
420 • 2023 IEEE International Solid-State Circuits Conference

ISSCC 2023 / SESSION 29 / DIGITAL ACCELERATORS AND CIRCUIT TECHNIQUES / 29.2

29.2 Snap-SAT: A One-Shot Energy-Performance-Aware All-Digital
 Compute-in-Memory Solver for Large-Scale Hard Boolean
 Satisfiability Problems

Shanshan Xie, Mengtian Yang, S. Andrew Lanham, Yipeng Wang, Meizhi Wang,
Sirish Oruganti, Jaydeep P. Kulkarni

University of Texas, Austin, TX

Boolean satisfiability (SAT) is a non-deterministic polynomial time (NP)-complete
problem with many practical and industrial data-intensive applications [1]. Examples
(Fig. 29.2.1) include anti-aircraft mission planning in defense, gene prediction in vaccine
development, network routing in the data center, automatic test pattern generation in
electronic design automation (EDA), and model checking in software. The objective of a
SAT solver is to identify the values of n Boolean variables xi that satisfy all clauses in a
conjunctive normal form (CNF) [5]. However, the time required to determine the
satisfiability of a SAT problem increases exponentially with respect to the variable size,
which is energy and resource-consuming. A prior software SAT solver [3] requires
frequent data transfer and memory access due to the CPU computations, solution-search,
and repetitive variable updates, increasing the computational latency and energy cost.
Another approach to designing a SAT solver is to leverage a continuous-time dynamical
system using analog circuitry [5]. However, such dedicated analog arithmetic
components incur a large area and energy overhead as they cannot be reused during
non-SAT applications. Moreover, the analog SAT computations necessitate frequent
SRAM read/write access which increase hardware implementation costs. Therefore, there
is a critical need for advancing energy and area-efficient hardware SAT solver designs.

Since the SAT variables are initially stored in the memory arrays, a compute-in-memory
(CIM) approach is naturally suitable for solving SAT problems as it can utilize local write-
backs in memory arrays for variable updates. In contrast to the previous SAT solvers,
we present an all-digital CIM SAT solver that accelerates iterative computations utilizing
the existing static random-access memory (SRAM) arrays to significantly minimize off-
chip memory accesses and the corresponding energy costs. The key attributes of the
Snap-SAT approach are: 1) massively parallel in-memory local computations in a one-
shot manner and support for local variable update to minimize data movement; 2) reliable
computations under process and temperature variations, which can be seamlessly scaled
to advanced CMOS technologies due to the all-digital design approach; 3) SRAM bitcells
that can be reused for regular mode operation in non-SAT applications to reduce the
area overhead and hardware implementation complexity; 4) scalability to large-scale hard
SAT problems with different variable/clause sizes and user-defined solver algorithms; 5)
no data converter circuit and intra-data movement are needed for the SAT computations;
6) 65nm CMOS prototype measurements demonstrating 7.5-to-151× (12-to-181×)
speedup and 7*104× (1.3*104×) energy improvement over a software SAT solver using
a Xeon W-2195 CPU (Snapdragon 845 ARM) processor.

Figure 29.2.2 shows the mapping between the SRAM array and the k-SAT CNF F(x). An
M clause CNF is expressed as F(x)=∧Cm. Each clause Cm is a disjunction (OR) between
k literals (e.g., C0=x0 OR x1_bar OR x5) and a literal is a Boolean variable xi or its negation
xi_bar. Each clause is mapped to a column, and the configurations of each variable are
stored in two 6T SRAM bitcells. The first bitcell (Pm,i) stores the information regarding
whether xi or xi_bar is present in the clause m. The second bitcell (Dm,i) holds the literal
data associated with variable i inside clause m, which could be either xi or xi_bar (e.g.,
D=xi means variable i in the clause is in true form and D=xi_bar means variable i is in its
complemented form). If the variable is absent in clause m, the literal data Dm,i is set to
the variable itself (xi) by default. Consequently, with this mapping, a variable update can
be achieved locally by flipping the entire data row, as each data row represents a single
variable. An example is illustrated in Fig. 29.2.2, where C1=x1 OR x3_bar OR x4_bar. In
this case, P1,3 is 1, and D1,3 is x3_bar. On the other hand, for variable x5, P1,5 is 0 and D1,5
is a Don’t Care condition because neither x5 nor x5_bar is in clause 1. Additionally, each
of the two 6T SRAM bitcells is paired with a 3-Transistor (3T) NAND gate. The output of
a NAND column (CL) is the result of OR operations in clause Cm, where CL=1 indicates
that Cm is False (unsatisfied) and CL=0 interprets that Cm is True (satisfied).

