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1 Introduction

Recycling is typically considered a good thing. It turns garbage into an asset, thereby
reducing the need for both raw material and waste disposal. Yet, recycling plutonium
from previously used nuclear fuel to make fresh fuel for nuclear energy has often proved
controversial. This is because plutonium has three big downsides compared to the
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uranium traditionally used to make nuclear fuel: it is much more likely to cause cancer if
inhaled, may be used to make nuclear weapons, and (largely due to the first two
characteristics) is very expensive to purify and fabricate into fuel. Despite these
challenges, seven countries — Belgium, France, Germany, Japan, the Netherlands,
Switzerland and the UK — have engaged in the commercial recycling of plutonium for
energy in traditional, thermal nuclear power plants, which rely mainly on thermal rather
than fast neutrons to achieve fission. They have done so by fabricating and/or using
Mixed-Oxide (MOX) fuel, which combines plutonium with uranium, to substitute for
traditional Low-Enriched Uranium (LEU) fuel. In addition, several countries — including
China, India, Japan, Russia, and South Korea — are exploring new domestic facilities to
recycle plutonium for energy using thermal or fast reactors. In light of the potential
consequences — for international security, public health, and the financial viability of
nuclear energy — such decisions should be informed by a comprehensive analysis of the
historical global experience of thermal MOX fuel. Regrettably, until now, no such
resource had existed, although there have been succinct comparative overviews
(Hogselius, 2009; Haas and Hamilton, 2007), critiques of MOX (Takagi et al., 1997;
Barnaby, 1999), and informative articles and papers on individual national programs,
often published by the IAEA, which informed our research.

This article summarises the first comprehensive study of all seven countries that have
engaged in the commercial recycling of plutonium for energy in thermal reactors,
drawing on field research in each (Kuperman, 2018a). Three of these countries have both
produced and used such MOX fuel commercially: Belgium, France and Germany. Three
have used but not produced it commercially: Japan, the Netherlands and Switzerland.
One country has produced but not used it commercially: the UK.

A major finding of the research is that the thermal MOX industry is in rapid decline.
As of 2018, five of the seven countries had already ended, or decided to phase out, their
commercial MOX activities (see Table 1). Belgium halted both MOX production and use
in 2006. Switzerland ended its MOX use in 2007. The UK terminated commercial MOX
production in 2011. Germany halted MOX production in 1991, and inserted its final
MOX fuel assembly in 2017, so irradiation should end in 2020. The Netherlands plans to
load its last MOX fuel assembly in 2026 and remove it four years later, as its sole nuclear
power reactor will be closing. Except in the last case, commercial MOX activities were
reduced prior to any decision to phase out nuclear power. This track-record leaves only
two countries that still plan to continue commercial MOX for thermal reactors — France
and Japan — and their programs too face financial and political challenges (Kuperman,
2018b).

To assess the causes of the overall decline, and the variation in national outcomes,
our research project examined five aspects of the thermal MOX experience in each
country: economics, security, safety/environment, performance, and public acceptance.
Some information on these questions had previously been available in public literature
but typically was dated and incomplete. In many cases, our researchers obtained key data
only by conducting interviews with current and retired officials from government,
utilities, industry, and Non-Governmental Organisations (NGOs) — who provided oral
and documentary evidence. We also solicited additional expert feedback on our draft
findings.
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Table 1 Decline of commercial MOX for thermal reactors
Country |Produce| Use
MOX? | MOX?
Belgium X X
France v v
Germany X N Key:
Japan v X = Ended
Netherlands N N = Phasing out
Switzerland X = Ongoing
UK X
Note: This table covers only past and present activities. The explanations for each

country are in the text. Potential initiation of future activities by these or other
countries is speculative and not reported in this table.

2 Misperceived necessity

The idea of recycling plutonium for energy took hold in the 1960s based on two
assumptions that later proved erroneous: global reserves of uranium for fuel were scarce,
and the demand for nuclear energy would grow exponentially. The perceived solution
was to increase the energy that uranium could produce by transforming its main isotope
(U-238) — which cannot sustain a chain reaction in thermal reactors because it is not
fissile — into an energy-producing fissile isotope of plutonium (Pu-239). Since over 99%
of uranium is the non-fissile isotope U-238, such transformation could greatly increase
the energy available from global uranium supplies. When traditional LEU fuel is
irradiated in a nuclear power reactor, a small amount of U-238 is transformed into
plutonium, which later can be separated out by a reprocessing plant and used to make
fresh fuel.

