performed over 20 K samples among different
temperatures (−40 ◦C, 27 ◦C, and 80 ◦C) and different VDD

levels (0.9, 1, and 1.2 V). In the Monte Carlo simulation,
although there are local variations on RBL voltage for each
Hσ , the margin to differentiate Hσ ≤ 0 or >0 is large enough
(>60 mV) for the SA, leading to zero SA uncertainty in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 28,2022 at 14:45:23 UTC from IEEE Xplore. Restrictions apply.

10 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 16. Monte Carlo simulation for 20 K samples under cold (−40 ◦C), room (27 ◦C), and hot (80 ◦C) temperatures and under three different supply
voltages (0.9, 1, and 1.2 V) with the reference voltage range.

Fig. 17. RBL voltage variations with Hσ comparison results at VDD = 1 V
and the SA uncertainty cases when Hσ≈ 0 when VDD = 0.9, 1, and 1.2 V.

this case. In addition, measurements were performed on ten
test chips at room temperature (27 ◦C) and at hot temperature
(60 ◦C) with VDD equal to 0.9, 1, and 1.2 V. The measurement
data, as demonstrated in Fig. 17 (VDD = 1 V), show that
spin update uncertainty happens only when Hσ is around 0.
As shown in the table in Fig. 17, this SA output uncertainty
occurs in 12 out of 540 measured data points across different
temperatures and supply voltage levels. The effect of SA
uncertainty and supply voltage on the annealing cycle is shown
in Fig. 19.

5) Multi-Bit Precision J Coefficients: The Ising-CIM
design supports multi-bit J coefficients with optimized RWL
voltage levels generated using the WL underdrive circuit.
Fig. 18 shows the measured RBL voltage die-to-die variations
for Hσ from −3 to +3. For simplicity, other Hσ results are
not shown since the SA only needs to compare near when Hσ

equals zero for the local spin update step. The sensing margin
is about 20 mV for each die for the local spin update. After
calibration, the two cases (3) in the spin update can be clearly
detected by the SA leading to zero uncertainty.

6) Max-Cut Problem Demonstration: For a max-cut prob-
lem, a 100 × 64 pixel image “123456ABCDEF” is used

Fig. 18. Measured RBL voltage die-to-die variation under room (27 ◦C) and
hot (60 ◦C) temperatures for Hσ computation with 2-bit J coefficient.

TABLE IV

ISING-CIM PERFORMANCE COMPARISON WITH PRIOR WORKS

FOR HAMILTONIAN COMPUTATION ON CMOS AP

for quantifying the Hamiltonian energy and annealing time.
Initially, the spin values are randomly generated with (100, 64)
array size. J coefficients are mapped to −1 when the edges
cross the interaction [red connection in Fig. 19(a)] in King’s

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 28,2022 at 14:45:23 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: ISING-CIM: A RECONFIGURABLE AND SCALABLE COMPUTE WITHIN MEMORY ANALOG ISING ACCELERATOR 11

Fig. 19. (a) Spins and coefficients mapping. (b) Hamiltonian energy evolution with spin map transitions (A∼D/E) for a max-cut problem (“123456ABCDEF”
image) with two spin update uncertainty cases (c) showing two annealing cycles difference for solving the same COP and (d) with three different supply
voltages (0.9, 1, and 1.2 V).

Fig. 20. Hamiltonian energy evolution for five 100 × 64 test cases. (TC-1∼TC-5.)

graph [7] and map to +1 when there is no edge crossing
the interaction (gray connection). Fig. 19(b) and (c) shows
the spin map and the energy evolution for two cases. In the
spin map, the black box indicates σ = +1, and the white
box indicates σ = −1. The experiment is captured by using
two different dies. These two experiments have the same
initial conditions (i.e., initial spin array, the same seed, and
problem set), but the spin is updated differently depending
on the SA comparison result, temperature scheduling, and
energy in each annealing step. The spin update uncertainty
cases (case 1 and case 2) follow slightly different energy paths
in reaching the minimum energy state with a difference of
2 annealing cycles. In both cases, even though the annealing
time is different, the given COP can be solved correctly from
(A) to (D)/(E). In addition, voltage variation experiments on
solving the same max-cut problem are shown in Fig. 19(d).
Under three different supply voltages, the max-cut problem
can be solved successfully with different annealing cycles.
Additional five test cases (TC1–TC5) on the max-cut problem
are shown in Fig. 20. This result indicates that the SA offset

fluctuation due to process and temperature variations has a
marginal impact on the annealing time to reach the final
minimum energy state for the given size of COP.

