
338 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, JUNE 2022

An Overview of Processing-in-Memory Circuits for
Artificial Intelligence and Machine Learning

Donghyuk Kim , Graduate Student Member, IEEE, Chengshuo Yu , Graduate Student Member, IEEE,

Shanshan Xie, Graduate Student Member, IEEE, Yuzong Chen, Joo-Young Kim , Senior Member, IEEE,

Bongjin Kim , Senior Member, IEEE, Jaydeep P. Kulkarni , Senior Member, IEEE,

and Tony Tae-Hyoung Kim , Senior Member, IEEE

Abstract— Artificial intelligence (AI) and machine learning
(ML) are revolutionizing many fields of study, such as visual
recognition, natural language processing, autonomous vehicles,
and prediction. Traditional von-Neumann computing architecture
with separated processing elements and memory devices have
been improving their computing performances rapidly with the
scaling of process technology. However, in the era of AI and ML,
data transfer between memory devices and processing elements
becomes the bottleneck of the system. To address this data
movement issue, memory-centric computing takes an approach
of merging the memory devices with processing elements so
that computations can be done in the same location without
moving any data. Processing-In-Memory (PIM) has attracted
research community’s attention because it can improve the energy
efficiency of memory-centric computing systems substantially by
minimizing the data movement. Even though the benefits of PIM
are well accepted, its limitations and challenges have not been
investigated thoroughly. This paper presents a comprehensive
investigation of state-of-the-art PIM research works based on var-
ious memory device types, such as static-random-access-memory
(SRAM), dynamic-random-access-memory (DRAM), and resis-
tive memory (ReRAM). We will present the overview of PIM
designs in each memory type, covering from bit cells, circuits,
and architecture. Then, a new software stack standard and its
challenges for incorporating PIM with the conventional comput-
ing architecture will be discussed. Finally, we will discuss various
future research directions in PIM for further reducing the data
conversion overhead, improving test accuracy, and minimizing
intra-memory data movement.

Index Terms— Artificial intelligence, machine learning,
processing-in-memory, neural networks.

Manuscript received December 20, 2021; revised February 16, 2022;
accepted March 10, 2022. Date of publication March 17, 2022; date of
current version June 13, 2022. This article was recommended by Guest Editor
H. H.-C. Iu. (Corresponding author: Tony Tae-Hyoung Kim.)

Donghyuk Kim and Joo-Young Kim are with the Electrical Engineering
Department, Korea Advanced Institute of Science and Technology (KAIST),
Daejeon 34141, South Korea.

Chengshuo Yu is with the Electrical and Electronic Engineering Department,
Nanyang Technological University, Singapore 639798, and also with the
Institute of Microelectronics, A*STAR, Singapore 138634.

Shanshan Xie and Jaydeep P. Kulkarni are with the Electrical and Com-
puter Engineering Department, The University of Texas at Austin, Austin,
TX 78712 USA.

Yuzong Chen is with the Electrical and Computer Engineering Department,
National University of Singapore, Singapore 119077.

Bongjin Kim is with the Electrical and Computer Engineering Department,
University of California at Santa Barbara, Santa Barbara, CA 93106 USA.

Tony Tae-Hyoung Kim is with the Electrical and Electronic Engineering
Department, Nanyang Technological University, Singapore 639798 (e-mail:
thkim@ntu.edu.sg).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JETCAS.2022.3160455.

Digital Object Identifier 10.1109/JETCAS.2022.3160455

I. INTRODUCTION

EMERGING applications such as machine learning and
artificial intelligence have increased interest in low power

hardware accelerators for processing parallel data in neural
networks. Multiple-and-Accumulate (MAC) operation is a
key arithmetic function in neural networks. Typical comput-
ing architecture named von-Neumann architecture consists
of separated processing elements and memory. To execute
MAC operation, huge amount data need to be transferred
between processing elements and memory through intercon-
nect channels with large loading. It is well-known that this
extremely frequent data communication consumes very high
power, which is a challenge in energy-efficient edge computing
systems. Processing-in-memory (PIM) architectures have been
reported to overcome the above bottleneck called memory wall
[1]–[11]. In PIM architectures, each processing element has a
computing circuit and a memory, reducing the frequency of the
data transfer from/to external memory. Since the power-hungry
data transfer is minimized, the PIM architecture can improve
the energy efficiency by orders of magnitude. To this end,
we investigate the state-of-the-art PIM research works based
on the memory type: SRAM-based PIM, DRAM-based PIM,
and ReRAM-based PIM.

SRAM has become the most popular selection com-
pared to other candidates for implementing PIM macro
[3]–[5], [12]–[20], thanks to the simple operation mode and
the mature technology. However, the area of the SRAM cell is
larger than other candidates like DRAM and ReRAM, which
results in the lower memory density.

DRAM-based PIM is an attractive solution to accelerate
large-sized machine learning models with its large memory
capacity, yet the high density of DRAM cells deters the
realization of the DRAM-based PIM. However, its feasibil-
ity has been proved with the first fabricated PIM chip on
3-d stacked DRAMs. In addition, many approaches [21]–[28]
apply in-memory processing on a different level of logic
integration to mitigate the high density of DRAM cells.

ReRAM-based PIM has become increasingly attractive in
energy-efficient accelerators for edge computing where batter-
ies or energy harvesting devices are the primary power sources
[29]–[36]. Particularly, edge computing devices process data
rarely and mostly stay in the standby mode, which makes
ReRAM-based PIM with moderate performance a promising
solution for edge computing. However, ReRAM technologies

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0897-7871
https://orcid.org/0000-0003-1099-1496
https://orcid.org/0000-0001-5397-9628
https://orcid.org/0000-0002-0258-6776
https://orcid.org/0000-0002-1779-1799
https://orcid.org/0000-0002-4979-7255

KIM et al.: OVERVIEW OF PROCESSING-IN-MEMORY CIRCUITS FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 339

TABLE I

SUMMARY OF STATE-OF-THE-ART SRAM-BASED PIMs

are not mature yet, and the ReRAM-based PIM needs to
overcome various design issues for wider employment.

The software stack is a key enabler for the adoption of PIM
as a new mainstream device that could potentially outperform
the conventional von-Neumann computer in usability and
performance. PIM, unlike conventional memory devices, is no
longer a passive device because it can perform logic opera-
tions. It implies that a fundamental change in the software
stack is necessary for optimization of a real PIM system.
Thus, we must revisit the whole software stack, including
the application, framework, run-time, and driver. This paper
discusses the challenges in modifying the software stack for
PIM, such as offloading executions, data mapping, scheduling,
and cache coherence.

The remainder of this paper is organized as follows.
Section II introduces state-of-the-art analog and digital SRAM
PIM design. Section III reviews various DRAM PIM archi-
tectures. In Section IV, we review ReRAM-based PIMs.
Section V discusses the software stack for PIM and the
challenges in adopting PIM, followed by the future works
and trends in Section VI. Finally, Section VII concludes the
article.

II. SRAM PIM

This section introduces the conventional SRAM
background, including read/write operation and overall
architecture, and SRAM-based PIM macros. First, the
SRAM has the most intuitive operation theory and mature
manufacturing technology, which reduces the difficulty of
building a PIM macro and makes it become the most popular
candicate for constructing an artificial neural networks
accelerator. Then, several SRAM-based works are introduced
with tradeoff analysis for solving the challenges in the
transition from the pure memory array to the PIM macro.
Note that the discussed works include both analog and digital
domains for providing a complete knowledge framework.
Analog PIM macro shows high energy/area efficiency
performance while expressing limitations in flexibility and
classification accuracy of the artificial neural networks. On the
other hand, digital PIM macro demonstrates low efficiency
and throughput but adept in avoiding physical variations. The
summary of state-of-the-art SRAM-based PIMs is presented
in Table I.

Fig. 1. SRAM background: (a) Operation; and (b) Architecture.

A. Background of SRAM Operation and Architecture

Fig. 1(a) shows the write and read operation of the
conventional 6T SRAM cell. The six transistors form two
cross-coupled inverters and a pair of access switches. The writ-
ten data is loaded to bitlines before turning on the wordline.
Then, we turn on the access transistors to let the data in the
bitline pair go to the storage node of the SRAM cell. Note
that the path of writing ‘0’ limits the SRAM write operation
since the NMOS access transistor has a higher ability for
passing low voltage than high voltage. Therefore, the access
transistor needs to be stronger than the PMOS transistor to
lower Q below the threshold voltage of the inverters inside
the SRAM cell and guarantee the success writing of ‘0’. For
the SRAM write operation, the wordline is turned on after
pre-charging the bitline pair. Then, one bitline decreases based
on the SRAM storage data. In the end, an output is generated
through a sense amplifier that amplifies the voltage difference
of the bitline pair. The sample SRAM architecture, shown in
Fig. 1(b), comprises a memory array, row decoders, column
multiplexers, sense amplifiers, write drivers, and a controller.
During write operation, write drivers send to written data
to the selected bitline pairs while the unselected bitlines are
pre-charged to the high voltage before activating the selected
wordline. Only one cell is selected during read operation, and
the corresponding bitline pair is connected to a sense amplifier
through a column multiplexer.

B. Analog SRAM-Based Processing-in-Memory

A standard 6T SRAM cell [12] can build a memory macro
for processing MAC operations, as shown in Fig. 2(a). Note
that a binary input is applied to a wordline (WL), and a binary
weight is stored in the SRAM internal node when the standard
6T SRAM operates as MAC mode. The signal applied to WL
has two patterns: 1) A DC low voltage for input zero; 2) A
short positive pulse for input one. One binary multiplication
is performed in one SRAM cell right after the input signal is
applied to WL, and the corresponding multiplication result is
reflected in a bitline pair (BL and BLb). The multiplication
results of all the bitcells in one column are accumulated and
contribute to voltage drops in both bitlines. Note that the

340 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, JUNE 2022

Fig. 2. SRAM-based PIM cells.

standard 6T SRAM still suffers from a disturbance issue due
to the shared write and read path.