To transform a sufficient amount of U-238 into plutonium would require
development of Fast Breeder Reactors (FBRs), which rely mainly on unmoderated fast
(high-energy) neutrons, in contrast to traditional Light-Water Reactors (LWRs) that rely
mainly on moderated thermal (low-energy) neutrons. In the 1970s, nuclear utilities
started commercially reprocessing their used (“spent”) uranium fuel to separate out
plutonium to make fuel for FBRs. However, the commercialisation of FBRs was delayed,
so the utilities instead started recycling a fraction of their plutonium in MOX fuel for
LWRs, while accumulating the rest in large stockpiles, mainly in France, the UK, Japan
and Russia (Cochran et al., 2010a).

By this century, most of the world’s FBR development programs had failed. Nuclear
utilities realised that if they reprocessed their spent fuel, the only way to recycle
plutonium commercially would be in MOX fuel for LWRs, which most of them chose
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not to do. Of the more than 30 countries that have produced commercial nuclear power,
utilities in only six have used MOX fuel commercially in thermal reactors. In most of the
other countries, utilities decided instead to pursue disposal of their spent fuel as waste,
especially after it became clear in the 1970s that global uranium resources were much
larger, and the demand for nuclear energy much smaller, than previously anticipated.
Starting in 1976, the USA also discouraged worldwide reprocessing of spent fuel, due to
concerns that the separation of plutonium would increase risks of nuclear proliferation
and nuclear terrorism (Walker, 2001). Nevertheless, the seven countries examined in this
article initiated commercialisation of thermal MOX fuel production and/or use.

The subsequent decline of MOX for thermal reactors has not been due mainly to
problems with fuel performance. Initially, MOX did face several technical challenges in
thermal reactors. Fabricators had trouble uniformly mixing the oxides, resulting in
clumps of plutonium in fuel pellets, which during irradiation led to hot spots, higher
fission gas release, cladding failures, and radioactive contamination of the reactor’s water
that serves as both coolant and moderator. In addition, plutonium has greater tendency
both to absorb thermal neutrons and to be fissioned by them. This resulted in a harder
neutron spectrum that reduced the effectiveness of “poisons” — used to control excess
fission — and subjected reactor equipment to higher amounts of destructive fast neutrons.
A related problem was the emergence of neutron flux gradients between adjacent MOX
and LEU assemblies, which complicated core management and necessitated using several
different percentages of plutonium in the MOX fuel of a single core. MOX fuel also had
lower burnup than traditional LEU fuel, which necessitated two different refuelling
cycles in the same reactor core. Another problem was that fission of plutonium,
compared to uranium, produces fewer delayed neutrons, thereby requiring modification
of reactor-control mechanisms (Takagi et al., 1997; Barnaby, 1999). Eventually,
however, these underlying technical problems were overcome to the extent that MOX
today performs fairly similarly to LEU. Despite such technical success, the thermal MOX
industry has declined rapidly due to plutonium’s three risks — radiotoxicity, proliferation,
and economics — which have inhibited both the manufacture and use of such fuel.

3 Manufacturing thermal MOX fuel

As detailed below, five of the six fabrication facilities for thermal MOX fuel that ever
operated commercially have closed prematurely, and most of them underperformed while
they were open. A seventh facility (in Germany) was cancelled after construction, and an
eighth (in Japan) is stalled at the early stages of construction. The main underlying cause
of this poor track-record is that plutonium is far more hazardous than uranium, leading to
high costs and public opposition. Plutonium mostly comprises isotopes that are relatively
long-lived but emit significant levels of alpha radiation. One isotope of plutonium, Pu-
241, is not an alpha emitter and decays relatively quickly — but into americium-241,
which is an especially strong alpha emitter. Such alpha radiation is not a major problem
outside the body because it can be blocked by many materials including skin. However,
if inhaled and lodged in the lungs, plutonium and americium isotopes persistently
bombard the surrounding tissue with alpha particles that induce mutations, so that at a
sufficient dose they are almost guaranteed to cause cancer, as demonstrated in laboratory
studies (Oghiso, et al., 1998).
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This danger arises especially during MOX fuel production, when plutonium is in the
form of an oxide that may be inhaled. To reduce the health risk to employees and
surrounding communities, MOX plants employ costly hardware — including air purifiers,
glove boxes, and automated equipment — and costly procedures such as lengthy
shutdowns to clean up spills. As detailed below, these substantially raise the production
costs for MOX fuel compared to LEU fuel — by a factor of three or more — even
excluding the substantial expense of obtaining plutonium in the first place. Attempting to
reduce such fabrication costs may backfire by increasing accidents, outages, scandals,
and public protest — thereby reducing the output, which raises the per-unit cost.