C. Comparison With Prior Annealing Processors
Table IV compares the proposed Ising-CIM approach

with prior multi-bit J coefficient AP designs [7], [13],
[14], using a max-cut COP as a benchmark. The proposed
Ising-CIM approach performs the analog Hamiltonian compu-
tation within a memory array. Compared with prior methods,
the Ising-CIM approach minimizes extra arithmetic circuitry,
significantly reducing the area overhead and improving array
efficiency. The area occupied of each spin in the proposed
Ising-CIM approach is 6×∼17× smaller than the prior
methods [7], [13], [14]. In addition, the annealing time for
solving the max-cut COPs within the test-chip memory capac-
ity is 51.2 μs. To compare with prior approaches, software
simulation is performed to determine the number of annealing
cycles for a larger problem size. The corresponding annealing
time is calculated based on the measured computational time

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 28,2022 at 14:45:23 UTC from IEEE Xplore. Restrictions apply.

12 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 21. Annealing time comparison between prior work [13] and CPU [31].

for each iteration and the number of annealing cycles obtained
from the software simulations for a given problem. Compared
to CPU annealing time [31], the speedup in Ising-CIM design
is estimated to increase up to 1091× as the number of spins
increases the 144 K, as shown in Fig. 21.

V. CONCLUSION

In this article, an Ising-CIM design with an analog CIM
approach is demonstrated in a 65-nm CMOS silicon prototype.
The design reduces off-chip data movement by performing
most of the Ising Hamiltonian computations inside an embed-
ded memory. Moreover, this design realizes the Hamiltonian
computations without additional digital arithmetic circuits by
reconfiguring the available bitcells and peripheral memory
circuits. This ensures that the area overhead for embedding
Ising computations within a memory array is minimized. The
“ghost cell” concept is leveraged to map a large COP by
splitting a large King’s graph into smaller segments, mapping
them onto multiple sub-arrays. Furthermore, the Ising-CIM
design supports multi-bit J coefficients for more complex
problem classes. Silicon prototype measurements confirm the
feasibility of the proposed Ising-CIM approach and achieve
a 6∼17× smaller spin-area and 4× faster annealing time
for a given max-cut COP compared to prior methods. Thus,
the proposed Ising-CIM design can be a promising approach
to realize future energy-efficient combinatorial optimization
accelerators.

ACKNOWLEDGMENT

The authors would like to thank S. S. Teja Nibhanupudi
for helping with the test-chip micrograph setup and
Dr. Andrew Lanham for the helpful discussion on annealing
algorithms. They would also like to thank the TSMC Univer-
sity Shuttle Program for the test-chip fabrication support.

REFERENCES

[1] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algo-
rithms and Complexity. Chelmsford, MA, USA: Courier Corporation,
1998.

[2] K. Leppek et al., “Combinatorial optimization of mRNA structure,
stability, and translation for RNA-based therapeutics,” Nature Commun.,
vol. 13, no. 1, pp. 1–22, Dec. 2022. [Online]. Available: https://www.
biorxiv.org/content/early/2021/03/30/2021.03.29.437587

[3] N. Pardi, M. J. Hogan, F. W. Porter, and D. Weissman, “mRNA vaccines-
a new era in vaccinology,” Nature Rev. Drug Discovery, vol. 17, no. 4,
pp. 261–279, 2018.

[4] Y. Crama, “Combinatorial optimization models for production schedul-
ing in automated manufacturing systems,” Eur. J. Oper. Res., vol. 99,
no. 1, pp. 136–153, May 1997.

