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The intended research questions   

Carbon capture, utilization and storage (CCUS) technique serves as an important instrument to 

achieve decarbonization goals. As of Jan 2022, there are 38 CCUS projects that are completed, in 

operation, or operation in suspension in the U.S. There are 40 CCUS projects either in operation 

or being built as well as 36 in various stages of development in China. Despite the increasing 

development of CCUS projects in both countries, the costs and benefits of developing CCUS 

projects in local communities are rarely assessed quantitatively. Estimating the costs and 

benefits of CCUS projects presents a challenging research question with great policy relevance.  

From the cost perspective, CCUS projects may bring complications to the nearby 

geological formations and increase the risk of complications such as earthquakes (Zoback & 

Gorelick, 2012, 2015). High pressurized and liquefied CO2 might cause groundwater 

contamination (Eldardiry & Habib, 2018) due to potential leakage during geologic sequestration 

that can cause potential mobilization of hazardous inorganic elements. Brine displacement may 

also cause water pollution (Newmark et al., 2010). CCUS in power plants may increase air 

pollution due to the energy penalty issue (EEA, 2011; Jacobson, 2019).  It is hard to accurately 

quantify these geological and pollution risks and the impact of such risks on local communities 

due to the lack of data and causal evidence. Using high-resolution spatial data, this study 

estimates the impact of CCUS on the surrounding housing values in both U.S. and China. Our 

study provides evidence on how potential environmental and geological impacts are capitalized 

into the housing market to enable a more precise estimation of the local impacts of CCUS.  

Our estimated impact on housing prices also incorporates potential local economic 

benefits. CCUS projects can reuse CO2 to enhance oil recovery and coal bed methane recovery, 

as well as reuse CO2 for the food industry and other industrial applications. Such increased 

industrial activities and output can potentially increase the local employment rate and economic 

activities as suggested from the evidence of other energy projects (Moreno & López, 2008; 

Slattery et al., 2011). In addition, CCUS may delay the retirement of coal-fired power plants, 

which could mitigate the economic disruptions due to the pressure of coal phase-out in the short 

term. These benefits may increase housing prices. Thus, our estimated impact on housing price 

reflects the net impacts of the benefits and costs which CCUS projects can bring to local 

communities.  

We aim to answer the following two primary research questions: 

1. How do CCUS projects impact nearby housing prices? 

2. How do such impacts vary by CCUS technology and socio-economic factors, and 

between U.S. and China? 

We will use nationwide data on existing CCUS projects in U.S. and China as well as 

individual-property level housing transaction prices. Our main methods will be a repeated sales 

or fixed effects panel regression approach, as well as a triple difference (DDD) approach. Figure 

1 shows the types and distribution of current CCUS projects in China and Figure 2 shows the 

projects in the U.S.  

The proposed work has important implications for current policy discussions around the 
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world about the need to deploy CCUS projects at a larger scale. We aim to provide credible 

estimations on the local economic impacts of CCUS projects via changes in housing prices. Our 

results will help policymakers conduct comprehensive cost and benefit analyses of developing 

CCUS projects. In addition, from an efficiency perspective, our results of the heterogeneous 

impacts on housing markets can help policymakers optimize the siting of the CCUS projects. We 

focus on U.S. and China, the two largest carbon-emitting countries in the world. The results based 

on U.S. and China can provide broader implications for many other countries where data and 

estimation are not readily available. CCUS projects can also generate potential environmental and 

geological risks as well as the local economic benefits in other countries. We will compare the 

impacts of CCUS on housing prices in the U.S. and China.  Such a comparison may shed light on 

future policy studies that examine the social and institutional barriers for deploying CCUS projects 

such as local attitudes towards the projects.  

Contributions to the existing literature 

We contribute to the 

literature on the value of 

public and environmental 

amenities using a hedonic 

pricing approach, such as 

the local impacts 

associated with public 

transit infrastructure, gas 

stations, and renewable 

energy projects (Hewitt 

& Hewitt, 2012; Yang et 

al., 2020; Zabel & 

Guignet, 2012). Hewitt 

and Hewitt (2012) find 

that there is a price premium for houses with 

proximity to urban rail stations. Zabel and 

Guignet (2012) find that gas stations can decrease 

nearby housing values by over 10% if leaking 

from underground storage tanks is observed from 

publicized (and more severe) sites. Similarly, 

shale gas development (Muehlenbachs et al., 

2015), power plants (Davis, 2011), conversion of 

coal-fired power plants to gas-fired plants (Mei et 

al., 2021), and urban natural gas leakage (Shen et 

al., 2021) impose impacts on nearby housing 

values.   Recent research has also explored the 

local impacts of renewable energy such as wind 

and solar projects on housing values. Although 

renewable energy projects generally have social benefits (e.g., mitigation of greenhouse gas 

emissions), studies have indicated they could lead to a reduction in house values (Dröes & Koster, 

2016; Gaur & Lang, 2020; Gibbons, 2015; Jarvis, 2021) due to factors such as blocking of views 

and noises of wind turbines and the Nimbyism. However, no studies have focused on CCUS 

specifically. This proposed study fills the research gap by investigating the effect of CCUS projects 
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on housing prices. Our paper also contributes to the strand of literature on public attitudes towards 

CCUS projects through revealed preferences. Studies have examined public perceptions of the 

benefits, costs, and risks of CCUS projects in China (Liu et al., 2021) and Germany (Linzenich et 

al., 2019, 2021) via surveys. The evidence of how individuals’ preference towards CCUS projects 

is mixed (Sun et al., 2020). Our study will help inform effective expansion of CCUS projects, as 

possible opposition from residents may lead to problems as we have witnessed in expanding wind 

and solar projects (Carlisle et al., 2015).  