The biggest failure was the UK’s British Nuclear Fuel Ltd (BNFL) Sellafield MOX
Plant (SMP), which had a planned output of 120 tonnes of heavy metal per year
(MTHM/yr). In practice, during its operation from 2001 to 2011, the facility produced a
total of only 14 MTHM, an average of barely one MTHM/year, or about 1% of its
intended output. The two principal causes of this profound failure arose from the safety
risk of plutonium: unproven automated techniques to reduce worker exposure, and an
unreasonably small facility footprint to reduce the costs of worker-protection measures.
The consequences were failed equipment, expensive repairs, and prolonged suspensions
of production. Although SMP’s troubles could be attributed to experimental technologies
and poor design, both of those choices arose from concerns over plutonium’s health
threat and the costs of mitigating it (Mann, 2018).

BNFL’s preceding and much smaller commercial plant, the MOX Demonstration
Facility, also ended in failure, although to a lesser extent. The plant’s capacity was eight
MTHM/yr. During operation from 1993 to 1999, it produced a total of 20 MTHM, for an
average of about three MTHM/yr or 40% of capacity. However, the plant closed
prematurely after revelations that workers had repeatedly falsified quality-control data,
which led to an international scandal culminating in $100 million in penalties and the
return of unirradiated MOX assemblies from Japan (Mann, 2018). It is uncertain why
BNFL failed persistently to monitor quality control at this plant, which had paid high
costs to address plutonium’s health risks.

Germany’s Alkem Hanau plant underperformed persistently and then closed
prematurely in 1991 due to a radiation accident. The facility’s potential output was
25 MTHM/yr, but from 1972 to 1991, its average annual production was eight MTHM,
or about 30% of capacity. This shortfall stemmed partly from complications of
plutonium’s radiotoxicity, including “repair work under difficult glove-box conditions”
and “plutonium contamination in the fabrication areas that required time-consuming
cleanup,” according to a senior facility official at the time. He reports that production
also was hindered by intrusive EURATOM safeguards inspections and domestic
controversy over transport security, both arising from plutonium’s proliferation concerns.
In 1991, a plant worker was contaminated by a glove-box accident, and public outrage
led to permanent closure of the facility. Related controversy also blocked the opening of
a nearly completed follow-on facility, Hanau 1, which was cancelled in 1995 (Kennedy,
2018).

Belgium’s PO plant, operated by Belgonucléaire in Dessel, closed prematurely due to
inefficiency, competition, and vanishing global demand for MOX. The plant had a
capacity to produce 32 MTHM/yr of MOX fuel rods, which were then combined into fuel
assemblies at a neighbouring facility owned by FBFC. From 1973 to 2006, the PO plant
produced approximately 600 tonnes of MOX rods, an average of nearly 18 MTHM/yr, or
55% of capacity. However, costs were extremely high, due mainly to efforts to address
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plutonium’s health threat (Bonello, 2018). Eventually, PO could not compete with
France’s more-efficient MELOX facility, especially as demand declined, so the Belgian
plant closed for economic reasons rooted in the safety hazards of plutonium and reduced
global use of MOX fuel. Meanwhile, a broken MOX rod at the adjacent FBFC facility in
the mid-1990s compelled the shutdown of that facility’s MOX and uranium operations,
followed by a costly decontamination and then the expensive construction of a new
annex exclusively for MOX assemblies (Bonello, 2018).

France has been more successful at production of thermal MOX, at two successive
facilities, but they too have faced economic and safety challenges. France’s commercial
production of MOX started in 1989, in Cadarache, at the ATPu plant, whose capacity
increased gradually from 20 to 40 MTHM/yr of MOX fuel rods that later were combined
into assemblies at plants in Belgium or France. In 1995, due to earthquake risk, French
safety authorities ordered that the plant cease operations “shortly after 2000,” and it did
so in 2003 (Burns, 2018). Concerns included that an earthquake could trigger a
plutonium fire, criticality accident, or other release of radioactivity.

The most successful thermal MOX production plant to date, and the only commercial
facility still operating, is France’s MELOX. The plant has a nominal capacity up to
250 MTHM/yr, but it has never been authorised above 195 MTHM/yr, and in practice it
has produced much less. From 2014 to 2017, MELOX produced on average under
125 MTHM/yr, or less than half its nominal capacity. Such depressed output stems
mainly from sharply decreased foreign demand (none from Germany since 2015, and
only about 10 MTHM/yr combined from the Netherlands and Japan in recent years),
while France’s domestic utility has not significantly increased its use of MOX fuel,
possibly due to high cost. In 2017, MELOX also reported some “technical production
difficulties” that may explain a further reduction in annual output to 110 MTHM
(Burns, 2018).

