ISSCC 2023 / SESSION 29 / DIGITAL ACCELERATORS AND CIRCUIT TECHNIQUES / 29.2

29.2 Snap-SAT: A One-Shot Energy-Performance-Aware All-Digital
Compute-in-Memory Solver for Large-Scale Hard Boolean
Satisfiability Problems

Shanshan Xie, Mengtian Yang, S. Andrew Lanham, Yipeng Wang, Meizhi Wang,
Sirish Oruganti, Jaydeep P. Kulkarni

University of Texas, Austin, TX

Boolean satisfiability (SAT) is a non-deterministic polynomial time (NP)-complete
problem with many practical and industrial data-intensive applications [1]. Examples
(Fig. 29.2.1) include anti-aircraft mission planning in defense, gene prediction in vaccine
development, network routing in the data center, automatic test pattern generation in
electronic design automation (EDA), and model checking in software. The objective of a
SAT solver is to identify the values of n Boolean variables x; that satisfy all clauses in a
conjunctive normal form (CNF) [5]. However, the time required to determine the
satisfiability of a SAT problem increases exponentially with respect to the variable size,
which is energy and resource-consuming. A prior software SAT solver [3] requires
frequent data transfer and memory access due to the CPU computations, solution-search,
and repetitive variable updates, increasing the computational latency and energy cost.
Another approach to designing a SAT solver is to leverage a continuous-time dynamical
system using analog circuitry [5]. However, such dedicated analog arithmetic
components incur a large area and energy overhead as they cannot be reused during
non-SAT applications. Moreover, the analog SAT computations necessitate frequent
SRAM read/write access which increase hardware implementation costs. Therefore, there
is a critical need for advancing energy and area-efficient hardware SAT solver designs.

Since the SAT variables are initially stored in the memory arrays, a compute-in-memory
(CIM) approach is naturally suitable for solving SAT problems as it can utilize local write-
backs in memory arrays for variable updates. In contrast to the previous SAT solvers,
we present an all-digital CIM SAT solver that accelerates iterative computations utilizing
the existing static random-access memory (SRAM) arrays to significantly minimize off-
chip memory accesses and the corresponding energy costs. The key attributes of the
Snap-SAT approach are: 1) massively parallel in-memory local computations in a one-
shot manner and support for local variable update to minimize data movement; 2) reliable
computations under process and temperature variations, which can be seamlessly scaled
to advanced CMOS technologies due to the all-digital design approach; 3) SRAM bitcells
that can be reused for regular mode operation in non-SAT applications to reduce the
area overhead and hardware implementation complexity; 4) scalability to large-scale hard
SAT problems with different variable/clause sizes and user-defined solver algorithms; 5)
no data converter circuit and intra-data movement are needed for the SAT computations;
6) 65nm CMOS prototype measurements demonstrating 7.5-t0-151x (12-to-181x)
speedup and 7*10°x (1.3*10%x) energy improvement over a software SAT solver using
a Xeon W-2195 CPU (Snapdragon 845 ARM) processor.

Figure 29.2.2 shows the mapping between the SRAM array and the ~-SAT CNF F(x). An
M clause CNF is expressed as F(x)=AGC,,. Each clause C, is a disjunction (OR) between
kliterals (e.g., Cy=x, OR x;_bar OR x;) and a literal is a Boolean variable x; or its negation
X;_bar. Each clause is mapped to a column, and the configurations of each variable are
stored in two 6T SRAM bitcells. The first bitcell (P,,;) stores the information regarding
whether x; or x,_bar is present in the clause m. The second bitcell (D,,;) holds the literal
data associated with variable /inside clause m, which could be either x; or x,_bar (e.g.,
D=x; means variable /in the clause is in true form and D=x,_bar means variable /is in its
complemented form). If the variable is absent in clause m, the literal data D,,; is set to
the variable itself (x) by default. Consequently, with this mapping, a variable update can
be achieved locally by flipping the entire data row, as each data row represents a single
variable. An example is illustrated in Fig. 29.2.2, where C;=x; OR x3_bar OR x,_bar. In
this case, Py 3is 1, and Dy 5 is x3_bar. On the other hand, for variable x5, P,5is 0 and D, 5
is a Don’t Care condition because neither x;nor x;_baris in clause 1. Additionally, each
of the two 6T SRAM bitcells is paired with a 3-Transistor (3T) NAND gate. The output of
a NAND column (CL) is the result of OR operations in clause C,, where CL=1 indicates
that C,, is False (unsatisfied) and CL=0 interprets that C,, is True (satisfied).

