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Boolean satisfiability (SAT) is a non-deterministic polynomial time (NP)-complete 
problem with many practical and industrial data-intensive applications [1]. Examples 
(Fig. 29.2.1) include anti-aircraft mission planning in defense, gene prediction in vaccine 
development, network routing in the data center, automatic test pattern generation in 
electronic design automation (EDA), and model checking in software. The objective of a 
SAT solver is to identify the values of n Boolean variables xi that satisfy all clauses in a 
conjunctive normal form (CNF) [5]. However, the time required to determine the 
satisfiability of a SAT problem increases exponentially with respect to the variable size, 
which is energy and resource-consuming. A prior software SAT solver [3] requires 
frequent data transfer and memory access due to the CPU computations, solution-search, 
and repetitive variable updates, increasing the computational latency and energy cost. 
Another approach to designing a SAT solver is to leverage a continuous-time dynamical 
system using analog circuitry [5]. However, such dedicated analog arithmetic 
components incur a large area and energy overhead as they cannot be reused during 
non-SAT applications. Moreover, the analog SAT computations necessitate frequent 
SRAM read/write access which increase hardware implementation costs. Therefore, there 
is a critical need for advancing energy and area-efficient hardware SAT solver designs.  
 
Since the SAT variables are initially stored in the memory arrays, a compute-in-memory 
(CIM) approach is naturally suitable for solving SAT problems as it can utilize local write-
backs in memory arrays for variable updates. In contrast to the previous SAT solvers, 
we present an all-digital CIM SAT solver that accelerates iterative computations utilizing 
the existing static random-access memory (SRAM) arrays to significantly minimize off-
chip memory accesses and the corresponding energy costs. The key attributes of the 
Snap-SAT approach are: 1) massively parallel in-memory local computations in a one-
shot manner and support for local variable update to minimize data movement; 2) reliable 
computations under process and temperature variations, which can be seamlessly scaled 
to advanced CMOS technologies due to the all-digital design approach; 3) SRAM bitcells 
that can be reused for regular mode operation in non-SAT applications to reduce the 
area overhead and hardware implementation complexity; 4) scalability to large-scale hard 
SAT problems with different variable/clause sizes and user-defined solver algorithms; 5) 
no data converter circuit and intra-data movement are needed for the SAT computations; 
6) 65nm CMOS prototype measurements demonstrating 7.5-to-151× (12-to-181×) 
speedup and 7*104× (1.3*104×) energy improvement over a software SAT solver using 
a Xeon W-2195 CPU (Snapdragon 845 ARM) processor. 
 
Figure 29.2.2 shows the mapping between the SRAM array and the k-SAT CNF F(x). An 
M clause CNF is expressed as F(x)=∧Cm. Each clause Cm is a disjunction (OR) between 
k literals (e.g., C0=x0 OR x1_bar OR x5) and a literal is a Boolean variable xi or its negation 
xi_bar. Each clause is mapped to a column, and the configurations of each variable are 
stored in two 6T SRAM bitcells. The first bitcell (Pm,i) stores the information regarding 
whether xi or xi_bar is present in the clause m. The second bitcell (Dm,i) holds the literal 
data associated with variable i inside clause m, which could be either xi or xi_bar (e.g., 
D=xi means variable i in the clause is in true form and D=xi_bar means variable i is in its 
complemented form). If the variable is absent in clause m, the literal data Dm,i is set to 
the variable itself (xi) by default. Consequently, with this mapping, a variable update can 
be achieved locally by flipping the entire data row, as each data row represents a single 
variable. An example is illustrated in Fig. 29.2.2, where C1=x1 OR x3_bar OR x4_bar. In 
this case, P1,3 is 1, and D1,3 is x3_bar. On the other hand, for variable x5, P1,5 is 0 and D1,5 
is a Don’t Care condition because neither x5 nor x5_bar is in clause 1. Additionally, each 
of the two 6T SRAM bitcells is paired with a 3-Transistor (3T) NAND gate. The output of 
a NAND column (CL) is the result of OR operations in clause Cm, where CL=1 indicates 
that Cm is False (unsatisfied) and CL=0 interprets that Cm is True (satisfied).  
 
Figure 29.2.3 shows the circuit details of the Snap-SAT design. The SRAM controller, 
6T SRAM bitcells, precharge unit, and read/write driver are the same as the baseline 
SRAM array design. In addition to the baseline array circuits, NAND gates, local update, 
parallel counter, and a Snap-SAT controller are added to the memory array to support 
the SAT computations. Pm,i and Dm,i are stored in the 6T SRAM bitcells, and the storage 
nodes of the two bitcells are connected to two transistor gates in the NAND unit. The 
middle input of the NAND is connected to the compute control signal (CP), which 
enables/disables the SAT computation. The input order (P, CP, D) is designed to ensure 
that the control signal with the highest priority (Pm,i) controls the first transistor gate to 
prevent discharge current from the variables that are not present in the clause. In the 