4 MOX fuel in thermal reactors

All six countries that have commercially used MOX fuel in thermal reactors discovered
that its price was many times that of traditional LEU fuel. The main cause was the
increased cost of fuel manufacturing, due especially to plutonium’s health threat but also
other factors, including small batch size, the challenge of uniformly blending two oxides,
and enhanced security for transport (Kuperman, 2018b). The greatest cost impact initially
was on the activities to fabricate fuel rods. According to an article by Belgian industry
officials who led such efforts, “For MOX fuel, the cost of this group of activities is
typically 15 to 25 times higher” than for LEU fuel (Vielvoye and Bairiot, 1991). These
activities account for the vast majority of fabrication costs of MOX fuel. By contrast, for
LEU fuel, such activities account for only about 20% of fabrication costs, which also
include hardware for rods and assemblies, conversion of UF4 to UO,, engineering and
economic provisions, and transports to and from the plant. (The fabrication costs do not
include the inputs of heavy metal, which are uranium and/or plutonium.)

Another substantial expense is obtaining the key MOX ingredient, plutonium, by
reprocessing spent LEU fuel, but the resulting impact on the cost of MOX fuel depends
on accounting procedures (IPFM, 2015). Reprocessing typically is counted as part of
waste management, so the resulting separated plutonium is viewed as a free good for the
subsequent production of fresh MOX fuel. Indeed, in the nuclear-industry marketplace,
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plutonium today actually has substantial negative value, so that owners must pay a high
price for someone else to take it (Kuperman, 2018c). Two factors explain this
phenomenon: first, there is virtually no market demand for MOX fuel due in part to its
high manufacturing cost; second, the alternative disposition pathway, disposal of
unirradiated plutonium as waste, is also expensive because of the material’s radiotoxicity
and security risk (U.S. Department of Energy, 2018). The other main input of MOX fuel
often is depleted uranium, which is abundant as a by-product of enriching uranium and so
has a low price. Thus, the nuclear industry considers the heavy-metal inputs of MOX fuel
to be essentially free, in contrast to those of LEU fuel — natural uranium and enrichment
— that have substantial cost. If the high expense of obtaining plutonium via reprocessing
is ignored in this manner, the price penalty is less egregious for MOX fuel than for MOX
fabrication.

Nevertheless, everywhere it has been used, MOX fuel has proved much more
expensive than LEU fuel, both in terms of production cost and purchase price. Japanese
utilities in recent years have paid at least nine times as much for imported MOX fuel as
equivalent LEU fuel, according to press reports (Energy Monitor Worldwide, 2015). If
Japan proceeds with its planned domestic plutonium fuel-cycle facilities, thermal MOX
fuel would cost even more, 12 times as much as LEU fuel, according to the Japan Atomic
Energy Commission (Atomic Energy Commission Bureau, 2011). In Belgium, a 1998
industry study found that MOX fuel cost at least five times as much to produce as LEU
fuel, even ignoring the expense of material inputs for MOX while including them for
LEU (Belgonucléaire, 1998). In Germany, the cost to produce MOX fuel was three to
five times that of LEU fuel, according to experts from government, industry, and civil
society (Kennedy, 2018). In the Netherlands, a 2010 utility licensing submission to
initiate commercial use of MOX fuel portrayed its fabrication cost as five times that of
LEU (EPZ, 2010). In the UK, the Department of Energy estimated in 1979 that
fabrication costs of thermal-reactor fuel were four times higher for MOX than for
uranium (Jones, 1984). In Switzerland, utilities historically paid about six times as much
(inflation-adjusted) for MOX fuel as the current price of LEU fuel (Kim and Kuperman,
2018). As a result, Swiss utilities contracted for their plutonium to be blended with
depleted rather than natural uranium, to minimise the amount of MOX fuel fabrication
that they would have to purchase (Bay and Stratton, 1998).

In France, despite economies of scale, MOX fuel costs four to five times as much to
fabricate as LEU fuel, according to industry and other interviewees, due in part to the
MELOX plant operating well below capacity (Burns, 2018). A French government
report, in 2000, indicated that the total cost of producing MOX fuel, including obtaining
plutonium via reprocessing, was 4.8 times that of LEU fuel (IPFM, 2015; Charpin et al.,
2000). This penalty may have increased in recent years, because throughput has declined
at both the reprocessing and MOX fabrication facilities, tending to increase the per-unit
production costs of separated plutonium and MOX fuel, but the current penalty would
also depend on various other input and production costs for LEU and MOX fuels.