Figure 29.2.3 shows the circuit details of the Snap-SAT design. The SRAM controller,
6T SRAM bitcells, precharge unit, and read/write driver are the same as the baseline
SRAM array design. In addition to the baseline array circuits, NAND gates, local update,
parallel counter, and a Snap-SAT controller are added to the memory array to support
the SAT computations. P,,; and D,,; are stored in the 6T SRAM bitcells, and the storage
nodes of the two bitcells are connected to two transistor gates in the NAND unit. The
middle input of the NAND is connected to the compute control signal (CP), which
enables/disables the SAT computation. The input order (P, CP, D) is designed to ensure
that the control signal with the highest priority (P,,;) controls the first transistor gate to
prevent discharge current from the variables that are not present in the clause. In the

computation mode, CP<n-1:0> are asserted, and all the clause computations are achieved
in parallel in a single cycle on the compute line (CL<M-1:0>), shared along the column.
This demonstrates the massive parallel computation capability of the Snap-SAT design
directly on the memory bitcells. Fig. 29.2.3 illustrates a computation flow example for a
3-SAT problem. Initially, CL is precharged to Vpp by turning on the CL_PC signal. The
compute signals (CP<n-1:0>) enable the NAND gates during the clause computation.
After CPs are ON, CL<9> is discharged to zero, assuming only Clause 10 is satisfied after
the first round of computation. Next, after the results appear on the CLs, the counter-
enable signal (Counter_EN) in the controller is asserted to latch the computation results
on CLs and to start the parallel counter. Because only 1 clause is fulfilled, the counter
output (unSAT) is M-1, where M is the total number of clauses. After receiving the
counter result, the controller randomly selects one of the variables in a random unfulfilled
clause, and the random selection is achieved using a linear feedback shift register. Note
that the variable and clause selection steps vary according to different algorithms. After
the variable is selected, a local write-after-read operation is performed, and the data from
the read driver is inverted to flip the selected variable (e.g., X;), and written back using
the local write driver, thus eliminating the data movement, compared with a conventional
SAT solver [3].

Another critical aspect is the flexibility to reconfigure various algorithms. As shown in
Fig. 29.2.4, MiniSAT (MS) [3] is a better-known complete algorithm for software SAT
solvers, but from a hardware perspective, WalkSAT (WS) and Schoning’s (SC) algorithms
are more compatible with the CIM approach because of their iterative search nature.
Hence, they are employed as the primary Snap-SAT algorithms. For benchmarking,
random k-SAT formulas are generated at a fixed clause-to-variable ratio (CTV) since the
CTV ratio determines the hardness of a SAT problem. The CTV ratio is set to 4.3 for a
3-SAT problem, targeting a hard problem regime. For an n-variable problem, there are
2G(n,k) unique clauses that can appear in a CNF. M clauses are sampled uniformly by
randomly choosing k variables out of n without repetition and converting variables to
literals by either negating them or leaving them un-negated with equal probability. The
computation evolution using WS in the Snap-SAT design shows a 10.5x speedup over
the Xeon W-2195 CPU software solver on a hard 3-SAT problem.

Solution time and energy consumption of the Snap-SAT design are evaluated in Fig.
29.2.5, where the flowchart shows that the solution time is quantified as the time interval
from the start of the computation until all clauses are satisfied, while the benchmark
loading and parameter setup phases are excluded for both test-chip and software
processors. Using WalkSAT, this work shows a 12x (7.5x) speedup compared to the
solution time of the ARM (CPU) processor using the state-of-the-art algorithm, MiniSAT.
Furthermore, compared to the ARM (CPU) solver, the design reduces the energy
consumption by 1.3*10° (7*10“x), showing promising energy and speed improvements
over the software-based approaches using well-known algorithms. A detailed design
comparison of prior SAT solvers in CMOS processes [4-6] is presented in Fig. 29.2.6.
The test-chip summary, experiment setup, die micrograph, and area/power breakdown
are shown in Fig. 29.2.7. In summary, the Snap-SAT design achieves at least an order
of magnitude energy/speed improvement over the software approaches, and has been
extensively tested on different hard k-SAT problems with different variable sizes, clause
sizes, and CTV ratios. This demonstrates a promising, fast, reliable, reconfigurable, and
scalable compute-in-memory design for solving and accelerating large-scale hard SAT
problems, suggesting its potential for solving time-critical SAT problems in real-life
applications (e.g., defense, vaccine development, etc.).