Research design and approach  

 Summary of empirical strategy 

We will conduct analyses separately for U.S and China, and then compare the results between 

the two countries. Our main methods are a fixed-effects panel regression approach as well as a 

DDD approach. A cross-sectional hedonic pricing approach may suffer from potential 

endogeneity issues. The estimation of the impact of CCUS projects on property values can be 

confounded by the following issues. The selection of a CCUS project site may not be exogenous 

and can be correlated with the property values. For example, the CCUS projects might be more 

likely to be located in areas with low or high property values. There might be omitted variable 

bias. Unobservable factors such as local attitudes towards CCUS and climate change, and local 

government’s incentives for infrastructure development, can impact both the CCUS development 

and housing prices. In addition, there may be other contemporaneous changes during the CCUS 

project development (but are not a result of the CCUS project) that can also impact local housing 

prices, such as the development of other nearby infrastructure projects. The fixed effects panel 

regression approach can eliminate time-invariant property-level unobservables that are correlated 

with CCUS project development, such as local attitudes towards and incentives in place for 

energy and infrastructure projects as well as baseline property values.  

We will first conduct an event study analysis at the zip code level to test whether the 

parallel trend assumption is satisfied between the houses within the vicinity of CCUS and those 

without. We will follow recent advancements in event study models and parallel trend assumption 

testing techniques (Freyaldenhoven et al., 2021; Marcus & Sant’Anna, 2021; Roth, forthcoming). 

Specifically, we plan to check the pre-treatment trend to see if, before the treatment, the difference 

between the treatment and control group (without vicinity of CCUS) is constant over time. 

 Fixed effects panel regression 

The main individual house level fixed effects panel regression model is specified as follows 

𝑙𝑜𝑔𝑌𝑖𝑐𝑡 = 𝛽1 ∑ 𝑉𝑖𝑐𝑖𝑛𝑖𝑡𝑦𝑖𝑐𝑡𝑏 ∗ 𝑃𝑜𝑠𝑡𝑖𝑐𝑡𝑏
10
𝑏 + 𝛽2𝑃𝑜𝑠𝑡𝑖𝑐𝑡 + 𝑿𝒊𝒕

′ 𝜽 + 𝜑𝑐 ∗ 𝜔𝑦 + 𝑢𝑖 + 𝛾𝑚 +  𝜀𝑖𝑐𝑡  , 

where logYict is the natural logarithm of the sales price of house i at day t in county c. 

𝑉𝑖𝑐𝑖𝑛𝑖𝑡𝑦𝑖𝑐𝑡𝑏 is the treatment variable and equals 1 if a house i has a CCUS within a certain distance 

bin b and 0 otherwise. For example, we can use distance bins in the range of 0 to 2 km with a 

0.1km increment. Our choices of the distance range and the bin width follow prior studies on the 

effects of wind and solar projects (Jarvis, 2021; Keith et al., 2021) and shale gas (Muehlenbachs 

et al., 2015) on housing prices, where they find most of the effects are limited to 1 or 2km. We 

will try different ranges and bin widths to find the limit of the effects of typical CCUS projects.  

𝑃𝑜𝑠𝑡𝑖𝑐𝑡𝑏  equals 1 if the CCUS is within distance bin b and is after the CCUS construction 

completion date, and 0 otherwise. 𝑢𝑖 controls for individual fixed effects, capturing all the time-

invariant individual building specific characteristics. 𝜑𝑐 ∗ 𝜔𝑦  represents county-by-year fixed 

effects, capturing unobservable common features in each year of each county, such as changing 

local housing market conditions, land cost, service area population, and road traffic flow. 

𝛾𝑚 includes the month of the year fixed effects. We will also try other sets of time fixed effects 
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such as month-of-sample fixed effects. In addition, we will try an alternative model specification 

with group-specific time trends to help address the potential problem of contemporaneous changes 

(Davis et al., 2014). εict is an idiosyncratic error term. 𝑿𝒊𝒕 controls for local demographics and 

economic conditions. We cluster our standard errors at the individual house or CCUS project level, 

allowing for correlations between observations within the same house or CCUS project. Recent 

papers show that using two-way fixed effects model to estimate treatment effects may be biased if 

the treatment timing varies across groups (e.g., de Chaisemartin & D’Haultfœuille, 2020; 

Goodman-Bacon, 2021). We will use the methods suggested by recent papers to check and address 

this potential bias. For China, we will conduct the analysis at the apartment building level due to 

the lack of individual housing transaction data, following Mei et al. (2021).  