computation mode, CP<n-1:0> are asserted, and all the clause computations are achieved 
in parallel in a single cycle on the compute line (CL<M-1:0>), shared along the column. 
This demonstrates the massive parallel computation capability of the Snap-SAT design 
directly on the memory bitcells. Fig. 29.2.3 illustrates a computation flow example for a 
3-SAT problem. Initially, CL is precharged to VDD by turning on the CL_PC signal. The 
compute signals (CP<n-1:0>) enable the NAND gates during the clause computation. 
After CPs are ON, CL<9> is discharged to zero, assuming only Clause 10 is satisfied after 
the first round of computation. Next, after the results appear on the CLs, the counter-
enable signal (Counter_EN) in the controller is asserted to latch the computation results 
on CLs and to start the parallel counter. Because only 1 clause is fulfilled, the counter 
output (unSAT) is M-1, where M is the total number of clauses. After receiving the 
counter result, the controller randomly selects one of the variables in a random unfulfilled 
clause, and the random selection is achieved using a linear feedback shift register. Note 
that the variable and clause selection steps vary according to different algorithms. After 
the variable is selected, a local write-after-read operation is performed, and the data from 
the read driver is inverted to flip the selected variable (e.g., x0), and written back using 
the local write driver, thus eliminating the data movement, compared with a conventional 
SAT solver [3].  
 
Another critical aspect is the flexibility to reconfigure various algorithms. As shown in 
Fig. 29.2.4, MiniSAT (MS) [3] is a better-known complete algorithm for software SAT 
solvers, but from a hardware perspective, WalkSAT (WS) and Schoning’s (SC) algorithms 
are more compatible with the CIM approach because of their iterative search nature. 
Hence, they are employed as the primary Snap-SAT algorithms. For benchmarking, 
random k-SAT formulas are generated at a fixed clause-to-variable ratio (CTV) since the 
CTV ratio determines the hardness of a SAT problem. The CTV ratio is set to 4.3 for a  
3-SAT problem, targeting a hard problem regime. For an n-variable problem, there are 
2kC(n,k) unique clauses that can appear in a CNF. M clauses are sampled uniformly by 
randomly choosing k variables out of n without repetition and converting variables to 
literals by either negating them or leaving them un-negated with equal probability. The 
computation evolution using WS in the Snap-SAT design shows a 10.5× speedup over 
the Xeon W-2195 CPU software solver  on a hard 3-SAT problem. 
 
Solution time and energy consumption of the Snap-SAT design are evaluated in Fig. 
29.2.5, where the flowchart shows that the solution time is quantified as the time interval 
from the start of the computation until all clauses are satisfied, while the benchmark 
loading and parameter setup phases are excluded for both test-chip and software 
processors. Using WalkSAT, this work shows a 12× (7.5×) speedup compared to the 
solution time of the ARM (CPU) processor using the state-of-the-art algorithm, MiniSAT. 
Furthermore, compared to the ARM (CPU) solver, the design reduces the energy 
consumption by 1.3*104× (7*104×), showing promising energy and speed improvements 
over the software-based approaches using well-known algorithms. A detailed design 
comparison of prior SAT solvers in CMOS processes [4-6] is presented in Fig. 29.2.6. 
The test-chip summary, experiment setup, die micrograph, and area/power breakdown 
are shown in Fig. 29.2.7. In summary, the Snap-SAT design achieves at least an order 
of magnitude energy/speed improvement over the software approaches, and has been 
extensively tested on different hard k-SAT problems with different variable sizes, clause 
sizes, and CTV ratios. This demonstrates a promising, fast, reliable, reconfigurable, and 
scalable compute-in-memory design for solving and accelerating large-scale hard SAT 
problems, suggesting its potential for solving time-critical SAT problems in real-life 
applications (e.g., defense, vaccine development, etc.).  
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Figure 29.2.1: Boolean satisfiability (SAT) problem applications and basic concepts 
along with Snap-SAT design motivations and high-level comparisons with prior 
software and analog SAT solver.

Figure 29.2.2: Snap-SAT design highlights, design overview, and mapping between 
the conjunctive normal form (CNF) F(x) and 6T SRAM column.

Figure 29.2.3: Overall Snap-SAT architecture with circuit diagram of clause 
computation column, and an example timing diagram from precharge, compute, to 
local update operations when only one clause is satisfied.

Figure 29.2.4: Schoning′s (SC) and WalkSAT (WS) algorithm flowchart; well-known 
SAT algorithms relative comparison; clause-to-variable ratio for 3-SAT to 5-SAT; and 
computation evolution graph of Snap-SAT and Xeon W-2195 CPU.

Figure 29.2.5: Measured solution time using 1K 3-SAT to 5-SAT hard problems with 
different algorithms and for energy at VDD=1V (@80MHz) with high-performance CPU 
processor and energy-efficient ARM processor comparisons.

Figure 29.2.6: Snap-SAT performance comparison with prior analog and digital SAT 
solvers using CMOS processes.
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Figure 29.2.7: Test-chip summary, experiment setup, die micrograph and macro 
area/power breakdown.