Recently, several different bitcells have been proposed to
solve the intrinsic drawback of the conventional 6T SRAM
when processing MAC operations. In Fig. 2(b), A foundry 8T
SRAM cell [13] successfully solves the read disturbance issue.
Two additional NMOS transistors are added to standard 6T
with a series connection for creating an independent read bit-
line (RBL) discharging path to the ground. The multiplication
result depends on the weight value stored in an SRAM internal
node (Qb) and the input value represented by the voltage level
of a read wordline (RWL). However, the foundry 8T only
supports a single-ended read operation with a larger bitcell
area. A custom 8T SRAM cell [14] was developed to improve
the diversity of MAC operation (i.e., weight ‘±1’ multiply
input ‘1/0’) compared to the foundry 8T (i.e., weight ‘1/0’
multiply input ‘1/0’), as shown in Fig. 2(c). This design still
suffers from limited dynamic range and non-idealities due to
the current-based accumulation scheme. A differential voltage-
mode SRAM-based PIM cell [16] has been proposed using
two CMOS inverters and one XNOR upon the standard 6T
SRAM to improve the dynamic range. However, the increased
cell size and huge non-idealities remain to be solved. An 8T
SRAM with one metal-oxide-metal capacitor (MOMCAP) [4]
is proposed to minimize the residual analog non-idealities
thanks to the contribution of the embedded passive capacitors,
as shown in Fig. 2(d). It also decouples MAC operation
for eliminating SRAM disturb issue. Nevertheless, the area
overhead of the bitcell is significant due to the extra two
transistors and a capacitor.

Fig. 3 describes the popular operation types of analog
SRAM-based PIM macros: current-mode, voltage-mode,
charge-sharing, and capacitor-coupling. In current-mode
(Fig. 3(a)), the element-wise binary multiplication results from
each 6T SRAM cells in the same column are accumulated with
the representation of generating or not generating discharge
current and lead to an aggregated voltage drop in bitline
pair [3], [12]–[15]. Note that a limited dynamic range needs
to be set to guarantee the linearity of accumulation results.

Fig. 3. SRAM-based accumulation mode.

Voltage-mode SRAM-based MAC operation scheme [5], [16]
is proposed to significantly improve the dynamic range (i.e.,
rail-to-rail). A shared RBL is driven by parallel pull-up or pull-
down paths depending on the multiplication results of each
bitcells, as shown in Fig. 3(b). However, the voltage-mode
method suffers from residual non-linearity and variation
issues. Passive capacitors have been used to implement
charge-sharing [4] and capacitive-coupling [17] approaches
for minimizing non-linearity issues and variations due to
analog computations. As illustrated in Fig. 3(c) and 3(d), the
charge-sharing scheme needs one more switch in each cell and
takes one more cycle for accumulation operation compared to
the capacitive-coupling scheme. Although the charge-domain
offers higher energy efficiency and throughput performances,
it still suffers from larger area overhead due to the implementa-
tion of capacitors. Moreover, the charge injection issue needs
to be carefully considered when designing a charge-domain
PIM macro.

C. Digital SRAM-Based Processing-in-Memory

Digital PIM architecture is developed to solve the issues in
analog PIM works such as analog-to-digital/digital-to-analog
converter (ADC/DAC) overhead and PVT variation induced
non-linearity computation. The computation in digital PIM
architecture is entirely digital to eliminate the effects of any
physical variation, and the data conversion is no longer needed.

Fig. 4 describes the digital PIM macro [18], which can
support reconfigurable inputs, weights, and outputs. Each PIM
cell consists of a 6T SRAM, an XNOR gate, and a 1-bit
full-adder. The PIM cells can be stacked together to construct
1-16b unit column MAC based on the required computation
precision. Note that different functions are assigned depending

KIM et al.: OVERVIEW OF PROCESSING-IN-MEMORY CIRCUITS FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 341

Fig. 4. Digital SRAM-based processing-in-memory macro [18].

TABLE II

SUMMARY OF STATE-OF-THE-ART DRAM-BASED PIMs

on the location of the PIM cell within the unit column.
However, the digital PIM macro suffers from the hardware
redundancy caused by the memory and computation blocks,
resulting in large unit PIM cells and low memory density.

The latest digital PIM macro [19] implements 256x 4bit
weights in each column and produces 64x 12bit MAC outputs.
Each PIM cell comprises a fused 6T SRAM and a 2-input
NOR gate and processes binary multiplication results. Then,
the accumulation operation is processed in the dedicated adder
tree. The weight precision can be further extended to 8-16bit
using multiple macros while spending more area.

III. DRAM PIM

This section introduces the conventional architecture and
operation of DRAM as well as various PIM architectures
and their implementations. The DRAM architecture has been
developed in focusing on cell density, where each cell has a
simple structure of a single transistor and a capacitor. Although
the structural simplicity of the memory cells inspires interest-
ing ideas in integrating logic for DRAM-based PIMs, its tight
physical constraint has been a major challenge. Many previous
researches tackle different levels of DRAM architecture to
address this issue. Recent DRAM-based PIM architectures are
summarized in Table II. As illustrated in Fig. 5, we differenti-
ate the DRAM-based PIMs into three categories based on the
level of logic integration: cell-level, bank-level, and 3-d level.
First, DRAM cell-level PIM integrates low level transistor

Fig. 5. Different levels of DRAM PIM architectures.

logic with bitline sense amplifiers to conduct bulk bitwise
operations, taking advantages of the memory bank’s whole
internal bandwidth. Second, the bank-level PIM integrates high
level processing logic after the column decoder in each bank.
This technique cannot use the maximum internal bandwidth as
compared to cell-level PIMs, but it does open up the possibility
of DRAM-based PIMs [21], [22] by utilizing a larger logic
area. Third, 3-d level PIM utilizes 3-d stacked memory with
the base logic die, such as Hybrid memory cube (HMC).
It integrates the compute logic die to the stacked memory dies
where two entities are interconnected by through-silicon via
(TSV), providing energy-efficient and high-bandwidth com-
munication between them. However, due to the strict physical
and timing constraints of 3-d stacked dies, the realization of
3-d level PIM remains a challenge.

A. Background of DRAM Architecture and Operation

A DRAM chip consists of the memory cells to store charges
as well as the control logic and data I/O circuitry to support
its operation. It consists of multiple DRAM banks, each of
which is made up of stacks of DRAM mats. They are the basic
2-dimensional array structure of DRAM cells where each of
the cells, composed of a single transistor and a capacitor, stores
a bit value. In order to read/write cell values in a mat, the row
decoder receives a row address and selects a single wordline.
Then, the transistors of every DRAM cell connected to the
wordline are activated and the values are read/write from/to
the capacitors. To elaborate further, the capacitor in each
DRAM cell begins to share the charge with the bitline, which
is pre-charged to half VD D when the transistor is activated.
The charge sharing induces little voltage variations on the
bitlines, and the bitline sense amplifiers amplify the variations
to recognizable logic levels. Once an entire row is amplified,
the column decoder specifies one or more bitlines to transfer
the corresponding data to the IO pads.

B. Cell-Level Processing-in-Memory

The cell-level PIM integrates logic at the bit-line sense
amplifiers to execute bulk bitwise operations on multiple rows
while maximizing internal memory bandwidth. However, logic
integration in a DRAM cell with an extremely narrow pitch

342 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, JUNE 2022

Fig. 6. (a) AMBIT TRA, (b) AMBIT DCC, (c) DRISA 3T1C-NOR,
(d) DRISA 1T1C-NOR/MIX, and (e) DRISA 1T1C-ADDER.

may not be feasible. The pitch of a single cell is already
optimized for only a single transistor and a capacitor, adding
more transistors to it can be challenging. To address this
difficulty, previous research has focused on executing simple
gate-level operations (i.e., AND, OR, NOR, and NOT) without
explicitly implementing logic gates.

AMBIT [23] proposes the triple row access (TRA) to
execute AND and OR operations without adding any tran-
sistors to the sense amplifiers, as illustrated in Fig. 6(a).
TRA only requires modifying the control logic of DRAM to
activate three wordlines simultaneously. If three wordlines are
activated, three cells sharing the same bitline will share their
charges. The result of the TRA becomes 1 if the number
of 1s in the three cells are more than or equivalent to 2.
R = AB + BC + C A = C(A + B) + C(AB) represents
the Boolean expression of the TRA, where A,B and C are
values in three cells and R is the result. By presetting C to
1 or 0, TRA enables to execute either OR or AND operation
on two rows. In addition, AMBIT proposes a row of dual-
contact cells (DCCs) to execute NOT operation. Each DCC
contains an additional pair of a wordline and a transistor to
move the inverted value of the sense amplifier to the cell,
as illustrated in Fig. 6(b). However, the actual implementation
of DCC may not be feasible as it requires one more wordline
and a transistor to fit the pitch of a DRAM cell.

DRISA [24], on the other hand, proposes three modified
DRAM cell architectures: 3T1C-NOR, 1T1C-NOR/MIX, and
1T1C-ADDER, as shown in Fig. 6(c), 6(d), and 6(e), respec-
tively. 1T1C-NOR/MIX and 1T1C-ADDER integrate latches
with simple logic such as NOR or other logic gates and a
parallel adder, respectively, below sense amplifiers. Even with

Fig. 7. (a) Bank-level PIM organization, (b) Newton compute logic, and
(c) HBM-PIM compute unit.

these simple logic gates, it is difficult to integrate them within
the DRAM cell pitch. However, 3T1C-NOR addresses this
difficulty by using the early DRAM cell design of 3T1C cell,
which has two separated wordlines for each cell for both read
and write operation. It can naturally perform NOR operation
without any modification to the cell design. If two M3 transis-
tors are enabled by activating the two corresponding wordlines,
two M2 transistors sharing the same bitline turns into the
NOR gate. In addition, DRISA proposes transistor-level shifter
circuits under the bitline sense amplifiers for data movement to
the adjacent bitlines, allowing for more sophisticated compu-
tations, such as selection, multiplication, and addition. As the
cell-level PIM can be optimized further for its large input
operand size of an entire row, AMBIT and DRISA adopt
the method of RowClone-FPM (Fast Parallel Mode) [25].
In addition, they modify the row decoders and drivers to enable
multi-row activation to speed up the execution. AMBIT also
proposes a fused complex command primitive of activate-
activate-precharge (AAP) to reduce the number of required
commands, thus reducing the total latency.