MOX proponents downplay such extra expense as marginal to the total cost
of producing nuclear energy, which is dominated by construction of the power plant
(MIT, 2011). Prior to completing amortisation of such construction, the front-end
expense of LEU fuel is estimated to be only 5 to 10% of total electricity production costs.
When MOX fuel is introduced, it typically substitutes for LEU in about one-third of the
core. If the price of MOX fuel is five times that of LEU fuel, then introducing MOX
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increases front-end fuel expenses by 133% but total costs by only 7 to 13%. In addition,
such costs historically had been passed along by regulators to ratepayers, so that utilities
suffered little if at all.

However, the extra expense of MOX fuel becomes much more significant after
completing amortisation of power-plant construction, especially in light of deregulation
of modern electricity markets. When a plant is fully amortised, the expense of an LEU-
fuelled core may rise to about 30% of total electricity production costs. If MOX is then
substituted in one-third of the core and has a price five times that of LEU, the total cost
of producing energy rises dramatically — by 40%. In a deregulated market, consumers
have options and thus cannot be compelled to pay such an increase in the price of
electricity, so the power companies face reduced profits or even losses. The global
decline of recycling plutonium in thermal MOX has coincided with the full amortisation
of older power plants and the deregulation of electricity markets.

Some utilities that initiated MOX fuel, including in Switzerland, perceived little
alternative at the time but harboured concerns including cost, safety, operational
challenges, regulatory approval, and disposal of spent MOX that would emit much more
heat and radioactivity in the long run than spent LEU (Kim and Kuperman, 2018). When
these utilities opted for MOX in the 1970s, their governments typically lacked legal or
logistical provisions for interim storage of spent fuel, so reprocessing was viewed as the
only way to avoid the risk of premature shutdown of their reactors. After the plutonium
was separated by reprocessing, these utilities viewed its recycle in MOX as the only
feasible disposition pathway. Thus, some nuclear utilities felt compelled to initiate MOX
fuel despite their misgivings.

5 More controversial than nuclear energy

The decline of MOX is not merely an economic phenomenon, or ancillary to a broader
global retreat from nuclear power. Reusing spent fuel has repeatedly proved less popular
than traditional, once-through use of uranium fuel, due to plutonium’s safety and nuclear
weapons-related concerns. In Germany, anti-nuclear protests escalated in the 1990s,
when they started focusing on the environmental and proliferation risks of international
shipments for plutonium recycling — especially exports of spent fuel for reprocessing, and
imports of high-level waste. Popular outrage spurred a 2002 German law that prohibited
the export of spent fuel for reprocessing after 2005, while mandating a more gradual
phase-out of nuclear energy; this occurred well before Japan’s Fukushima accident
prompted Germany to expedite its nuclear phase-out (Winter, 2013). Ironically, the
recycling of plutonium, originally conceived as necessary to sustain nuclear power,
instead helped undermine it in Germany.

In Japan, too, plutonium recycling has proved more controversial than nuclear
energy, per se, for both domestic and international audiences due to health and security
concerns. In 1999, Japanese anti-nuclear NGOs successfully persuaded the government,
based on safety issues, to reject and return MOX fuel that had been imported for the
Takahama-4 reactor, yet they could not shutter the power plant at the time or prevent its
restart after the 2011 Fukushima disaster. In 2001, again mainly on safety grounds,
Japanese voters blocked the use of MOX fuel in the Kashiwazaki-Kariwa-3 reactor,
despite permitting the plant to continue operating with LEU fuel. Also in 2001, a
governor withdrew consent for MOX use at the Fukushima power plant due to safety
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concerns. These three popular revolts against plutonium recycling had the effect of
delaying by a decade the start of commercial MOX use in Japan, thereby exacerbating
the Japanese-owned plutonium stockpile now totalling about 47 tonnes (Acharya, 2018).
Neighbouring countries, including China, South Korea, and North Korea, have expressed
strong security concerns about this plutonium accumulation, which is sufficient for more
than 5000 nuclear weapons (Tajima, 2018; Min-Hyung, 2018). Thus, Japan’s plutonium
fuel program has sparked both domestic and international protest.