[5] K. G. Kempf, “Control-oriented approaches to supply chain management
in semiconductor manufacturing,” in Proc. Amer. Control Conf., 2004,
pp. 4563–4576.

[6] K. Benidis, Y. Feng, and D. P. Palomar, “Optimization methods for
financial index tracking: From theory to practice,” Found. Trends Optim.,
vol. 3, no. 3, pp. 171–279, 2018.

[7] Y. Su, H. Kim, and B. Kim, “CIM-spin: A scalable CMOS annealing
processor with digital in-memory spin operators and register spins
for combinatorial optimization problems,” IEEE J. Solid-State Circuits,
early access, Jan. 17, 2022, doi: 10.1109/JSSC.2021.3139901.

[8] A. Lucas, “Ising formulations of many NP problems,” Frontiers Phys.,
vol. 2, p. 5, Feb. 2014, doi: 10.3389/FPHY.2014.00005.

[9] R. Peierls, “On Ising’s model of ferromagnetism,” in Mathematical
Proceedings of the Cambridge Philosophical Society, vol. 32, no. 3.
Cambridge, U.K.: Cambridge Univ. Press, 1936, pp. 477–481.

[10] C. Yoshimura et al., “Uncertain behaviours of integrated circuits
improve computational performance,” Sci. Rep., vol. 5, no. 1, pp. 1–12,
Dec. 2015.

[11] T. Takemoto, M. Hayashi, C. Yoshimura, and M. Yamaoka,
“2.6 A 2 ×30k-spin multichip scalable annealing processor based on
a processing-in-memory approach for solving large-scale combinatorial
optimization problems,” in IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, Feb. 2019, pp. 52–54.

[12] K. Yamamoto et al., “STATICA: A 512-spin 0.25M-weight annealing
processor with an all-spin-updates-at-once architecture for combinatorial
optimization with complete spin-spin interactions,” IEEE J. Solid-State
Circuits, vol. 56, no. 1, pp. 165–178, Jan. 2021.

[13] T. Takemoto et al., “4.6 A 144Kb annealing system composed of
9×16Kb annealing processor chips with scalable chip-to-chip connec-
tions for large-scale combinatorial optimization problems,” in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2021,
pp. 64–66.

[14] M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, and
H. Mizuno, “A 20k-spin ising chip to solve combinatorial optimization
problems with CMOS annealing,” IEEE J. Solid-State Circuits, vol. 51,
no. 1, pp. 303–309, Jan. 2016.

[15] S. Xie, C. Ni, A. Sayal, P. Jain, F. Hamzaoglu, and J. P. Kulkarni,
“16.2 eDRAM-CIM: Compute-in-memory design with reconfigurable
embedded-dynamic-memory array realizing adaptive data converters
and charge-domain computing,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2021, pp. 248–249.

[16] F. B. Kjolstad and M. Snir, “Ghost cell pattern,” in Proc. Workshop
Parallel Program. Patterns (ParaPLoP), 2010, pp. 1–9.

[17] S. G. Brush, “History of the Lenz–Ising model,” Rev. Modern Phys.,
vol. 39, no. 4, p. 883, 1967.

[18] M. W. Johnson et al., “Quantum annealing with manufactured spins,”
Nature, vol. 473, no. 7346, pp. 194–198, May 2011.

[19] D. Pierangeli, G. Marcucci, and C. Conti, “Large-scale photonic Ising
machine by spatial light modulation,” Phys. Rev. Lett., vol. 122, no. 21,
May 2019, Art. no. 213902, doi: 10.1103/PhysRevLett.122.213902.

[20] T. Wang, L. Wu, and J. Roychowdhury, “New computational results and
hardware prototypes for oscillator-based Ising machines,” in Proc. 56th
Annu. Design Autom. Conf., Jun. 2019, pp. 1–2.