C. Bank-Level Processing-in-Memory

Aforementioned, the cell-level PIM is the best in utilizing
the memory bank’s whole internal bandwidth; however, it is
the most challenging due to the severe area constraint, where
the cell pitch continues to decrease as the DRAM technology
advances. Two feasible bank-level PIMs, Newton [21] and
HBM-PIM [22], solve this difficulty by integrating processing
logic after column decoder and selector, allowing the logic
to benefit the entire width of the cell array, as shown in
Fig. 7(a). They also exploit the bank parallelism that enables
multiple banks at the same time to compensate for the internal
bandwidth loss from not utilizing the entire row. Especially,
HBM-PIM proves it by fabricating the first PIM chip ever in
HBM using a 20nm DRAM process.

Maximizing the benefit of PIM, Newton exclusively focuses
on memory-bound deep learning models such as recommen-
dation systems (e.g., Facebook’s DLRM [37]) and language
models (e.g., Google’s BERT [38] and OpenAI’s GPT [39]),

KIM et al.: OVERVIEW OF PROCESSING-IN-MEMORY CIRCUITS FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 343

and thus proposes a fixed data flow accelerator that computes
matrix-vector multiplication effectively. Fig. 7(b) illustrates
the overall architecture of Newton in a single DRAM die.
Each bank includes 16 multipliers, 16 adders in a reduction
tree, and a 16-bit accumulator register. Two input operands
of the multipliers come from the memory cell array after the
column selector and the global buffer, which broadcasts an
input vector to all memory banks. In addition, Newton pro-
poses customized PIM commands, such as GWRITE, G_ACT,
COMP, and READRES, to exploit the bank parallelism and
reduce the latency. Newton can load the global buffer with the
input vector data using GWRITE command. G_ACT command
activates multiple banks. COMP command simultaneously
executes in-bank MAC operations using the multipliers and
adder tree in all banks. Newton can read all the results from
the banks using READRES command.

On the other hand, HBM-PIM proposes the programmable
compute unit (PCU) to support the complex computational
requirements of AI applications. HBM-PIM integrates a PCU
block per two banks, where they share the PCU block with
two distinct IO sense amplifiers. Fig. 7(c) illustrates the block
diagram of the PCU, consisting of an interface unit, execution
unit, and register group. The interface unit receives control and
data signals from the memory’s command controller. The exe-
cution unit includes single-instruction-multiple-data (SIMD)
fashioned 16 FP16 multipliers and adders. The register group
includes the command register file (CRF), general-purpose
register file (GRF), and scalar register file (SRF). In addition,
the PIM controller is integrated to support the programmability
of the PCU as well as the seamless integration with the host.
The PIM controller determines the mode between the normal
and PIM. It asserts PIM mode if an activation command of the
specific row address comes in. If the PIM mode is asserted,
PCU executes the PIM instructions pre-stored in the CRF. For
the following instructions, the program counter of the CRF
increments by one per every DRAM’s read command.

D. 3-d Processing-in-Memory

Unlike bank-level PIM (e.g., Newton and HBM-PIM),
where the logic is placed next to the memory cell arrays
in a memory die, the 3-d PIM involves both the logic die
in the bottom and the stacked memories on top. The 3-d
PIM is more sophisticated than HBM, allowing for more
energy-efficient data communications between the logic die
and the memory dies. However, due to the strict physical
and time constraints among 3-d stacked dies, realizing 3-d
PIM can be challenging. Only simulation is used to evaluate
all of the proposed works: Neurocube [26], Tetris [27], and
iPIM [28]. These works explore accelerating deep neural
network computations with the 3-d PIM using hybrid memory
cube (HMC). They exploit the vault structure of the HMC,
where the HMC stack is partitioned vertically into sixteen
vaults, as illustrated in Fig. 8(a).

As illustrated in Fig. 8(b), Neurocube puts a programmable
neurosequence generator (PNG) and processing element (PE)
on the logic die per each vault. The PNG manages the data
access sequences within the vault using the vault controller and

Fig. 8. (a) Hybrid memory cube, (b) Neurocube PE block diagram, and
(c) Tetris PE array block diagram.

sends data to the PE. Each PE contains a row of multiple MAC
units to compute the data in parallel. A 2-d mesh network-
on-chip connects all PEs to enable flexible data mappings
and operations inter-vault communications. On the other hand,
Tetris focuses on the input data reuse of the neural network
models. As illustrated in Fig. 8(c), Tetris integrates a PE array
structure with a global buffer per vault to maximize the data
reuse while maintaining the base architecture from Neurocube.

iPIM explores on boosting the effective compute bandwidth
and reducing the energy spent from data movements via TSV
by combining the 3-d PIM and the bank-level PIM. The iPIM
architecture decouples the control module, which locates on
the logic die, from the execution units, which locates on the
memory dies. By separating the control and execution, iPIM
gains abundant bank-level bandwidth to maximize the parallel
execution of processing engines on the memory dies. The
iPIM architecture places one iPIM control core in the logic
die of each vault, while it places one process group (PG) in
the memory die of each vault, next to the bank. The iPIM
control core manages flexible intra/inter-vault data commu-
nication and executes instruction decoding with the support
of the single-instruction-multiple-bank (SIMB) instruction set
architecture (ISA). On the other hand, PG includes PEs to
perform memory-bound operations near the bank to maximize
the parallel execution.

IV. ReRAM PIM

This section introduces the background of ReRAM and
how the MAC operation is implemented in ReRAM-based
PIM architectures. Design challenges associated with ReRAM
PIMs and state-of-the-art ReRAM PIM works for the MAC
operation are discussed. In addition, we describe three new
directions for ReRAM PIMs to motivate future research.

A. ReRAM Basics

ReRAM is one type of emerging non-volatile memory under
active research in both academia and industry [29]. It has
good read and write performance, low programming voltages,
as well as good scalability and compatibility to the CMOS fab-
rication process. For digital applications, one ReRAM device
can be programmed to either a high-resistance-state (HRS) or a
low-resistance-state (LRS) for storing a binary value. Because
of the analog nature of ReRAM, some works also employed
ReRAM for analog storage to improve memory capacity.
For example, Chang et al. [30] and Lin et al. [31] imple-
mented ReRAM-based ternary content addressable memory
by using a middle-resistance-state to represent “don’t care”.

344 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, JUNE 2022

Fig. 9. ReRAM-based PIM architectures for MAC based on: (a) Current-
mode sensing and (b) Voltage-mode sensing.

Wu et al. [32] used the ReRAM device as an approximate
accumulator by applying multiple reset pulses to gradually
change the ReRAM state from LRS to HRS. In addition,
analog ReRAM has also been utilized in PIM for neural
networks with good error tolerance [34], [35], [40].

B. Multiply-and-Accumulate in ReRAM-Based PIM

Fig. 9 illustrates how the MAC operation is performed in a
general ReRAM-based PIM architecture. Based on the output
sensing mode, ReRAM-based PIM architectures for MAC can
be classified into current-mode and voltage-mode. For both
types of ReRAM PIMs, the weight in a neural network layer
is stored as the conductance (denoted by Gij for the ith row
and jth column) of the ReRAM device, while a binary input
(0 or 1) is applied through the word-line (WL). As shown
in Fig. 9(a), current-mode ReRAM PIM requires the input
driver to drive every source-line (SL) to a read voltage Vread,
and every bit-line (BL) is clamped to a reference voltage Vref
by the voltage clamper. The multiplication between one input
feature and one weight can be represented by the current
through one ReRAM bit-cell. Hence, the dot product between
the input vector and the weight matrix can be performed in the
analog domain by accumulating ReRAM bit-cell currents from
the same column. Finally, each column’s current is converted
to a digital value by a current ADC. For voltage-mode ReRAM
PIM shown in Fig. 9(b), all SLs are grounded, while all BLs
are precharged to Vpre and left floating. The discharge rate
of the BL capacitance CBL is proportional to the dot product
between the input vector and the weight matrix. Finally, the
resulting BL voltage is converted to a digital value by an ADC.

There exist different trade-offs between current-mode and
voltage-mode ReRAM PIMs. Similar to a normal ReRAM
memory access, ReRAM PIMs based on current-mode sensing
have a larger sensing margin and therefore a faster sensing
speed. However, the static current must be present for the
entire sensing period, leading to poor energy efficiency com-
pared with voltage-mode sensing that only consumes dynamic
power. Due to ReRAM device non-idealities, the sensing
margin is normally a more critical design consideration for
the target neural network accuracy. Hence, most ReRAM PIM
works are based on current-mode sensing [34], [41]–[44].

C. Multi-Bit Multiplication in ReRAM-Based PIM

Although the analog nature of ReRAM allows it to store
a multi-bit weight for improved memory capacity [34], [35],

Fig. 10. Multiplication of 2-bit inputs and 2-bit weights in digital ReRAM-
based PIM: (a) One cycle and multiple macros and (b) Multiple cycles and
one macro.

[40], most ReRAM PIM works employ digital ReRAM with
two distinct states: HRS and LRS [41]–[45]. This is because:
(1) ReRAM-based PIM shows worse MAC accuracy compared
to DRAM and SRAM counterparts because of large ReRAM
device variations and offset current caused by ReRAM devices
in HRS; (2) Controlling ReRAM with more resistance states
requires more complicated write-verification circuit, leading to
considerable overhead [33], [40]. In general, for PIM architec-
tures based on digital ReRAM, the multiplication of multi-bit
inputs and weights can be implemented in two different ways
named ‘Parallel-Input-Parallel-Weight (PIPW)’ and ‘Serial-
Input-Parallel-Weight (SIPW)’ [42]. Consider an example of
multiplication between 2-bit input and 2-bit weight, in PIPW,
two macros store the same weight and the 2-bit input (IN[0]:
LSB and IN[1]: MSB) is applied to the macros as shown
in Fig. 10(a). Here, each macro receives either IN[0] or
IN[1]. The 2-bit weight is implemented with three ReRAM
devices, two for MSB and one for LSB. Therefore, the BL
current for MSB is 2× of the BL current for LSB. These two
BL currents are merged to generate a multiplication result.
In SIPW, a multi-bit input is applied to a macro bit by bit
over multiple cycles as shown in Fig. 10(b). To merge the
currents over multiple cycles, currents from previous cycles
need to be stored in binary-weighted capacitors.