In other countries as well, recycling plutonium has proved more controversial than
traditional nuclear energy. In Switzerland, a 2003 referendum imposed a moratorium on
exports of spent fuel for reprocessing, effective in 2006, yet Swiss voters continued to
support operation of nuclear reactors — until Japan’s Fukushima disaster spurred a 2017
vote to phase out nuclear energy by around 2050 (Kim and Kuperman, 2018).
In Belgium, in the 1990s, NGOs focused their anti-nuclear energy campaigns on
plutonium’s proliferation, terrorism, and environmental risks. These efforts compelled
the Belgian government in 1993 to initiate a moratorium on new reprocessing contracts
and to start a reassessment of MOX fuel, culminating in 1998 with termination of the last
existing reprocessing contract. Belgium’s Vice-Prime Minister explained, in 1998, that
based on the “information we have concerning economic and ecological aspects, there is
no justification to use another time the reprocessing technology,” and he also cited
proliferation concerns (WISE-Paris, 1999; Bonello, 2018). This was five years before the
government, in 2003, decided to phase out nuclear power entirely with a target date of
2025.

Only in two countries, France and the Netherlands, has the commercial recycling of
plutonium in thermal reactors proceeded, so far without provoking decisive public
opposition. In France, a strong industry-government alliance has fended off Greenpeace
and Green Party efforts to highlight the environmental risks of reprocessing and the
security risks of plutonium transport (Guéret, 2017). In the Netherlands, the sole
remaining power reactor and the interim waste storage facility are both located in the
country’s southwest along the border with Belgium, which is the transport route to and
from the French reprocessing and MOX plants, so few Dutch residents are affected by
imports and exports for plutonium recycling. The Dutch nuclear utility also signed a
single contract for its entire 13 years of planned MOX use, which deprived domestic anti-
nuclear NGOs and politicians of the opportunity to mobilise public opposition to a
potential contract renewal, as had proved effective in other countries. Although the
universe of cases is small, the experiences of the Netherlands and France suggest that
plutonium recycling may be more likely to succeed politically if either limited in scope
or supported by powerful domestic interests.

6 Security risks

Physical security is a concern for fresh MOX fuel, because it contains plutonium that
could be used to make nuclear weapons by states or terrorists, according to US national
laboratories and other experts in weapons design (Jones, 2018; Goodwin, 2015; Mark,
2009). Although some security procedures at power plants are secret, our research
indicates that physical protection at reactors is not significantly bolstered when MOX
fuel is introduced. Utilities do, however, handle MOX fuel differently. They try to
minimise the storage time of fresh MOX by loading it into the reactor soon after delivery,
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unlike fresh LEU that may be kept as reserve for possible fuel-supply interruption. They
modify worker-safety procedures to address plutonium’s higher radioactivity. They
comply with international safeguards requirements for more frequent monitoring and
inspection of fresh MOX, compared to fresh or spent LEU, to address potential state-
level diversion. In addition, some operators say that, because fresh MOX fuel contains
plutonium, they guard it more rigorously than fresh LEU and in the same manner as
spent LEU fuel, which also contains plutonium (Kuperman, 2018¢).

However, such measures may not be adequate to address the threats from terrorists or
criminals (Mark et al., n.d.; Guéret, 2017). Fresh MOX poses a much greater sub-national
security risk than spent LEU because it lacks very high radioactivity that could deter theft
and processing to separate plutonium for use in nuclear weapons. Reactor operators and
government officials appear to believe that the large mass of a fresh MOX fuel assembly
(hundreds of kilograms), and its storage in a reactor pool or vault, are sufficient to
prevent theft. They do not appear to regard it as nuclear weapons-usable material. In the
event of a concerted terrorist attack, that could prove catastrophic.

Additional security is applied to ground transports of fresh MOX fuel, which often
traverse hundreds of miles. Such measures typically include an armoured shipping truck
and escort by a few national police vehicles in radio communication to a central
command. However, if attacked with the types of weapons that international terrorists
have used in the recent past — including shaped charges, armour-piercing ammunition,
and rocket-propelled grenades — such a shipment might be susceptible to breach and
theft. This vulnerability is exacerbated by nuclear transport vehicles using routine and
predictable routes, which include bottlenecks and stops that present ideal opportunities
for attack (Guéret, 2017). A single MOX fuel assembly for a pressurised water reactor
usually contains more than 30 kg of plutonium, sufficient for at least three nuclear
weapons. Each MOX shipment may include a dozen or more of these assemblies to
reload the reactor, and such transports occur weekly in France (Burns, 2018). Another
vulnerability, until the recent development of integrated fuel manufacturing facilities,
was the transport of MOX rods to other plants that combined them into fuel assemblies.