[21] King’s Graph. Accessed: Nov. 21, 2021. [Online]. Available:
https://en.wikipedia.org/wiki/King’s_graph

[22] C. Cook, H. Zhao, T. Sato, M. Hiromoto, and S. X.-D. Tan, “GPU-
based Ising computing for solving max-cut combinatorial optimization
problems,” Integration, vol. 69, pp. 335–344, Nov. 2019.

[23] T. Wang and J. Roychowdhury, “PHLOGON: Phase-based logic
using oscillatory nano-systems,” in Proc. Int. Conf. Unconven-
tional Comput. Natural Comput., Cham, Switzerland: Springer, 2014,
pp. 353–366.

[24] G. Csaba and W. Porod, “Noise immunity of oscillatory computing
devices,” IEEE J. Explor. Solid-State Comput. Devices Circuits, vol. 6,
pp. 164–169, 2020.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 28,2022 at 14:45:23 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/JSSC.2021.3139901
http://dx.doi.org/10.3389/FPHY.2014.00005
http://dx.doi.org/10.1103/PhysRevLett.122.213902

XIE et al.: ISING-CIM: A RECONFIGURABLE AND SCALABLE COMPUTE WITHIN MEMORY ANALOG ISING ACCELERATOR 13

[25] I. Ahmed, P.-W. Chiu, and C. H. Kim, “A probabilistic self-annealing
compute fabric based on 560 hexagonally coupled ring oscillators for
solving combinatorial optimization problems,” in Proc. IEEE Symp.
VLSI Circuits, Jun. 2020, pp. 1–2.

[26] D. Landau and K. Binder, A Guide to Monte Carlo Simulations in
Statistical Physics. Cambridge, U.K.: Cambridge Univ. Press, 2021.

[27] R. W. Mann, “Interactions of technology and design in nanoscale
SRAM,” Ph.D. dissertation, Dept. School Eng. Appl. Sci., Univ. Virginia,
Charlottesville, VA, USA, 2010.

[28] G. Van Rossum and F. L. Drake, Jr., Python Tutorial, vol. 620.
Amsterdam, The Netherlands: Centrum voor Wiskunde en Informatica
Amsterdam, 1995.

[29] Xilinx Virtex-7 FPGA VC707 Evaluation Kit. Accessed: Jun. 1, 2021.
[Online]. Available: https://www.xilinx.com/products/boards-and-kits/
ek-v7-vc707-g.html

[30] FMC XM105 Debug Card. Accessed: Jun. 1, 2021. [Online]. Available:
https://www.xilinx.
com/products/boards-and-kits/hw-fmc-xm105-g.html

[31] S. Kahruman, E. Kolotoglu, S. Butenko, and I. V. Hicks, “On greedy
construction heuristics for the MAX-CUT problem,” Int. J. Comput. Sci.
Eng., vol. 3, no. 3, pp. 211–218, 2007.

Shanshan Xie (Graduate Student Member, IEEE)
received the B.S degree in electrical and computer
engineering (ECE) from the Worcester Polytechnic
Institute (WPI), Worcester, MA, USA, in 2018. She
is currently pursuing the M.S. and Ph.D. degrees
in electrical and computer engineering with The
University of Texas at Austin (UT Austin), Austin,
TX, USA.

She was an Intern with Analog Devices,
Wilmington, MA, USA, and Texas Instrument Cor-
poration, Dallas, TX, USA, where she was involved

in programmable gain instrumentation amplifier, electrocardiogram (ECG)
heart rate monitor, and controller area network (CAN) isolation products. Her
research interests include the mixed-signal design for compute-in-memory
techniques, machine learning accelerators, and annealing processors.

Ms. Xie was a recipient of the Cadence Women in Technology Scholarship
from Cadence in 2020. She was one of the 2021-2022 SSCS Predoctoral
Achievement Award Recipients.

Siddhartha Raman Sundara Raman (Member,
IEEE) received the B.S. degree from the Birla
Institute of Technology and Science, Pilani, India,
in 2019, and the M.S. degree from The Univer-
sity of Texas at Austin, Austin, TX, USA, in
2021.