Both PIPW and SIPW suffer from large BL current distribu-
tions on the read path. To improve the MAC accuracy in pres-
ence of ReRAM device variations, extra circuits are needed
for merging the split currents from multiple columns, multiple
macros, or multiple cycles. Various MAC strategies have been
reported to address this challenge [41]–[44]. Table III shows
an example of multiplication using one-bit input and a ternary
weight [41]. The ternary weight is realized by two arrays
(one positive array and one negative array). The weight in the
positive array generates ‘+1 (LRS)’ and ‘0 (HRS)’ while that
in the negative array produces ‘−1 (LRS)’ and ‘0 (HRS)’. The
final ternary multiplication result is obtained by combining the
currents from both positive and negative arrays.

D. Design Challenges in ReRAM PIMs

1) ADC/DAC Overhead: Unlike normal ReRAM where
only one row is activated at a time, and sense amplifiers
produce the binary comparison result, ReRAM PIM may
require DACs for multi-bit inputs and ADCs for multi-bit
MAC outputs. A sample power and area breakdown of a

KIM et al.: OVERVIEW OF PROCESSING-IN-MEMORY CIRCUITS FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 345

TABLE III

MULTIPLY WITH TERNARY WEIGHT IN ReRAM

ReRAM-based PIM macro was reported in [34]. The ReRAM
array size is 1152 × 128. 2-bit DACs and 8-bit ADCs are
considered in the breakdown evaluation. Regarding power
consumption, DACs and ADCs consume 24% and 61% of the
total power, respectively, which are dominant compared to that
of the ReRAM array. Moreover, ADCs also occupy a majority
of the area when the required output precision is relatively
high (e.g. 91% of the total area at 8-bit output precision).
To mitigate ADC energy overhead, the number of ADCs can
be reduced by reducing the number of MAC results that are
generated at the same time. However, this will increase the
number of cycles for processing the same amount of MAC
results, degrading the performance of the PIM system. Even
though various ADC techniques such as zero-skipping and
column ADCs have been developed for better power and area
efficiency in SRAM-based PIM [14], [15], the power and area
overheads of ADCs are still challenging in ReRAM-based PIM
systems.

2) Accuracy Degradation Due to BL Sensing: Besides data
conversion, ReRAM PIMs face various challenges such as
large BL current distribution and overlap in BL current for
different MAC values due to large ReRAM device variations.
These problems can significantly degrade the MAC accuracy.
For example, consider the ReRAM-based PIM macro in [41]
where the maximum MAC value from each column is 9.
According to the multiplication mechanism in Table III, the
smallest BL current for the MAC value of ‘+1’ occurs when
only one WL is turned on in the positive array (‘1L0H’,
one ILRS and no IHRS). However, the maximum BL current
for the same MAC value of ‘+1’ is ‘1L8H’ (one ILRS and
eight IHRS) where 9 WLs are turned on in the positive array.
The selected ReRAM devices in the HRS state will generate
IHRS even though the computed MAC value has no difference,
leading to a large BL current distribution for the same MAC
value. This BL current distribution will degrade the sensing
margin, and therefore reduce the MAC accuracy. Such BL
sensing challenges must be addressed to improve the MAC
accuracy in ReRAM PIMs.

E. State-of-the-Art ReRAM-Based PIMs for MAC Operations

Table IV summarizes recent ReRAM-based PIM prototypes
for MAC. From the table, we can observe the following trends:
(1) The MAC precision gradually increases for more recent
ReRAM-based PIM works to satisfy the accuracy requirement
of more complex machine learning algorithms and datasets.

TABLE IV

SUMMARY OF STATE-OF-THE-ART ReRAM PIMs FOR MAC

Fig. 11. Block diagram of ReRAM coprocessor [46].

This requires designers to propose more advanced circuit
techniques for MAC operations at higher precisions. (2) Most
ReRAM-based PIM works for MAC focused on accelerating
neural networks, but many other types of machine learning
algorithms remained largely untapped and could potentially
open new PIM research directions. (3) Digital ReRAM is more
preferred compared with analog ReRAM due to large ReRAM
device variations. However, with the advancement of device
characteristics, the analog ReRAM can become more favored
in future ReRAM-based PIMs to reduce the area cost of storing
weight data.

F. New Directions for ReRAM PIM Research

1) ReRAM Coprocessor: Besides designing a single
ReRAM PIM macro, recent research also starts to focus on
integrating the ReRAM PIM macro in a complete computing
system. Fig. 11 illustrates the architecture of a fully integrated
reprogrammable ReRAM coprocessor for MAC [46]. It con-
sists of a reduced instruction set computer (RISC) processor,
multiple SRAMs, a memory controller, and a ReRAM PIM
macro with the mixed-signal interface. The RISC processor
controls the ReRAM PIM macro through the shared 32-bit
bus. Inside the ReRAM PIM macro, a pulse-modulated voltage
signal represents the input for each ReRAM crossbar row,
and each crossbar column can produce current to repre-
sent the vector-matrix multiplication in the analog domain.
Inside the mixed-signal interface, one enable-control block and

346 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, JUNE 2022

Fig. 12. 2T2R ReRAM macro for versatile PIM functions [49].

one DAC-select block determine the operation mode of the
ADCs/DACs.

2) Security and Reliability Considerations: Apart from the
increasing compute precision of MAC, some recent works start
to focus on other design considerations such as security and
reliability to facilitate the wide adoption of ReRAM PIMs. For
example, Li et al. [47] proposed a secure ReRAM PIM macro
with an embedded XOR cipher for lightweight encryption.
The same group also introduced a more reliable ReRAM PIM
macro by designing on-chip write-verify and ADC reference
generation circuits [48].

3) ReRAM PIM for Versatile Functions: Even though MAC
is one of the most common tasks accelerated by PIM,
modern data-intensive applications require many other func-
tions such as Boolean logic and search operations. Various
ReRAM-based cell structures such as 4T2R and 2T2R are
reported to support versatile PIM operations on the same
array [49], [50]. Fig. 12 illustrates a 2T2R ReRAM macro
for multiple PIM operations [49]. It consists of a ReRAM
array, decoders, drivers, reconfigurable sense amplifiers, and
PIM logic. This ReRAM PIM macro supports search, Boolean
logic and dot product operations. In addition, to mitigate
the pseudo-write effect on the ReRAM device during PIM
operations, several design techniques are proposed to reduce
the stress voltage across the ReRAM device.

V. PIM SOFTWARE STACK

This section introduces a modified software stack for PIM
and the challenges in incorporating PIM with the conven-
tional computer architecture such as CPU or GPU. The main
objective of the PIM software stack is to run applications on
PIM hardware and further optimize them for PIM. However,
there are challenges ahead: offloading executions for PIM,
data mapping, scheduling of the kernel executions, and cache
coherence. We must overcome these challenges to adopt PIM
into the system successfully.

A. PIM Software Stack

Fig. 13 illustrates the PIM software stack with the four mod-
ifications: PIM framework, PIM library, PIM runtime, and PIM

Fig. 13. PIM software stack.

device driver. First, the PIM framework is a high-level frame-
work with custom operations. For example, the PIM frame-
work for AI workloads includes a wide range of operations
from simple operations (i.e., addition and multiplication) to
complex operations (i.e., convolutional layer, fully connected
layer, batch normalization, and activation functions) as its cus-
tom operations. Second, the PIM library is a set of low-level
routines that is explicitly called by these custom operations.
For the AI workloads, the PIM library includes the basic
linear algebra subprograms (BLAS) optimized for PIM, which
provides low-level operations for major AI workloads (i.e.,
vector-vector operations, matrix-vector operations, and matrix-
matrix operations). Third, the PIM runtime runs three tasks:
1) optimizes the PIM framework to decide what operations to
offload to the PIM hardware and generates PIM instructions,
2) manages the memory usage by the PIM instructions and
the operand data, and 3) configures the PIM kernel with the
generated PIM instructions. Fourth, the PIM device driver allo-
cates the memory space for PIM operations. HBM-PIM [22]
proposes a complete software stack for PIM to accelerate
machine learning workloads. It includes custom TensorFlow
operations, PIM BLAS library, PIM runtime, and PIM device
driver to cover the whole stack. In addition, it proposes
a multi-core fashioned programming model that maximally
utilizes the PIM execution units.

B. PIM Offloading Execution

Identifying what operations are suitable for PIM is essential
since only a few types of operations can benefit from PIM.
We need to distinguish PIM-friendly operations from the rest
and assign them to PIM. Different strategies are required
depending on how PIM logic is designed in memory. We cat-
egorized it into two. First, identifying PIM-friendly operations
is simple for a specialized PIM logic since it can only execute
specific operations. For example, Newton [21] supports a
fixed data flow with a row of 16 multipliers followed by a
reduction adder tree. This type of architecture can execute the
memory-bounded matrix-vector multiplications the best and
proves it by the achievements in speed up and power savings.
Second, identifying PIM-friendly operations is more challeng-
ing for the PIM logic with general-purpose cores. Typically,

KIM et al.: OVERVIEW OF PROCESSING-IN-MEMORY CIRCUITS FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 347

PIM copes with memory-intensive operations that have low
data locality. It implies that the memory-intensive operations
request tremendous data from memory but hardly reuse them.
Rather than leaving identifying memory-intensive operations
to programmers’ manual work, Boroumand et al. [51] pro-
poses an efficient tool flow with four criteria to identify PIM-
friendly operations: 1) if it consumes the most energy out
of all functions in the workload, 2) if its data movement
consumes a significant fraction of the total workload energy,
3) if the last cache misses per kilo instruction (MPKI) is
greater than 10, and 4) if data movement is the single most
significant component of the function’s energy consumption.
To evaluate the effectiveness, they demonstrate the tool flow
in analyzing primary Google consumer workloads, including
the Chrome browser, TensorFlow mobile, video playback, and
video capture.

C. Data Mapping

The data mapping scheme is a key factor in reducing the
data access latency. All levels of PIM architecture can exploit
spatial and temporal locality in mapping data. For example,
a DRAM-based bank-level PIM can apply this concept. First,
the bank-level PIM benefits from locating data in the bank
where they are being computed. Otherwise, memory access
from a PIM core to its neighbor bank burdens the global data
bus. Potentially, if more PIM cores request data from their
neighbor bank, it will cause a memory bottleneck. Second,
the bank-level PIM benefits from a sequential memory access
pattern, which guarantees the shortest data read latency within
a bank in DRAM. This access pattern reads data of the same
row without additional delays, whereas accessing data of a
different row address requires additional delays with DRAM’s
pre-charge and activation commands. Furthermore, previous
research works on data mapping in DRAM-based PIM and
ReRAM-based PIM are introduced.