Figure 29.2.3 shows the circuit details of the Snap-SAT design. The SRAM controller,
6T SRAM bitcells, precharge unit, and read/write driver are the same as the baseline
SRAM array design. In addition to the baseline array circuits, NAND gates, local update,
parallel counter, and a Snap-SAT controller are added to the memory array to support
the SAT computations. Pm,i and Dm,i are stored in the 6T SRAM bitcells, and the storage
nodes of the two bitcells are connected to two transistor gates in the NAND unit. The
middle input of the NAND is connected to the compute control signal (CP), which
enables/disables the SAT computation. The input order (P, CP, D) is designed to ensure
that the control signal with the highest priority (Pm,i) controls the first transistor gate to
prevent discharge current from the variables that are not present in the clause. In the

computation mode, CP<n-1:0> are asserted, and all the clause computations are achieved
in parallel in a single cycle on the compute line (CL<M-1:0>), shared along the column.
This demonstrates the massive parallel computation capability of the Snap-SAT design
directly on the memory bitcells. Fig. 29.2.3 illustrates a computation flow example for a
3-SAT problem. Initially, CL is precharged to VDD by turning on the CL_PC signal. The
compute signals (CP<n-1:0>) enable the NAND gates during the clause computation.
After CPs are ON, CL<9> is discharged to zero, assuming only Clause 10 is satisfied after
the first round of computation. Next, after the results appear on the CLs, the counter-
enable signal (Counter_EN) in the controller is asserted to latch the computation results
on CLs and to start the parallel counter. Because only 1 clause is fulfilled, the counter
output (unSAT) is M-1, where M is the total number of clauses. After receiving the
counter result, the controller randomly selects one of the variables in a random unfulfilled
clause, and the random selection is achieved using a linear feedback shift register. Note
that the variable and clause selection steps vary according to different algorithms. After
the variable is selected, a local write-after-read operation is performed, and the data from
the read driver is inverted to flip the selected variable (e.g., x0), and written back using
the local write driver, thus eliminating the data movement, compared with a conventional
SAT solver [3].

Another critical aspect is the flexibility to reconfigure various algorithms. As shown in
Fig. 29.2.4, MiniSAT (MS) [3] is a better-known complete algorithm for software SAT
solvers, but from a hardware perspective, WalkSAT (WS) and Schoning’s (SC) algorithms
are more compatible with the CIM approach because of their iterative search nature.
Hence, they are employed as the primary Snap-SAT algorithms. For benchmarking,
random k-SAT formulas are generated at a fixed clause-to-variable ratio (CTV) since the
CTV ratio determines the hardness of a SAT problem. The CTV ratio is set to 4.3 for a
3-SAT problem, targeting a hard problem regime. For an n-variable problem, there are
2kC(n,k) unique clauses that can appear in a CNF. M clauses are sampled uniformly by
randomly choosing k variables out of n without repetition and converting variables to
literals by either negating them or leaving them un-negated with equal probability. The
computation evolution using WS in the Snap-SAT design shows a 10.5× speedup over
the Xeon W-2195 CPU software solver on a hard 3-SAT problem.