Even more concerning in France are shipments of separated plutonium oxide from
the reprocessing plant to the MOX fabrication facility — each containing up to 250 kg of
plutonium, sufficient for at least two-dozen nuclear weapons. Such shipments occur
weekly, each traveling over 600 miles (Burns, 2018). Security also has been called into
question at the French reprocessing and MOX plants, each containing tonnes of separated
plutonium, sufficient for hundreds or thousands of nuclear weapons. The managing
director of the French fuel-cycle firm, Orano, testified in 2018 that doubling the
company’s spending on security would add only about 0.2% to the French price of
electricity (Knoche, 2018). In light of the enormous potential consequences of terrorist
theft of weapons-usable plutonium, such an increased security investment could be
prudent.

Surprisingly, some non-US government and industry officials have claimed that
reactor-grade plutonium cannot be used to make nuclear weapons, decades after this
myth was disproved. Japan’s former ambassador to the UN Conference on Disarmament,
Ryukichi Imai, declared in 1993 that “reactor grade plutonium . . . is quite unfit to make a
bomb” (Nuclear Control Institute, n.d.). Belgian officials in recent years have expressed
similar sentiments (Bonello, 2018). In France, an October 2017 government report
claimed that, “Using plutonium in MOX fuel enables . . . significantly degrading the
isotopic composition of the remaining plutonium, so this technology is non-proliferating”
(Republic of France, 2017).
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Such claims appear to confuse LWRs — which rely on fission by thermal neutrons, so
that only certain isotopes of plutonium can sustain a critical chain-reaction — with nuclear
weapons, which rely on fast neutrons, so that all plutonium isotopes can sustain a super-
critical chain-reaction. Reactor-grade plutonium of any isotopic composition can be used
to make reliable nuclear weapons, as has been documented repeatedly, including by
US nuclear weapons laboratory officials (Jones, 2018; Goodwin, 2015; Mark, 2009). The
critical mass of such plutonium remains small; additional heat can be conducted away or
dealt with by delaying insertion of the pit or using a levitated core or heat-resistant
explosive for implosion; and pre-initiation can be addressed by faster assembly or
injection of tritium. Swiss interviewees, to their credit, implicitly acknowledged this risk
from reactor-grade plutonium by revealing that their government and military supported
the reprocessing of spent fuel in part to help establish a nuclear-weapons option (Kim
and Kuperman, 2018).

7 Lessons for East Asia and beyond

This article provides lessons for at least three groups of states. First are the two countries
planning to continue long-term commercial use of MOX fuel in thermal reactors: France
and Japan. Second are the two countries contemplating the start of large-scale MOX fuel
use in thermal reactors: China and the UK. Third are the countries — including India,
South Korea, Russia and China — pursuing the recycling of plutonium from spent fuel
using alternative technologies such as fast reactors and pyro-processing that may
nevertheless pose similar risks from plutonium’s radiotoxicity, weapons capability, and
resulting costs.

The first lesson is that reusing spent nuclear fuel for energy is very expensive due to
the high costs of addressing plutonium’s health and security threats at fuel-cycle
facilities. Second, the ostensible benefits of recycling plutonium — energy security and
waste management — are unlikely to compensate for such financial costs. This applies not
only to MOX in thermal reactors but also to alternative technologies, including fast
reactors, based on recent scholarly assessments (National Research Council, 1996; Krall
and Macfarlane, 2018). Third, the security measures applied to recycling of plutonium
may be inadequate in light of several concerns: the indisputable feasibility of making
nuclear weapons from reactor-grade plutonium, the declared objective of some terrorist
groups to acquire and use nuclear weapons, and the demonstrated ability of such groups
to stage sophisticated attacks as on September 11, 2001. Fourth, reusing spent fuel is
currently unnecessary for sustained and efficient production of nuclear energy, in light of
the world’s plentiful supplies of uranium and enrichment. Accordingly, there appears to
be little justification for incurring the substantial economic, security, and safety risks of
recycling plutonium. Fifth, countries that continue to pursue plutonium fuel, despite its
high cost and lack of obvious compensating benefits, may be suspected by other
countries of having ulterior motives, which could threaten international peace and
security (Tajima, 2018).

These lessons give rise to recommendations for each of the three groups of states
specified above. The two countries planning to continue the uneconomic and risky use of
thermal MOX, France and Japan, could instead choose to phase it out — as rapidly as their
domestic politics would permit. France has powerful and entrenched pro-plutonium
interests in government and industry. Yet, its national utility appears to be aware that
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recycling plutonium raises the cost of electricity, which could explain why it has not
significantly increased the use of MOX fuel despite domestic surpluses in all four factors
required to do so: separated plutonium, reprocessing capacity, MOX fabrication capacity,
and reactor capacity to use MOX. Even if safety and security concerns do not compel
France to re-evaluate its MOX program, the economic penalty eventually may do so.