Reference [52] proposes a new programmer-transparent data
mapping mechanism that uses consecutive address bits for
memory. The mechanism co-locates offloaded code and data in
the same PIM computation unit by exploiting predictability in
the memory access patterns out of offloaded code blocks. The
authors explore various applications to attain predictability,
including the backward propagation of the AI workload. The
result shows that 85% of all offloaded code blocks have a
fixed offset between access addresses, generating a predictable
access pattern. With the predictable access pattern, the authors
prove that using consecutive address bits reduces internal data
movement overhead and maximizes the benefit of PIM.

Reference [53] proposes an optimized weight mapping
and dataflow in computing convolutional neural networks on
ReRAM-based PIM. Unlike the traditional mapping scheme,
which unrolls all of the 3D kernels into a large matrix,
the proposed mapping scheme divides the 3D kernel of
K × K × D into multiple 1 × 1 × D matrices, where K
is the height and width, and D is the channel, then places
them into different processing elements (PEs) of PIM. This
kernel partitioning decreases the size of the matrix, allowing
for more freedom in mapping various shapes of the kernels in

convolutional layers. The most notable distinction is that the
proposed scheme exploits the internal data movement between
PEs to maximize both weight and input data reuse, resulting
in increased throughput and energy efficiency in convolutional
neural network computation.

D. PIM Execution Scheduling

The earlier scheme of identifying PIM-friendly operations
is insufficient for PIM to incorporate with the host processors.
It only decides what operations to offload based on the
analytical energy and memory models in the static compile
time. However, the scheduling of the kernel executions further
optimizes the utilization of both PIM and the host processors
and enables the concurrent executions.

Reference [52] introduces two issues in scheduling exe-
cutions for combined GPU and 3-d stacked memory PIM
architecture, called GPU-PIM. First, the load imbalance occurs
between GPU and PIM with the static offloading scheme.
For example, if a large number of executions that offloaded
to PIM are queued, GPU has to wait until PIM completes
everything on the queue. Second, the offloading executions do
not consider the utilization of the receive (RX) or transmit
(T X) channels. It is possible that one channel is overloaded
with one-sided executions that only use the channel, while the
other is left underutilized. They propose a dynamic offloading
aggressiveness control to address the issue. It decides final
calls on offloading executions to PIM based on runtime
information without any programmer’s intervention. The new
mechanism tracks two metrics: the number of pending offload-
ing requests and the bandwidth utilization rate of both RX and
T X channels. It simply sets threshold values for both metrics
and stops offloading executions to PIM if the metrics reach
their threshold values.

Reference [54] proposes a concurrent scheduling mecha-
nism for GPU-PIM architecture. The scheduling mechanism
uses three metrics to optimize executions: kernel dependency
information, affinity prediction model, and execution time
prediction model. The kernel dependence information deter-
mines which kernels can execute in parallel. It is obtained
by read-after-write (RAW) dependencies across the kernels
by profiling the whole application’s kernel execution. The
affinity prediction model is a logistic regression model that
determines which computation cores can execute the kernels.
The execution time prediction model is a linear regression
model that predicts the execution time of a kernel on each
computation core. To achieve high accuracy in training, both
affinity and execution time models use metrics of kernel-level
analysis such as memory intensity, kernel parallelism, and
shared memory intensity.

E. Cache Coherence

Cache coherence protocols manage discrepancy on the
shared data between different cores in a multi-processor com-
puter system. When multiple cores are working simultaneously
on the same data, they can read the proper data value unless
any of them modifies the data. The cache coherence protocols

348 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, JUNE 2022

guarantee that none of the cores read invalid or stale data
value.

Many research on PIM use the conventional cache coher-
ence protocols to mitigate this issue between the host processor
and PIM. Cache bypass is used in GraphPIM [55] and HBM-
PIM. It forces a portion of the memory region uncacheable,
allowing all memory requests to bypass the cache hierarchy
and go straight to memory. In addition, write-through, message
passing, and write-back are used in [52], [56], and [57],
respectively, between PIM cores and CPU caches. However,
the conventional approaches do not scale, and thus degrade
the benefit of PIM if more data are shared through the narrow
off-chip bandwidth between PIM and the host.

Regarding the issue, [58] proposes coherence for near
data accelerators (CoNDA) to manage the cache coherence
between the CPU and DRAM-based 3-d PIM. CoNDA opti-
mizes the mechanism for updating the coherence request by
letting PIM always execute on optimistic execution mode.
During the optimistic execution mode, PIM stops issuing
any coherence request and only tracks the memory accesses
information such as addresses of all PIM read, write, and
CPU write. Thus, none of the modified data is written to
the memory. After PIM completes optimistic execution mode,
it manages the coherence issue. It looks at the tracking
information and only manages the coherence of the updated
shared data during the execution to eliminate the unnecessary
requests. As a result, CoNDA reduces the significant overhead
in cache coherence requests and thus achieves performance
speed up.

VI. RESEARCH DIRECTION

A. Data Converter Overhead

In compute-in-memory designs, digital inputs need to be
converted into analog domain to achieve in-memory computa-
tion. This conversion is realized with a DAC. Reference [12]
presented a current DAC topology to convert the 5-bit digital
input into current through binary-weighted PMOS current
sources. This current is converted into a wordline voltage
through the up-sized replica transistor and a diode-connected
NMOS transistor. Reference [3] implemented a digital-to-time
converter and a time-to-analog converter to embed digital
inputs into an ON signal pulse-width. This ON signal is used
to charge the global bitline with a constant current source.
Therefore, according to the pulse-width, different digital input
values can be represented by an analog voltage on the global
bitline. Reference [13] applied multiple unit pulses on the
RWL for discharging the bitline voltage to convert the digital
input into the analog domain. Compared with the pulse-
width method, the multiple RWL pulses approach shows better
linearity, and the amount of discharge is closer to the expected
result. In this design, digital components, such as D flip-flop,
4-bit counter, and several logic gates for each row are used to
realize the multiple RWL pulses. The 4-bit input are loaded
into the counter, and the RWL pulses are generated until the
counter reaches 0. Reference [59] repurposed the inherent
embedded dynamic random-access memory (eDRAM) for the
DAC implementation. Initially, 4-bit digital data is loaded

into the eDRAM bitcells, and the number of bitcells for
each bit position is binary-scaled. Next, all WLs are asserted
to perform charge share operation along the entire eDRAM
column for generating the analog voltage. Compared with
other types of data converter in the CIM design, this design
fully utilizes the existing resource (i.e., 1T1C eDRAM bitcell,
peripheral circuit) inside the memory array. Moreover, these
components can be configured as CIM engines and can be
configured as memory storage in a non-CIM mode. After
the MAC operation, an analog-to-digital converter also needs
to be implemented to convert the final analog computation
results into the digital domain, which is usually the last step
of the compute-in-memory design. Reference [3] presented
an integrating ADC using a charge-sharing-based integrator,
StrongARM latch-type sense amplifier, and logic block. This
design replicates the 10T SRAM columns for charge-share and
integration purposes, mitigating the process and temperature
variation effect on the results. Reference [13] developed a 4-bit
Flash ADC in the SRAM-CIM design, where 15 references
voltage levels and 15 comparators are used. The reference
voltage is achieved using the resistive diode ladder and
changing the voltage input to the ladder. However, one dedi-
cated sense amplifier design consists of 4 PMOS, 4 NMOS,
6 passgates, 2 NOR gates, and an SR latch, which incurs
significant area overhead on the CIM macro. [8] presented
a weight bitwise low-mac aware readout scheme to improve
energy efficiency. In this design, multibit MAC is read out
through the switch-capacitor voltage amplifier. Compared with
the conventional readout scheme, this design included an
extra phase to detect if the analog input voltage is above or
lower than the threshold voltage, and the threshold voltage is
determined by the MAC values distribution. If the MAC result
is less than the threshold voltage, then the switch-capacitor
voltage sense amplifier only required two phases to generate
the final digital output, resulting in a higher readout rate.
Reference [59] repurposed the 1T1C eDRAM bitcells for 8-
bit SAR ADC implementation, significantly reducing the area
overhead due to the extra arithmetic circuit because the 1T1C
eDRAM bitcells can be either used as normal memory storage
or CIM computation. In the in-eDRAM SAR ADC design, the
reference voltage is generated from the charge-share operation
between multiple 1T1C eDRAM bitcells. The comparison
between the reference voltages and MAC analog voltage is
implemented with the existing sense amplifier in the peripheral
circuit. It is worth noting that many prior designs introduce
extra circuit components to the original memory array. For
example, [3] added an 8:1 MUX, 3 2:1 MUX, and extra
transistors, [13] realized the flash ADC by adding 15 dedicated
sense amplifiers and [12] implemented more than 32 extra
transistors to achieve the current DAC design. To address the
problem, [59] reconfigured the eDRAM bitcells and inherent
charge share operation to achieve the data converter functional-
ity. While compute-in-memory does reduce the von-Neumann
bottleneck caused by repeatedly reading from and writing
to the memory array from the processor unit, on-chip com-
putation remains a concern. Since the size and organization
of a memory array are optimized for high-performance and
high-density purposes, extra circuit components added into

KIM et al.: OVERVIEW OF PROCESSING-IN-MEMORY CIRCUITS FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 349

TABLE V

DATA CONVERTER COMPARISON

the memory array will cause degradation on memory design
parameters and cause unintended area/power overhead.