Acknowledgement:

This research is supported in parts by NSF CAREER Award, Micron Foundation faculty
grant and AMD Chair Endowment. Testchip fabrication is supported by TSMC University
Shuttle Program.

References:

[1] J. Marques-Silva, “Practical Applications of Boolean Satisfiability,” Workshop on
Discrete Event Systems, pp. 74-80, 2008.

[2] A. Montanari et al., “Clusters of Solutions and Replica Symmetry Breaking in Random
k-Satisfiability,” Jour. Statistical Mechanics, P04004, 2008.

[3] N. Eén et al., “An Extensible SAT-Solver,” Conf. on Theory and Applications of
Satisfiability Testing, pp. 502-518, 2003

[4] Y. Su et al., “FlexSpin: A Scalable CMOS Ising Machine with 256 Flexible Spin
Processing Elements for Solving Complex Combinatorial Optimization Problems,” ISSCC,
pp. 272-273, 2022.

[5] M. Chang et al., “An Analog Clock-free Compute Fabric base on Continuous-Time
Dynamical System for Solving Combinatorial Optimization Problems,” IEEE CICC, 2022.
[6] H. Mostafa et al., “An Event-Based Architecture for Solving Constraint Satisfaction
Problems,” Nature Communications, pp. 1-10, 2015.

420 2023 IEEE International Solid-State Circuits Conference

978-1-6654-9016-0/23/$31.00 ©2023 |EEE

ISSCC 2023 / February 22, 2023 / 2:00 PM

Boolean Satisfiability (SAT) Problem Applications | k-SAT problem |
Defense Electronic Design l
. ?nl\d—a\frcraﬂ mission p\anm‘ng ‘Automation [1] - -
(:fe' f Ejigjg‘ﬁc ?t;agx:ﬁ + Fautt diagnosis & logic | Problem variables (memory write) |
- debugging T T
Biology - Combinational equivalence | Software SAT Continuous Time ~ This work:
+ Gene prediction in vaccine checking Salver[3] Analog Solver[5] Snap-SAT
development - Automatic test pattern
(Ref P-C K_ Lin, GENSIFS, 2010) eneration
« Pedigree consistency checking |
(Ref M. Panagiotis, TAGAS, 2007) Read
Software [1 .
Data Center variables
+ Network routing/scheduling « Artificial inteligence planning CPU (e, S SRAM -
(Ref. F. Tomds, Algorithmica, 1094) | = Seftware model checking P
@ 11 Massively
SAT Basics Concept 3 parallel
< Analog in-memor
Objective: Find values of n Boolean variables (x; € {0,1}") s arithmetic com utiny
that satisfy all clauses in a conjunctive normal form Huge data § circuit puting
(CNF) Fx) [5] Clause movement %)
Example: F(x) = (X, OR X; OR x5) AND (x4 OR X3 OR Xg) l
lemory (CIM) Motivations for SAT verification In-mfer;lory
Motivation 1: Speed otivation 2 Why CIM for SAT | | Memory cireuit e
« Solution time T exponentiall Interactions with memory & access l P
« Data movement: Most hard optimization problems
+ Computational latency £ ¢an be mapped to 3-SAT SRAM
. SAT algorithms are Cll-friendly write -
02 0%) Minimum
S 102 210%4 This work (ie., Qcpm) data transf
£ & qgu] analysis ata transfer
10 Em" 2 - Conventional Hardware
2 _ . $10% ause =4.3'n
I T=1.3070[4] g (g Slase = oo n| CPU Solver Accelerator
@
0 20 0 100 200 i< fiabili "
Number of Variables (i Nurmber of Variables (n) | Satisfiability solution |

Figure 29.2.1: Boolean satisfiability (SAT) problem applications and basic concepts

Design Highlights SAT Problem Mapping Example

2. Reliability: Accurate all-
digital computations in memory

Incorrect Solutions

1: Speed: Single-cycle
massive in-memory parallelism

Literal Avariable or its negation (x; or X);
k-SAT: k= Number of literals in one clause;

C,» Clause m;
x;- Variable;

