THE UNIVERSITY OF TEXAS AT AUSTIN College of Natural Sciences

Anna Panyu Peng, Department of Mathematics and Computer Science /CNS, ICES panyuanna@gmail.com

Background

Dual coordinate descent method is a classic and effective optimization technique for solving empirical risk minimization problems such as Linear SVM where number of data and features are large i.e. text classification¹. Several papers have studied specific implementations of the method i.e. stochastic DCD² or adaptive DCD where parallel techniques are exploited to reduce time complexity. Few have studied greedy DCD back then on a single machine. As I found out that when solving kernel SVM, computing kernel matrix is too slow so is convergence rate of objective function, I was motivated to parallelize greedy DCD in a multi-core shared memory

setting.

- Comparisons (Latest Version Used) DCDL1: Dual coordinate descent (DCDL1-S: with
- Pegasos [Shalev-Shwartz et al., 2007]: stochastic
- SVM^{perf} [Joachims, 2006]: cutting plane
- DCDL2: Dual coordinate descent (DCDL2-S: with
- PCD [Chang et al., 2008]: Primal coordinate RON [Lin et al., 2007]: Newton method

Research Questions

I am parallelizing greedy DCD for kernel SVM. Since DCD embeds the sequential idea in it, when deliberately paralleled, several obstacles confronted:

- How to partition gradient of objective function
- How to avoid conflict write
- How to load dense kernel matrix
- How to prove convergence of new algorithm

Methods and Materials

- Parallel Paradigm: Open Multi-Processing in C++
- Partition method: Even partition of the vector of gradient of objective function into number of threads
- Kernel selection: Gaussian/RBF kernel: $K(x, y) = \exp\left(-\frac{\|x-y\|^2}{2\sigma^2}\right)$
- Atomic: Apply atomic operation for gradient update:

Parallel ASynchronous Greedy dual Coordinate Descent

- parallel method
- fast algorithm

Austin

The Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin **Department of Mathematics and Computer Science/ CNS,** University of Texas at Austin

1. Kai-Wei Chang, C.-J. Hsieh, C.-J. Lin, S. S. Keerthi, and S. Sundararajan A Dual Coordinate Descent Method for Large-scale Linear SVM. ICML, 2008 2. Cho-Jui Hsieh, Hsiang-Fu Yu, Inderjit S. Dhillon PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent. ICML, 2015

of Threads vs. Speedup

Future Directions

Preliminary outcomes point out further work:

As observed from the results, four-thread

convergence rate is only approximately 10% faster

than single thread, which is incoherent with speedup.

So I need to accelerate the convergence rate of the

To provide theoretical guarantee and analysis of our

Acknowledgments

Inderjit S. Dhillon, Director, Center for Big Data Analytics, Department of Computer Science, University of Texas at Austin **Cho-Jui Hsieh, Professor, UC Davis; Ph.D, University of Texas at**

References