B. Test Accuracy

In order to reduce the area overhead, one can maximize
the existing peripheral circuit reuse to realize the essential
components. In addition, one can also reduce the bit precision
of DAC and ADC to reduce the area and power overhead.
Previously, [60] reported a binary neural network (BNN)
implementation, which helps to speed up the design and
eliminates the data conversion steps in the conventional
compute-in-memory design. While BNNs are compact and
efficient, they suffer a 3% accuracy loss on the CIFAR-10
dataset [61]. In recent compute-in-memory design, convolution
neural networks became the mainstream [3], [8], [12], [13],
[59]. Table VI summarizes the test accuracy from the recent
compute-in-memory demonstrations [3], [7], [8], [10], [43],
[59], [62]–[64]. For the MNIST dataset, the range of test
accuracy is 97%∼99.63%, depending on the design and the
ML algorithm. In recent years, most of the designs validate
the design with the CIFAR10 dataset instead of the MNIST
dataset. The test accuracy for this dataset in different designs

is about 80.1%∼92.52% and the accuracy drop from software
accuracy (ideal case) is 0.55%∼1.39%.

Among all CIM approaches, the non-linearity in the ana-
log compute-in-memory design topology is one of the main
sources of accuracy degradation compared with the soft-
ware (ideal) accuracy. To address the accuracy loss challenges
in such CIM designs, [65] retrain the network using the
gradient-blocking technique for quantization which is pre-
sented in [66]. In this design, the test accuracy was dropped to
90.3% (81.6%) with a calibrated (uncalibrated) multiplicative
digital-to-analog converter, while the floating-point software
accuracy is 91.9% on CIFAR-10 dataset. However, after
3 epochs of retraining, the test accuracy increases back to
91.6% (86.2%) with calibrated (uncalibrated) multiplicative
digital-to-analog converter, which is only 0.3% lower than the
software accuracy.

C. Intra-Memory Data Movement

Compared with conventional MAC computation on CPU,
in-memory computation minimizes the need for off-chip data
movement and reduces data movement energy. However,
at the same time, it also introduces data duplication and
extra intra-memory data movement, which can dominate the

350 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, JUNE 2022

TABLE VI

MACHINE LEANING ALGORITHM, TEST ACCURACY, SOFTWARE
ACCURACY AND ACCURACY DROP COMPARISON

energy consumption due to peripheral circuit usage. Hence it is
critical to explore the design CIM topology from intra-memory
data movement perspective and investigate efficient compu-
tational dataflow strategies. In a conventional im2col-based
algorithm, data needs to be duplicated and converted from
a two-dimensional matrix into a one-dimensional column
matrix, which introduces a significant amount of redundancy
in the memory array. Although the conventional compute-
in-memory approach benefits from high throughput, data are
duplicated for every cycle in the im2col algorithm, which
occupies the cache and memory bandwidth for other resources.

A matrix lowering scheme has been proposed to reduce
the memory overhead and accelerate the convolution com-
putation without accuracy degradation [67]. This algorithm
addresses the intra-memory traffic issues in current CIM
design, enables training or inference for a given size of
memory and improves memory sub-system efficiency to
improve computation. By using the presented algorithm, one
can apply DNN computation inside a memory-constrained
environment. In addition, a direct convolution algorithm in
static random-access memory is implemented as an all-in-
one approach without extra data duplication by recycling
data between neighboring SRAM bit-cells [65]. In this way,
memory bandwidth can be utilized for other resources, which
relaxes the constraint for other applications since the data
inside the CIM engine is reused for multiple computation
cycles. In addition, this design allows parallel computation for
multiple MAC products every clock cycle, which significantly
increases the throughput and efficiency while keeping the
intra-memory data movement to a minimum.

VII. CONCLUSION

To conquer the memory bottleneck in processor-centric
design of modern computing systems, the emerging
memory-centric computing paradigms such as processing-in-
memory architecture is especially effective for data-intensive
AI and ML workloads. To this extent, this paper introduces
an overview of PIM architecture for AI and ML technologies.
The state-of-the-art PIM research works are investigated
based on the memory types: SRAM-based PIM, DRAM-
based PIM, and ReRAM-based PIM. For each PIM type,

we comprehensively discuss the basic operation of the
memory, circuit component designs, macro designs, and
entire architectures as well as the challenges. To make the
PIM hardware be widely adopted in the future, there is a
need for more advanced software stack in incorporating PIM
into a computing system, allowing PIM to be easily exploited
by end-users. Lastly to ensure its reliability, further research
on reducing the overhead in data converter, improving test
accuracy of ML models, and minimizing intra-memory data
movement are crucial.

ACKNOWLEDGMENT

This paper was produced by the IEEE Publication Technol-
ogy Group. They are in Piscataway, NJ, USA.

REFERENCES

[1] K. Ando et al., “BRein memory: A single-chip binary/ternary reconfig-
urable in-memory deep neural network accelerator achieving 1.4 TOPS
at 0.6 W,” IEEE J. Solid-State Circuits, vol. 53, no. 4, pp. 983–994,
Apr. 2018.

[2] M. Kang, S. K. Gonugondla, A. Patil, and N. R. Shanbhag, “A
multi-functional in-memory inference processor using a standard 6T
SRAM array,” IEEE J. Solid-State Circuits, vol. 53, no. 2, pp. 642–655,
Feb. 2018.

[3] A. Biswas and A. P. Chandrakasan, “CONV-SRAM: An energy-efficient
SRAM with in-memory dot-product computation for low-power convo-
lutional neural networks,” IEEE J. Solid-State Circuits, vol. 54, no. 1,
pp. 217–230, Jan. 2019.

[4] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-tile 2.4-Mb
in-memory-computing CNN accelerator employing charge-domain com-
pute,” IEEE J. Solid-State Circuits, vol. 54, no. 6, pp. 1789–1799,
Jun. 2019.

[5] S. Yin, Z. Jiang, J.-S. Seo, and M. Seok, “XNOR-SRAM: In-memory
computing SRAM macro for binary/ternary deep neural networks,” IEEE
J. Solid-State Circuits, vol. 55, no. 6, pp. 1733–1743, Jun. 2020.

[6] S. K. Gonugondla, M. Kang, and N. Shanbhag, “A 42 pJ/decision
3.12 TOPS/W robust in-memory machine learning classifier with
on-chip training,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2018,
pp. 490–492.

[7] J.-W. Su et al., “A 28 nm 64 Kb inference-training two-way transpose
multibit 6T SRAM compute-in-memory macro for AI edge chips,” in
IEEE ISSCC Dig. Tech. Papers, Feb. 2020, pp. 240–242.

[8] X. Si et al., “A 28 nm 64 Kb 6T SRAM computing-in-memory macro
with 8b MAC operation for AI edge chips,” in IEEE ISSCC Dig. Tech.
Papers, Feb. 2020, pp. 246–248.

[9] W.-S. Khwa et al., “A 65 nm 4 Kb algorithm-dependent computing-in-
memory SRAM unit-macro with 2.3 ns and 55.8 TOPS/W fully parallel
product-sum operation for binary DNN edge processors,” in IEEE ISSCC
Dig. Tech. Papers, Feb. 2018, pp. 496–498.

[10] X. Si et al., “A twin-8T SRAM computation-in-memory macro for
multiple-bit CNN-based machine learning,” in IEEE ISSCC Dig. Tech.
Papers, Feb. 2019, pp. 396–398.

[11] J.-M. Hung, C.-J. Jhang, P.-C. Wu, Y.-C. Chiu, and M.-F. Chang,
“Challenges and trends of nonvolatile in-memory-computation circuits
for AI edge devices,” IEEE Open J. Solid-State Circuits Soc., vol. 1,
pp. 171–183, 2021.

[12] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of
a machine-learning classifier in a standard 6T SRAM array,”
IEEE J. Solid-State Circuits, vol. 52, no. 4, pp. 915–924, Apr. 2017.

[13] M. E. Sinangil et al., “A 7-nm compute-in-memory SRAM macro sup-
porting multi-bit input, weight and output and achieving 351 TOPS/W
and 372.4 GOPS,” IEEE J. Solid-State Circuits, vol. 56, no. 1,
pp. 188–198, Jan. 2021.

[14] C. Yu, T. Yoo, T. T.-H. Kim, K. C. T. Chuan, and B. Kim, “A 16 K
current-based 8T SRAM compute-in-memory macro with decoupled
read/write and 1-5bit column ADC,” in Proc. IEEE Custom Integr.
Circuits Conf. (CICC), Mar. 2020, pp. 1–4.

[15] C. Yu, K. T. Chuan Chai, T. T.-H. Kim, and B. Kim, “A zero-
skipping reconfigurable SRAM in-memory computing macro with
binary-searching ADC,” in Proc. IEEE 47th Eur. Solid State Circuits
Conf. (ESSCIRC), Sep. 2021, pp. 131–134.

KIM et al.: OVERVIEW OF PROCESSING-IN-MEMORY CIRCUITS FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 351

[16] H. Kim, Q. Chen, and B. Kim, “A 16 K SRAM-based mixed-signal
in-memory computing macro featuring voltage-mode accumulator and
row-by-row ADC,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-
SSCC), Nov. 2019, pp. 35–36.

[17] Z. Jiang, S. Yin, J.-S. Seo, and M. Seok, “C3SRAM: An in-memory-
computing SRAM macro based on robust capacitive coupling computing
mechanism,” IEEE J. Solid-State Circuits, vol. 55, no. 7, pp. 1888–1897,
Jul. 2020.

[18] H. Kim, T. Yoo, T. T.-H. Kim, and B. Kim, “Colonnade: A recon-
figurable SRAM-based digital bit-serial compute-in-memory macro for
processing neural networks,” IEEE J. Solid-State Circuits, vol. 56, no. 7,
pp. 2221–2233, Jul. 2021.

[19] Y.-D. Chih et al., “An 89 TOPS/W and 16.3 TOPS/mm2 all-digital
SRAM-based full-precision compute-in memory macro in 22 nm for
machine-learning edge applications,” in IEEE ISSCC Dig. Tech. Papers,
Feb. 2021, pp. 252–254.

[20] C.-J. Jhang, C.-X. Xue, J.-M. Hung, F.-C. Chang, and M.-F. Chang,
“Challenges and trends of SRAM-based computing-in-memory for AI
edge devices,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 5,
pp. 1773–1786, May 2021.

[21] M. He et al., “Newton: A DRAM-maker’s accelerator-in-memory (AiM)
architecture for machine learning,” in Proc. 53rd Annu. IEEE/ACM Int.
Symp. Microarchitecture (MICRO), Oct. 2020, pp. 372–385.

[22] S. Lee et al., “Hardware architecture and software stack for PIM
based on commercial DRAM technology: Industrial product,” in Proc.
ACM/IEEE 48th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2021,
pp. 43–56.