Others

\
cPU |\,

\

High Performance Bus | | M

Control Logic
Clause 2.C,
Clause 3, C,
| % ‘
[Clause M-1, G |

Sense Amplifier/Driver

@ “Error Rate =
£80 | O Software SAT Solver . Total Solutions -
260 | g MimiSa 3D £ | aDigital CIM: This work Fx)=Cy ANDCy AND C ... AND Cy.
£ o This Work ch’ , | charge-based analog cim Clause 0(Cy) Clause 1(Cy)
5 £]
520 ; = (xo ORX; ORxs) ANDi(x; ORX; ORX;)
o0 100 200 o 50 100 - . SRAM Column
Number of Variables Temperature (“C) Fres:n':eAM Array Mapping 6T Bitcell | 2
4. Reconfiqurability: Reuse 3: Scalability: Flexible for _P {1, X; OF%; in clause m pw =0 % =
existing SRAM array with Large-Scale Hard Problems mi = - Din=x: |5 |is
minimal modifications for SAT Scalablew/ i) 0. 10 % orX'in clause m 10770 E
« Scalablew’ row size Data: P,=1 |Qi8
SRA Aty 4o « Kparameter in k-SAT X, xinclause m % Z
storage * Variable size (n) D. =< % Xinclausem D11 =X 3
« Scalablew/ column size (BL) mi Don't Care P,,=0 |Q 'g
d ; S
SAT soher + Clause size (M) no x or'% in clause m - % z
+ Flexible with centrol logic Diz=x &
Peripheral + SAT algorithms J— . = &8
g P,3;=1:%; is presentin C, Pia=1 9 o
5. No intra-memory_data movement Dya=X%n Slie
D,3=%; datais % 137% £
6. No data converter is needed for SAT computations 13 = X3 datais X3 &
Ps=1 10 b=
Design Overvie P,5=0, x; orX; is absent Dy.=%7 |2 3
System-on-Chip This Work in C, P.s=0 |g]i5
- — - : ZiZ
5 D, 5= Don't Care, by default, D..=x |2
Cache — it is set to itself (xg) .

A
Evaluate x; in
the clause

CL<1>: Clause computation result CL<1>)
1: Clause is unsatisfied (C=False)

0: Clause is satisfied (C,=True)

OR operation along CL

along with Snap-SAT design motivations and high-level comparisons with prior Figure 29.2.2: Snap-SAT design highlights, design overview, and mapping between
the conjunctive normal form (CNF) F(x) and 6T SRAM column.

software and analog SAT solver.

Snap-SAT Overall Architecture Clause Computation Circuit Timing diagram

Precharge compute line (CL)

g S

5 fee Precharge O) BL_PC, EI E b <

8 T 1 —— e dq . =

® WL =0z LS | h CP= compute
-

8 Poo |a Puio (g *CP<n-1:0>

o S| cpeo= Of f_—jwL<on-2>

[% WLt % j Clause10 _is satisfied - CL<9> =0
I+

5 Doo D10 ! ¥~ CL<9> *~— Other CLs

< (For xp) i

ey H

2 &ala A= é A d 5 Counter_EN

£ < R

< R i SRR / Totalclause =M,

£ m o‘perat(\:op m O O = t 3 Ifonly 1 clause is satisfied,

B along | | —{Wl<2n-1>] { unSAT=M-1

o

WL=2n-2=

= Pona 6T |q XX <L M- <= unSAT

5 - 2 lopant {Putn % L el From control logic

° 3 W21z =

£ [Dont . D s o1 .| Randomly selectone of the

3 (Forxa.1) | Dy CL<M-1»| .-| unsatisfied clauses (from ctrl.)

S| T 11 I — ¢

= —'lSAE Read Driver | SAE [BLB<M-1> BE S “| Randomly selecta variable in

[Read g;‘j\'e' I selected clause (from ctrl.)

gl T 11 - :

(g_ —>|WSEL Write Driver | BL_PC s

& I T I [X, is selected

c

%] Local Update WL<1> - WL<1>0ON

K 2 SAE=Sense Amplfier Enable __.

o _'lFL'P Local Update |, Baseline SRAM | Extra Circuit SAE-E"QE e

K] CL<0-] CLM-1>] Array Circuit Added

s o 67 Bitcells NAND JVSEL YWS Select Write~

£ ourter.| Precharge Local Update WSEL rite-

8 Paralle| Counter RWDriver | Parallel Counter Tum ONto 1 e
[+ Total No. of unsatisfied clauses (UNSAT) SRAM Control CIM Control FLIP flip the variable