Japan’s pro-plutonium lobby is less formidable because the country does not yet
operate commercial reprocessing and MOX fabrication facilities. Instead, the strongest
pressure for recycling may come from local communities — adjacent to Japan’s reactors
or to its incomplete reprocessing and MOX plants — who fear being stuck with spent
nuclear fuel if it is not reused. To address this concern, one possibility would be for
Japan’s government to invest in expanding dry-cask storage of spent fuel, while
explaining the safety and reliability of this technology to these communities and
compensating them for serving as temporary waste-storage sites prior to completion of a
geological repository. The government also could use part of its sizeable reprocessing
fund — which contains contributions from utilities to manage nuclear waste — to pay the
UK to take title to the 22 tonnes of Japan’s plutonium that is in the UK, thereby cutting
Japan’s stockpile nearly in half. Since most of Japan’s domestic plutonium is in forms
that cannot currently be used in its reactors, the government instead could dispose of that
material as waste, in cooperation with the USA, which has a similar disposal program
(Von Hippel and Mackerron, 2015). The rest of Japan’s plutonium — two tonnes at home
and 15.5 tonnes in France — could be dispositioned relatively quickly as a combination of
MOX and waste, which could enable Japan to eliminate its plutonium stockpile in as
little as five years (Kuperman and Acharya, 2018).

The two countries contemplating initiating large-scale MOX use in thermal reactors —
China and the UK — should recognise that this option is uneconomic and unnecessary.
The US Government recently reached such a decision, after wasting billions of dollars
on partial construction of a MOX fabrication plant that soared in cost before being
abandoned, and Washington now plans instead to dispose of surplus weapons plutonium
as waste (Gardner, 2018). The UK has reprocessed its spent fuel for more than half a
century, but for economic and other reasons has never commercially recycled the
resulting plutonium in reactors (Mann, 2018). As a result, the UK has title to a domestic
stockpile of 110 tonnes of separated civil plutonium, dwarfing the 3.2 tonnes of
plutonium in that country’s nuclear weapons arsenal. Officially, the government’s
preferred option for its civil plutonium is to recycle it in MOX fuel, despite the domestic
absence of either a MOX fabrication facility or reactors licensed to use MOX fuel.
The UK could choose to end this fiction and instead dispose of its plutonium as waste
(Von Hippel and Mackerron, 2015). China has not yet created a surplus of separated
plutonium, but it has negotiated with Orano about construction in China of both
reprocessing and MOX fabrication plants. China has successfully mimicked many
aspects of Western industrialisation, but doing so in this case could be ill-advised,
considering how costly and risky thermal MOX has proved in the West.

Finally, countries such as India, South Korea, Russia, and China are pursuing the
recycling of plutonium for energy using alternative technologies. Russia has stockpiled
nearly 60 tonnes of civilian separated plutonium (IAEA, 2018) and recently shipped the
first MOX fuel elements to its BN-800 fast reactor (IPFM Blog, 2019). In theory, fast
reactors could fission more plutonium and other actinides in their fuel, thereby reducing
the long-term heat and radioactivity of high-level nuclear waste. Pyro-processing could
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avoid separating pure plutonium and thus — compared to traditional reprocessing — might
reduce somewhat the nuclear-terrorism risk of a closed fuel cycle. However, experts have
demonstrated that these purported benefits of pyro-processing and fast reactors have been
exaggerated (National Research Council, 1996; Krall and Macfarlane, 2018; Acton,
2009; Lyman, 2002). Such technologies cannot overcome plutonium’s three fundamental
risks that have bedevilled previous efforts to reuse spent fuel: safety, nuclear weapons,
and cost. Accordingly, as such countries pursue alternative fuel cycles, they would be
advised to examine the historical track record of plutonium fuel, in thermal reactors, to
understand its commercial failures. In so doing, they might realise that their proposed
approaches to obtaining plutonium and fabricating it into reactor fuel would face similar
challenges — in addition to the substantial hurdle of commercialising fast reactors, which
have failed both technically and economically almost everywhere that they have been
attempted (Cochran, et al., 2010b).

The reprocessing of spent nuclear fuel to extract plutonium is an excellent way to
produce nuclear weapons. To date, however, it has proved to be an inefficient,
dangerous, and unnecessary way to produce electricity. Unless and until there are major
improvements in the safety, security, and economics of recycling plutonium, spent
reactor fuel should instead — after temporary cooling in pools — be transferred to interim
dry storage, in preparation for eventual permanent disposal in geological repositories.
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