[23] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise
operations using commodity DRAM technology,” in Proc. 50th Annu.
IEEE/ACM Int. Symp. Microarchitecture, Oct. 2017, pp. 273–287.

[24] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “DRISA:
A DRAM-based reconfigurable in-situ accelerator,” in Proc. 50th Annu.
IEEE/ACM Int. Symp. Microarchitecture, Oct. 2017, pp. 288–301.

[25] V. Seshadri et al., “RowClone: Fast and energy-efficient in-DRAM bulk
data copy and initialization,” in Proc. 46th Annu. IEEE/ACM Int. Symp.
Microarchitecture, 2013, pp. 185–197.

[26] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A programmable digital neuromorphic architecture with
high-density 3D memory,” ACM SIGARCH Comput. Archit. News,
vol. 44, no. 3, pp. 380–392, 2016.

[27] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3D memory,”
in Proc. 22nd Int. Conf. Architectural Support Program. Lang. Oper.
Syst., 2017, pp. 751–764.

[28] P. Gu et al., “IPIM: Programmable in-memory image processing accel-
erator using near-bank architecture,” in Proc. ACM/IEEE 47th Annu. Int.
Symp. Comput. Archit. (ISCA), May 2020, pp. 804–817.

[29] H.-S. P. Wong et al., “Metal–oxide RRAM,” Proc. IEEE, vol. 100, no. 6,
pp. 1951–1970, Jun. 2012.

[30] M.-F. Chang et al., “A 3T1R nonvolatile TCAM using MLC ReRAM
with sub-1ns search time,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2015,
pp. 318–319.

[31] C.-C. Lin et al., “A 256b-wordlength ReRAM-based TCAM with
1ns search-time and 14× improvement in wordlength-energyefficiency-
density product using 2.5T1R cell,” in IEEE ISSCC Dig. Tech. Papers,
Jan. 2016, pp. 136–137.

[32] T. F. Wu et al., “Brain-inspired computing exploiting carbon nanotube
FETs and resistive RAM: Hyperdimensional computing case study,” in
IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 492–493.

[33] T. F. Wu et al., “A 43pJ/cycle non-volatile microcontroller with 4.7 µs
shutdown/wake-up integrating 2.3-bit/cell resistive RAM and resilience
techniques,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2019, pp. 226–227.

[34] Q. Liu et al., “A fully integrated analog ReRAM based 78.4 TOPS/W
compute-in-memory chip with fully parallel MAC computing,” in IEEE
ISSCC Dig. Tech. Papers, Feb. 2020, pp. 500–501.

[35] W. Wan et al., “A 74 TMACS/W CMOS-RRAM neurosynaptic core with
dynamically reconfigurable dataflow and in-situ transposable weights
for probabilistic graphical models,” in IEEE ISSCC Dig. Tech. Papers,
Feb. 2020, pp. 498–499.

[36] S. Yu, H. Jiang, S. Huang, X. Peng, and A. Lu, “Compute-in-memory
chips for deep learning: Recent trends and prospects,” IEEE Circuits
Syst. Mag., vol. 21, no. 3, pp. 31–56, 3rd Quart., 2021.

[37] M. Naumov et al., “Deep learning recommendation model for person-
alization and recommendation systems,” 2019, arXiv:1906.00091.

[38] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” 2018,
arXiv:1810.04805.

[39] T. B. Brown et al., “Language models are few-shot learners,” 2020,
arXiv:2005.14165.

[40] J.-H. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and
A. Raychowdhury, “A 40 nm 100 Kb 118.44 TOPS/W ternary-weight
computein-memory RRAM macro with voltage-sensing read and write
verification for reliable multi-bit RRAM operation,” in Proc. IEEE
Custom Integr. Circuits Conf. (CICC), Apr. 2021, pp. 1–2.

[41] W.-H. Chen et al., “A 65 nm 1 Mb nonvolatile computing-in-memory
ReRAM macro with sub-16ns multiply-and-accumulate for binary DNN
AI edge processors,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2018,
pp. 494–495.

[42] C.-X. Xue et al., “A 1 Mb multibit ReRAM computing-in-memory
macro with 14.6 ns parallel MAC computing time for CNN based
AI edge processors,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2019,
pp. 388–389.

[43] C.-X. Xue et al., “A 22 nm 2 Mb ReRAM compute-in-memory macro
with 121-28TOPS/W for multibit MAC computing for tiny AI edge
devices,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2020, pp. 244–245.

[44] C.-X. Xue et al., “A 22 nm 4 Mb 8b-precision ReRAM computing-in-
memory macro with 11.91 to 195.7 TOPS/W for tiny AI edge devices,”
in IEEE ISSCC Dig. Tech. Papers, Feb. 2021, pp. 246–247.

[45] J.-H. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and
A. Raychowdhury, “A 40 nm 64 Kb 56.67 TOPS/W read-disturb-tolerant
compute-in-memory/digital RRAM macro with active-feedback-based
read and in-situ write verification,” in IEEE ISSCC Dig. Tech. Papers,
Feb. 2021, pp. 404–405.

[46] J. M. Correll et al., “A fully integrated reprogrammable CMOS-RRAM
compute-in-memory coprocessor for neuromorphic applications,” IEEE
J. Explor. Solid-State Comput. Devices Circuits, vol. 6, pp. 36–44, 2020.

[47] W. Li, S. Huang, X. Sun, H. Jiang, and S. Yu, “Secure-RRAM: A 40 nm
16 kb compute-in-memory macro with reconfigurability, sparsity control,
and embedded security,” in Proc. IEEE Custom Integr. Circuits Conf.
(CICC), Apr. 2021, pp. 1–2.

[48] W. Li, X. Sun, H. Jiang, S. Huang, and S. Yu, “A 40 nm RRAM
compute-in-memory macro featuring on-chip write-verify and offset-
cancelling ADC references,” in Proc. IEEE 47th Eur. Solid State Circuits
Conf. (ESSCIRC), Sep. 2021, pp. 79–82.

[49] Y. Chen, L. Lu, B. Kim, and T. T.-H. Kim, “Reconfigurable 2T2R
ReRAM architecture for versatile data storage and computing in-
memory,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28,
no. 12, pp. 2636–2649, Dec. 2020.

[50] Y. Chen, L. Lu, B. Kim, and T. T.-H. Kim, “A reconfigurable
4T2R ReRAM computing in-memory macro for efficient edge
applications,” IEEE Open J. Circuits Syst., vol. 2, pp. 210–222,
2021.

[51] A. Boroumand et al., “Google workloads for consumer devices: Mitigat-
ing data movement bottlenecks,” in Proc. 23rd Int. Conf. Architectural
Support Program. Lang. Oper. Syst., 2018, pp. 316–331.

[52] K. Hsieh et al., “Transparent offloading and mapping (TOM) enabling
programmer-transparent near-data processing in GPU systems,” ACM
SIGARCH Comput. Archit. News, vol. 44, no. 3, pp. 204–216,
2016.

[53] X. Peng, R. Liu, and S. Yu, “Optimizing weight mapping and data
flow for convolutional neural networks on processing-in-memory archi-
tectures,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 4,
pp. 1333–1343, Apr. 2020.

[54] A. Pattnaik et al., “Scheduling techniques for GPU architectures with
processing-in-memory capabilities,” in Proc. Int. Conf. Parallel Archi-
tectures Compilation, Sep. 2016, pp. 31–44.

[55] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “Graph-
PIM: Enabling instruction-level PIM offloading in graph computing
frameworks,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit.
(HPCA), Feb. 2017, pp. 457–468.

[56] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Proc. 42nd
Annu. Int. Symp. Comput. Archit., Jun. 2015, pp. 105–117.

[57] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-enabled instructions:
A low-overhead, locality-aware processing-in-memory architecture,” in
Proc. 42nd Annu. Int. Symp. Comput. Archit., Jun. 2015, pp. 336–348.

[58] A. Boroumand et al., “CoNDA: Efficient cache coherence support
for near-data accelerators,” in Proc. 46th Int. Symp. Comput. Archit.,
Jun. 2019, pp. 629–642.

352 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, JUNE 2022

[59] S. Xie, C. Ni, A. Sayal, P. Jain, F. Hamzaoglu, and J. P. Kulkarni,
“eDRAM-CIM: Compute-in-memory design with reconfigurable
embedded-dynamic-memory array realizing adaptive data converters
and charge-domain computing,” in IEEE ISSCC Dig. Tech. Papers,
Feb. 2021, pp. 248–250.

[60] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or −1,” 2016, arXiv:1602.02830.

[61] T. Simons and D.-J. Lee, “A review of binarized neural networks,”
Electronics, vol. 8, no. 6, p. 661, Jun. 2019.

[62] A. Sayal, S. Fathima, S. T. Nibhanupudi, and J. P. Kulkarni, “COM-
PAC: Compressed time-domain, pooling-aware convolution CNN engine
with reduced data movement for energy-efficient AI computing,” IEEE
J. Solid-State Circuits, vol. 56, no. 7, pp. 2205–2220, Jul. 2021.

[63] J. Yue et al., “A 2.75-to-75.9 TOPS/W computing-in-memory NN
processor supporting set-associate block-wise zero skipping and ping-
pong CIM with simultaneous computation and weight updating,” in
IEEE ISSCC Dig. Tech. Papers, Feb. 2021, pp. 238–240.

[64] Z. Chen, X. Chen, and J. Gu, “A 65 nm 3T dynamic analog RAM-
based computing-in-memory macro and CNN accelerator with retention
enhancement, adaptive analog sparsity and 44 TOPS/W system energy
efficiency,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2021, pp. 240–242.

[65] J. N. Rohan and J. P. Kulkarni, “Realizing direct convolution in memory
with systolic-RAM,” in Proc. IEEE Asian Solid-State Circuits Conf.
(A-SSCC), Nov. 2021, pp. 1–3.

[66] C. N. Coelho et al., “Automatic heterogeneous quantization of deep
neural networks for low-latency inference on the edge for particle
detectors,” Nature Mach. Intell., vol. 3, no. 8, pp. 675–686, 2021.

[67] M. Cho and D. Brand, “MEC: Memory-efficient convolution for deep
neural network,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 815–824.