Figure 29.2.3: Overall Snap-SAT architecture with

local update operations when only one clause is satisfied.

circuit diagram of clause

Algorithm: 'Schoning’s Algorithm (SC)

Ref: U. Schoning, FOCS, 1099

Randomly pick an
i clause (C,)

Method for Finding Random Unsatisfied Clause C,

Get counter

R = Random number
between 0 and unSAT-1

Save R
: Jes RI" unsatisfied
Stop unsafisfied clause reached?
clause index

k3
Flip the literal I

]
Algorithm: 2WalkSAT Algorithm (WS)

i=i+1

Clause-to-VariableRatio (CTV) [2
Hard Problem (Long average solution time)

. satisfiable with) Unsatisfiable with
2Ref B. Selman, Cliques, coloring. and satisfiability 26, 1993 3.SAT high probability 2‘ :‘! ‘\fdls ‘T' 6‘ 7‘ high probabilty
i " TV
Pick a random Foreach Flip a variable and get No T 1 T T T T e
unsatisiied Iz, the number of satisfied Satisfiable with | N Unsatisfiable with
clause C, clauses that “break*" 8| o9™*=99 11
4-SAT hign probabilty | A | £ high probabilty
*Break Y ¥ N T T \‘ T T T T CcTvV
True > False == =
Satisfiable withy 5 %, 1 99 o4 Unsatisfiabie witn

IF-'I
w/ probability p, pick Yes
random variable in C,

*Best var.
break
minimum
clauses w/ probability 1-p, pick
the bestT variable in C,
Analyzed in
Relative Comparison CiM Solving CPU/XRM for
between Algorithms | Adoption | Efficiency | ‘o aricon
o E |Local Search (LS)| Easy | Average Yes
(=
© 5 Simulated
m 3 Annealing (SA) Easy | Average Yes
E E | Schening’s (SC) Easy | Average Yes
é é WalkSAT (WS) Easy Fast Yes
E | MinisAT[3] Hard | Fast Yes

5-SAT nigh probabilty ™= ‘ it %

Number of Unsatisfied

(unSAT) Clauses

i

| hign probabilty
v

CPU (Xeon W-2195 @4 2GHz)
12 —a—This work @80MHz
8
4 |cTv=43
(Hard 3-SAT)
Algorithm: WS
0 20 Variables
10n 100n 1 10 100p m
Time (s)

Figure 29.2.4: Schoning’s (SC) and WalkSAT (WS) algorithm flowchart; well-known
computation column, and an example timing diagram from precharge, compute, to SAT algorithms relative comparison; clause-to-variable ratio for 3-SAT to 5-SAT; and
computation evolution graph of Snap-SAT and Xeon W-2195 CPU.