He interned at the National University of Singa-
pore, Singapore, on spintronic circuits, and NVIDIA,
Bengaluru, India, as part of his undergraduate study.
His current research interests include compute-in-
memory, cryogenic computing, and device-to-circuit

optimization for emerging non-volatile memory (NVM) technologies.

Can Ni (Member, IEEE) received the bachelor’s
degree in engineering physics from the University of
Alberta, Edmonton, AB, Canada, in 2019, and the
master’s degree in electrical and computer engineer-
ing from The University of Texas at Austin, Austin,
TX, USA, in 2021.

He was an Intern with Qualcomm, San Diego,
CA, USA. His research interests include compute-
in-memory and neuromorphic hardware.

Meizhi Wang (Graduate Student Member, IEEE)
received the B.S. degree in electrical engineering, the
B.S. degree in system science and engineering, and
the M.S. degree in electrical engineering from the
Washington University in St. Louis, St. Louis, MO,
USA, in 2018. She is currently pursuing the Ph.D.
degree with the Electrical and Computer Engineering
Department, The University of Texas at Austin,
Austin, TX, USA, specializing in the integrated
circuits and systems track.

Her research interests include hardware security
and low-power VLSI design.

Mengtian Yang received the B.S. degree in com-
puter science from Shanghai Jiao Tong University,
Shanghai, China, in 2021. He is currently pursuing
the Ph.D. degree in electrical and computer engineer-
ing with The University of Texas at Austin, Austin,
TX, USA, specializing in the architecture, computer
systems, and embedded systems track.

He is currently with the Circuits Research Lab-
oratory, The University of Texas at Austin. His
research interests include hardware acceleration for
combinational optimization problems, computer-in-
memory, and machine learning accelerators.

Jaydeep P. Kulkarni (Senior Member, IEEE)
received the B.E. degree from the University of
Pune, Pune, India, in 2002, the M.Tech. degree from
the Indian Institute of Science (IISc), Bengaluru,
India, in 2004, and the Ph.D. degree from Purdue
University, West Lafayette, IN, USA, in 2009, all in
electronics/electrical engineering.

From 2009 to 2017, he was with the Intel Circuit
Research Laboratory, Hillsboro, OR, USA, where he
worked on energy-efficient integrated circuit tech-
nologies. He is currently an Assistant Professor of

electrical and computer engineering with The University of Texas at Austin,
Austin, TX, USA, where he is also a fellow of the AMD Endowed Chair in
Computer Engineering and the Silicon Labs Chair in Electrical Engineering.
He has filed 35 patents and published 100 articles in referred journals and
conferences. His research is focused on machine learning hardware accel-
erators, in-memory computing, emerging nano-devices, hardware security,
heterogeneous/3-D integration, and cryogenic computing.

Dr. Kulkarni is a member of the Association for Computing Machinery
(ACM). He received the Best M.Tech. Student Award from IISc, the Intel
Foundation Ph.D. Fellowship Award, the SRC Best Paper and Inventor Recog-
nition Awards, the Purdue Outstanding Doctoral Dissertation Award, seven
Intel Divisional Recognition Awards, the 2015 IEEE TRANSACTIONS ON
VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS Best Paper Award,
the SRC Outstanding Industrial Liaison Award, the Micron Foundation Faculty
Awards, the Intel Rising Star Faculty Award, and the NSF Career Award.
He has served as the Conference General Co-Chair of 2018 International
Symposium on Low Power Electronics and Design (ISLPED) and is partici-
pating in the technical program committees of the Custom Integrated Circuits
Conference (CICC), International Conference on Computer-Aided Design
(ICCAD), Design Automation Conference (DAC), and International Confer-
ence on Artificial Intelligence Circuits and Systems (AICAS) conferences.
He is also serving as the Chair of the IEEE Central Texas SSCS/CAS Joint
Chapter. He is also serving as an Associate Editor for the IEEE SOLID-STATE
CIRCUITS LETTERS, the IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION (VLSI) SYSTEMS, and IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—II: EXPRESS BRIEFS.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 28,2022 at 14:45:23 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