Donghyuk Kim (Graduate Student Member, IEEE)
received the B.S. degree in electrical and computer
engineering from the University of Washington,
Seattle, USA, in 2020. He is currently pursuing
the M.S. degree in electrical engineering with the
Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea.

His research interests include energy-efficient
processing-in-memory architecture for machine
learning and database and deep neural network
accelerators.

Chengshuo Yu (Graduate Student Member, IEEE)
received the B.S. degree in electronic engineering
from Feng Chia University, Taiwan, in 2019. He is
currently pursuing the Ph.D. degree with the School
of Electrical and Electronic Engineering, Nanyang
Technological University, Singapore.

His research interests include mixed signal
SRAM/DRAM-based in-memory computing and
time-domain hardware accelerator.

Shanshan Xie (Graduate Student Member, IEEE)
received the B.S. degree in electrical and com-
puter engineering (ECE) from Worcester Polytechnic
Institute (WPI), Worcester, MA, USA, in 2018. She
is currently pursuing the M.S. and Ph.D. degrees
in electrical and computer engineering with The
University of Texas at Austin (UT Austin), Austin,
TX, USA.

She was an Intern with Analog Devices, Wilm-
ington, MA, USA; and Texas Instrument Corpo-
ration, Dallas, TX, USA, where she was involved

in programmable gain instrumentation amplifier, ECG heart rate monitor,
CAN isolation products. Her research interests include mix-signal design for
compute-in-memory techniques, machine learning accelerator, and annealing
processor.

Miss. Xie has received the 2020 Cadence Women in Technology Scholar-
ship, the 2021–2022 IEEE Student Travel Grant Award, and the 2021–2022
IEEE Solid State Circuit Society (SSCS) Predoctoral Achievement Award.

Yuzong Chen received the B.Eng. degree in elec-
trical and electronic engineering from Nanyang
Technological University, Singapore, in 2019. From
2019 to 2021, he was a Project Officer with the
Centre for Integrated Circuits and Systems (CICS),
Nanyang Technological University. He is currently a
Research Assistant with the Department of Electrical
and Computer Engineering, National University of
Singapore, Singapore. His research interests include
low-power circuit design and computing in-memory
hardware.

Joo-Young Kim (Senior Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in electrical
engineering from the Korea Advanced Institute
of Science and Technology (KAIST), Daejeon,
South Korea, in 2005, 2007, and 2010, respectively.

He is currently an Assistant Professor with the
School of Electrical Engineering, KAIST. He is
also the Director of the AI Semiconductor Systems
Research Center. Before joining KAIST, he was
a Senior Hardware Engineering Lead at Microsoft
Azure, Redmond, WA, USA, working on hardware

acceleration for its hyper-scale big data analytics platform named Azure
Data Lake. He was also one of the initial members of the Catapult
Project at Microsoft Research, Redmond, where he deployed a fabric of
field-programmable gate arrays (FPGAs) in datacenters to accelerate critical
cloud services, such as machine learning, data storage, and networking.
His research interests span various aspects of hardware design, including
VLSI design, computer architecture, FPGA, domain-specific accelerators,
hardware/software co-design, and agile hardware development. He was a
recipient of the 2016 IEEE Micro Top Picks Award, the 2014 IEEE Micro
Top Picks Award, the 2010 DAC/ISSCC Student Design Contest Award,
the 2008 DAC/ISSCC Student Design Contest Award, and the 2006 A-SSCC
Student Design Contest Award. He serves as an Associate Editor for the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS.

Bongjin Kim (Senior Member, IEEE) received the
B.S. and M.S. degrees from POSTECH, Pohang,
South Korea, in 2004 and 2006, respectively, and
the Ph.D. degree from the University of Minnesota,
Minneapolis, MN, USA, in 2014.

He was with Rambus, Sunnyvale, CA, USA,
where he was a Senior Staff Member and worked
on the research of high-speed serial link circuits
and microarchitectures. He was a Post-Doctoral
Research Fellow with Stanford University, Stanford,
CA, USA. From 2006 to 2010, he was with Samsung

Electronics, Yongin, South Korea, where he performed research on clock
generators for high-speed serial links and clock generators. He also worked as
a Research Intern with Texas Instruments, Dallas, TX, USA; IBM TJ Watson
Research, Yorktown Heights, NY, USA; and Rambus, from 2012 to 2014.
He was an Assistant Professor with Nanyang Technological University,
Singapore, from 2017 to 2020. He is currently an Assistant Professor with
the Department of Electrical and Computer Engineering (ECE), University of
California at Santa Barbara, Santa Barbara, CA, USA. His current research
interests include memory-centric computing devices, circuits, and architec-
tures, hardware accelerators, alternative computing, and mixed-signal circuit
design techniques and methodologies. His research works appeared at top
integrated circuit design and automation conference proceedings and journals,
including ISSCC, VLSI Symposium, CICC, ESSCIRC, ASSCC, ISLPED,
DATE, ICCAD, the IEEE JOURNAL OF SOLID-STATE CIRCUITS, and the
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS.

Dr. Kim was a recipient of the Prestigious Doctoral Dissertation Fellowship
Award based on his Ph.D. research works, the International Low Power Design
Contest Award from ISLPED, and the Intel/IBM/Catalyst Foundation Award
from CICC.

KIM et al.: OVERVIEW OF PROCESSING-IN-MEMORY CIRCUITS FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 353

Jaydeep P. Kulkarni (Senior Member, IEEE)
received the B.E. degree in electronics/electrical
engineering from the University of Pune, India,
in 2002, the M.Tech. degree in electronics/electrical
engineering from the Indian Institute of Sci-
ence (IISc), Bengaluru, India, in 2004, and the
Ph.D. degree in electronics/electrical engineering
from Purdue University, West Lafayette, IN, USA,
in 2009.

From 2009 to 2017, he was with Intel Cir-
cuit Research Lab, Hillsboro, OR, USA, where he

worked on energy-efficient integrated circuit technologies. He is currently an
Assistant Professor in electrical and computer engineering at The University
of Texas at Austin, a fellow of the AMD Endowed Chair in Computer
Engineering, and a fellow of the Silicon Labs Chair in Electrical Engineering.
He has filed 36 patents and published over 100 articles in peer-reviewed
journals and conferences. His current research is focused on machine learning
hardware accelerators, in-memory computing, emerging nano-devices, hard-
ware security, heterogeneous/3-D integration, and cryogenic computing.

Dr. Kulkarni is a Senior Member of the U.S. National Academy of Inventors
(NAI). He has received the Best M.Tech. Student Award from IISc, the Intel
Foundation Ph.D. Fellowship Award, the SRC Best Paper and Inventor Recog-
nition Awards, the Purdue Outstanding Doctoral Dissertation Award, the seven
Intel Divisional Recognition Awards, the 2015 IEEE TRANSACTIONS ON
VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS Best Paper Award,
the SRC Outstanding Industrial Liaison Award, the Micron Foundation Faculty
Awards, the Intel Rising Star Faculty Award, and the NSF CAREER Award.
During his tenure at Intel Labs, he has served as an Industrial Distinguished
Lecturer for IEEE Circuits and Systems Society and an Industrial Liaison for
SRC, NSF programs. He has served as the TPC Co-Chair and the General
Co-Chair for 2017 and 2018 ISLPED, respectively. He is also serving as
the Chair for IEEE Solid State Circuits Society and Circuits and Systems
Society, Central Texas Joint Chapter. He serves as an Associate Editor for
IEEE SOLID-STATE CIRCUITS LETTERS, IEEE TRANSACTIONS ON VERY

LARGE SCALE INTEGRATION (VLSI) SYSTEMS, and IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS. He serves as a Guest
Editor for IEEE MICRO and IEEE JOURNAL ON EMERGING AND SELECTED

TOPICS IN CIRCUITS AND SYSTEMS. He is serving as a Distinguished
Lecturer for the IEEE Solid State Circuit Society and the IEEE Electron
Device Society.

Tony Tae-Hyoung Kim (Senior Member, IEEE)
received the B.S. and M.S. degrees in electrical engi-
neering from Korea University, Seoul, South Korea,
in 1999 and 2001, respectively, and the Ph.D. degree
in electrical and computer engineering from the
University of Minnesota, Minneapolis, MN, USA,
in 2009.

From 2001 to 2005, he was with Samsung Elec-
tronics, Hwasung, South Korea, where he performed
the research on the design of high-speed SRAM
memories, clock generators, and IO interface cir-

cuits. From 2007 to 2009, he was with the IBM T. J. Watson Research Center,
Yorktown Heights, NY, USA; and Broadcom Corporation, Edina, MN, USA,
where he performed the research on circuit reliability, low-power SRAM, and
battery-backed memory design. In 2009, he joined Nanyang Technological
University, Singapore, where he is currently an Associate Professor. He has
authored or coauthored over 190 journal articles and conference papers and
holds 17 U.S. and Korean patents registered. His current research interests
include computing-in-memory for machine learning, ultra-low power circuits
and systems for smart edge computing, low-power and high-performance
digital, mixed-mode, and memory circuit design, variation-tolerant circuits
and systems, and emerging memory circuits for neural networks.

Dr. Kim has served on numerous conferences as a committee member.
He has received the IEEE ISSCC2019 Student Travel Grant Award; the
Best Demo Award at APCCAS2016; the Low Power Design Contest Award
at ISLPED2016; the Best Paper Awards at 2014 and 2011 ISOCC; the
AMD/CICC Student Scholarship Award at IEEE CICC2008; the Depart-
mental Research Fellowship from the University of Minnesota in 2008; the
DAC/ISSCC Student Design Contest Award in 2008; the Samsung Humantech
Thesis Award in 2008, 2001, and 1999; and the ETRI Journal Paper of the
Year Award in 2005. He was the Chair of the IEEE Solid-State Circuits Society
Singapore Chapter in 2015–2016. He is the Chair-Elect/Secretary of the IEEE
Circuits and Systems Society VSATC. He serves as a Corresponding Guest
Editor for the IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN

CIRCUITS AND SYSTEMS, a Guest Editor for the IEEE TRANSACTIONS
ON BIOMEDICAL CIRCUITS AND SYSTEMS, and an Associate Editor for
the IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS, IEEE ACCESS, and the IEIE Journal of Semiconductor Technology
and Science.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