This Work | Load benchmark problem to SRAM array (Scanchain, Start computation }—b Iterative search Solution found
‘ 2 1 gy o ‘ Somton Tme ! : ‘ This work Isscc'22 cicc22 Nature15
CPUIARM [_Benchmarkloading and parameters/variable setup_—] Start computation ——| Software computation_|—+{ Solution found | Snap-SAT Flex-Spin [4] [51 [6]
For all graphs: 1K Problems (1K Iterations/Prob.)) Energy-Efficient Processor: Technology 65nm CMOS 65nm CMOS 65nm CMOS 180nm CMOS
1SO-Voltage Comparisons at 1V Vy High Performance Processor: ARM on LG-G710U Device -
CPU Xeon W-2195 @4.2GHz Snapdragon (SDM) 845 @2.8GHz Testchip Prototype Yes Yes Yes Yes
100 10 -
™ [GCPU @4 26z ©GPU- Schoning's (SC) gﬁsm svcg‘]”‘ﬂg s Compute Type Digital Digital Analog Digital & Analog
=ARM @2.8GHz AGPU: WalkSAT (WS) 1 "
— qom | This work @80MHz @ = OCPU: MiniSAT = :?ﬁgwhgrlpsvg : . Column-wise In-memory Dedlcatt_’:&d Continuous-Time .
z Py 5 100m | =TS veork: WS o = 100m ° o Computation Mechanism OR Operation Processing Dynamic Oscillator Pulse
£ o 14Xl E o o E Element
E] P
c om| - 25X o [5" ¢ " sl 5| ¢ 3 s In-Memory Computation Yes Yes No No
5 g 2 12X,
2 11 X § m 38X 5X‘. i 1m 143)(J'. Frequent SRAM Access Not Required Not Required Required Required
3
100y o Measured 1008 151X Measured; 100 1131)(Measured; Hardness of Problem Tested Hard Easy Hard Hard
Algarithm: WS; _SAT: H u -SAT. Maxi Number of 128 o
20 Variables; 1ou L8 60 Variables; 10 [60 Variables, aximum Number o . 8 50 (Test)
0 3SAT 7SAT BSAT P 25 3e a5 "1.5 25 35 W5 Variables (Var) (Scalable w/ row size) 200
(OTV=43) (CTV=10) (CTV=21.2) cwv cwv Maximum Number of 1024 s 22 218 (Test)
10 Hard 3-SAT Problem CTV=4.3 4 [Easy T Haras-saTProblem cTv=a3 Clauses (Scalable w/ column size 126009
° o o om0 o o OARM: SC Accuracy 100% (Not reported) 93.5% (Not reported)
100m A a
A A 1m |ctv=1| & b3
s = AARILWS Average | GTv=4.3 (Hard) 0.71ms (Not reported) 0.9ms. 7.5ms.
Z 1m :gsg \fvcs 7%10° Z1o0n 1.3x10* —~ ARM: MiniSAT Solution (Variables=60) (Variables=10) | (Variables=50)
s : 5 Time 0.41 5 0.15
H = CPU: MiniSAT H - 41us s 15us
& 100 |aThs work ws v & o a O |oThiswork ws (3-sAT) | CTV=1(Easy) (Variables=8) (Variables=8) | (Variables=10) | (ot reporied)
6.5X »1SSCC22
100n a o Measured; 10n CTV=4.3 (Hard 1098 (Not reported) 321600 (Not reported)
Energy = 'Power * Solution Time g , . Measured;| FlexSpin [4] Energy (nJ) ()
1n LSinglecore CPU operations for all algorithms| 400y, Energy = 'Power ” Soltion Time (Vpo=1V) CTV=1 (Easy) 063 41 135 (Nt reported)
10 20 5 60 70 0 10 20 30 40 50 60 70

30
Number of Variables
1CPU/ARM/Testchip Power = Power (Running SAT) — Power (IDLE Condition)

Figure 29.2.5: Measured solution time using 1K 3-SAT to 5-SAT hard problems with
different algorithms and for energy at V,,=1V (@80MHz) with high-performance CPU Figure 29.2.6: Snap-SAT performance comparison with prior analog and digital SAT

Number of Variables

processor and energy-efficient ARM processor comparisons.

Energy = Measured Average Solution Time * Measured Average Computation Power

2Reported without source of data (simulation or measurement)

*Reported peak power = 27mW (1.1V)\; Energy number is scaled to 1V

solvers using CMOS processes.

DIGEST OF TECHNICAL PAPERS e 421

ISSCC 2023 PAPER CONTINUATIONS

Design Details Experiment Setup Oscilloscope
Technology 65nm CMOS
Supply Voltage 0.7V~1.2V
Memory Capacity 131Kb
Chip Area 0.93mm?
Frequency 80MHz
k-SAT Problem Parameters AN LI LI I
k parameter (k-SAT) 2~128 oo |
Maximum Variable 128
Size (n) (Scalable w/ row size)
Maximum Clause
Size (M) (Scalable w/ column size)
Measurement Setup
Problem/TestCase | 1,000
Iterations/Problem | 1,000

Measurement Results

Algorithm: WalkSAT; k-SAT = 3-SAT S —— Power Breakdown
60 Variables; CTV = 4.3 (Hard Problem) - (Room Temp; 1V V)
Solution Time 713us Digital Rarallel CSOél:r:iLain Digtal .
2Energy @Vpp=1V 1098 nJ Contlo\ller Controller Eearchain
3Solvability 72% 4 17% 309
“Accuracy 100% (All-digital design)

7End to end process time from start to solution found
including scanchain infout duration

2Energy = Measured Average Solution Time * Measured
Average Computation Power

3Number of SAT problem that can be solved in a given time Peripheral
“Correctness of the solved SAT problem

Figure 29.2.7: Test-chip summary, experiment setup, die micrograph and macro
area/power breakdown.

Parallel
Counter

» 2023 IEEE International Solid-State Circuits Conference

978-1-6654-9016-0/23/$31.00 ©2023 |EEE