Solution time and energy consumption of the Snap-SAT design are evaluated in Fig.
29.2.5, where the flowchart shows that the solution time is quantified as the time interval
from the start of the computation until all clauses are satisfied, while the benchmark
loading and parameter setup phases are excluded for both test-chip and software
processors. Using WalkSAT, this work shows a 12× (7.5×) speedup compared to the
solution time of the ARM (CPU) processor using the state-of-the-art algorithm, MiniSAT.
Furthermore, compared to the ARM (CPU) solver, the design reduces the energy
consumption by 1.3*104× (7*104×), showing promising energy and speed improvements
over the software-based approaches using well-known algorithms. A detailed design
comparison of prior SAT solvers in CMOS processes [4-6] is presented in Fig. 29.2.6.
The test-chip summary, experiment setup, die micrograph, and area/power breakdown
are shown in Fig. 29.2.7. In summary, the Snap-SAT design achieves at least an order
of magnitude energy/speed improvement over the software approaches, and has been
extensively tested on different hard k-SAT problems with different variable sizes, clause
sizes, and CTV ratios. This demonstrates a promising, fast, reliable, reconfigurable, and
scalable compute-in-memory design for solving and accelerating large-scale hard SAT
problems, suggesting its potential for solving time-critical SAT problems in real-life
applications (e.g., defense, vaccine development, etc.).

Acknowledgement:
This research is supported in parts by NSF CAREER Award, Micron Foundation faculty
grant and AMD Chair Endowment. Testchip fabrication is supported by TSMC University
Shuttle Program.

References:
[1] J. Marques-Silva, “Practical Applications of Boolean Satisfiability,” Workshop on
Discrete Event Systems, pp. 74-80, 2008.
[2] A. Montanari et al., “Clusters of Solutions and Replica Symmetry Breaking in Random
k-Satisfiability,” Jour. Statistical Mechanics, P04004, 2008.
[3] N. Eén et al., “An Extensible SAT-Solver,” Conf. on Theory and Applications of
Satisfiability Testing, pp. 502-518, 2003
[4] Y. Su et al., “FlexSpin: A Scalable CMOS Ising Machine with 256 Flexible Spin
Processing Elements for Solving Complex Combinatorial Optimization Problems,” ISSCC,
pp. 272-273, 2022.
[5] M. Chang et al., “An Analog Clock-free Compute Fabric base on Continuous-Time
Dynamical System for Solving Combinatorial Optimization Problems,” IEEE CICC, 2022.
[6] H. Mostafa et al., “An Event-Based Architecture for Solving Constraint Satisfaction
Problems,” Nature Communications, pp. 1-10, 2015.

978-1-6654-9016-0/23/$31.00 ©2023 IEEE

421

ISSCC 2023 / February 22, 2023 / 2:00 PM

DIGEST OF TECHNICAL PAPERS •

Figure 29.2.1: Boolean satisfiability (SAT) problem applications and basic concepts
along with Snap-SAT design motivations and high-level comparisons with prior
software and analog SAT solver.

Figure 29.2.2: Snap-SAT design highlights, design overview, and mapping between
the conjunctive normal form (CNF) F(x) and 6T SRAM column.

Figure 29.2.3: Overall Snap-SAT architecture with circuit diagram of clause
computation column, and an example timing diagram from precharge, compute, to
local update operations when only one clause is satisfied.

Figure 29.2.4: Schoning′s (SC) and WalkSAT (WS) algorithm flowchart; well-known
SAT algorithms relative comparison; clause-to-variable ratio for 3-SAT to 5-SAT; and
computation evolution graph of Snap-SAT and Xeon W-2195 CPU.

Figure 29.2.5: Measured solution time using 1K 3-SAT to 5-SAT hard problems with
different algorithms and for energy at VDD=1V (@80MHz) with high-performance CPU
processor and energy-efficient ARM processor comparisons.

Figure 29.2.6: Snap-SAT performance comparison with prior analog and digital SAT
solvers using CMOS processes.

29

• 2023 IEEE International Solid-State Circuits Conference

ISSCC 2023 PAPER CONTINUATIONS

978-1-6654-9016-0/23/$31.00 ©2023 IEEE

Figure 29.2.7: Test-chip summary, experiment setup, die micrograph and macro
area/power breakdown.