 In terms of the timing of treatment, we will add different timing indicator variables such 

as  6 months, 1 year, and 2 years prior to the start of CCUS operation to examine whether the 

construction period also has any impact on nearby housing prices. We will also try an alternative 

method of dropping the data during the construction period to only look at the impact of operation. 

For example for U.S. CCUS projects, we can drop the data during the start year of operation.  

We further apply the propensity score matching (PSM) method and the recent synthetic 

difference-in-differences (DID) method (Arkhangelsky et al., 2021) to establish an alternative 

control group. PSM accounts for the covariates that predict the treatment status so that bias caused 

by confounding factors can be reduced. After matching, for each house with a CCUS project in 

proximity (treated), we find a control house in the same zip code that is comparable on all observed 

covariates but does not receive the treatment. Examples of the matching variables include year 

built, number of stories, number of bedrooms, number of rooms, land value, and square footage.  

 Tripple difference (DDD) 

For the types of CCUS projects that are added to existing industrial sites (such as CCUS used for 

enhanced oil recovery (EOR) and for power plants), we apply a DDD approach to further control 

for any differential trends as well as potential contemporaneous changes between control and 

treatment groups. This approach compares housing prices of buildings in close proximity to a 

CCUS project (i.e., within treatment buffer zone) to those further away, around the CCUS and 

non-CCUS sites, and before and after the operation of CCUS projects. For example, for EOR 

CCUS projects, we compare the treatment and control houses of EOR projects before and after 

the start of CCUS, as well as compare the “treatment” (within the treatment buffer zone of non-

CCUS operational oil fields)  and control houses of non-CCUS oil fields. Then we compare the 

difference between the two DIDs.  

 Heterogeneity of price premium 

The price premium induced by vicinity to CCUS projects may be heterogeneous across different 

local socioeconomic characteristics and by different CCUS technology types and project sizes. We 

explore the heterogeneity by several key factors such as environmental awareness, income per 

capita, CCUS production size, and technology type. Following Shen et al. (2021), we employ a 

flexible semiparametric approach for the fixed effects panel data model, which has advantages in 

estimating non-linear heterogeneity by allowing for linearity in some variables while non-linearity 

in others (Cai et al., 2019). In addition, we will compare the results between U.S. and China.  

 Robustness check – Cross-sectional hedonic approach 

The repeated sales approach relies on intertemporal price variation. However, if the hedonic 

gradient shifts over time, this approach could be biased (Kuminoff & Pope, 2014; Muehlenbachs 

et al., 2015). To address this issue, we will conduct a cross-sectional hedonic analysis as a 

robustness check. The houses with CCUS projects within the vicinity of a certain range (for 

https://en.wikipedia.org/wiki/Covariate
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example, 0.5-0.6 km) are matched with houses without CCUS within 1 km (or another range 

depending on the range we find from our panel regressions). Treated houses in other distance bins 

are removed for a cleaner analysis. Then we apply a propensity score matching on the time-

invariant building characteristics which are correlated with the house prices (Qiu et al., 2017).  

 Lastly, to explain the results, we will also look at how CCUS development is associated 

with changes in local economic activities such as employment and health indicators.  

Data available to answer the research questions  

CCUS project data-China: Annual report on carbon dioxide capture, utilization and storage 

(CCUS) in China (2021) – Study on the path of CCUS in China (available at 

http://www.caep.org.cn/sy/dqhj/gh/202107/t20210725_851241.shtml) describes the information 

about the start time for operation (including day, month and year), type, and detailed location of 

each CCUS project. There are about 40 CCUS projects being in operation or under construction 

in China, with a total capture capacity of 3 million tons per year. We only consider carbon 

capture projects and carbon source reprocessing projects, not including geological storage 

projects, because they are in remote areas where housing transactions rarely happen. Our final 

dataset contains 12 carbon capture projects and 2 carbon source reprocessing projects. 

Housing data-China: We have secured housing price data from CityRE (www.cityre.cn), a 

commercial property data company that maintains a database of more than 90% of China’s 

housing transaction records since 2005. As individual real estate transaction records across China 

are unavailable, our analysis relies on the average transaction price per square meter at the 

apartment building level of a residential complex, similar to the JEEM paper by Mei et al. 

(2021). Though the data is subpar compared to the individual-housing transaction data, it is 

enough to offer significant variation and is superior to other hedonic studies in China that apply 

city-level or provincial-level housing transaction data. Specifically, our unit of observation is the 

average transaction price, rather than rental rate, of all home sales in an apartment building of a 

complex in a given quarter. After dropping apartment buildings 10 kilometers outside of a CCUS 

project, we have a sample of housing sales in 4594 residential complexes from 14 cities across 

China. The data also contains information about the developer, year built, and average square 

footage of an apartment, as well as specific geographic coordinates.   

CCUS project data-U.S.: The Global CCS Insitute (https://co2re.co/FacilityData) contains the 

project level information for all CCUS projects in the U.S., including the first year in operation, 

technology details, ownership, facility category (commercial or demonstration), facility industry 

(natural gas processing, power generation, hydrogen production, fertilizer production, refining, 

ethanol production, etc), and facility location.  We analyze the projects that are completed, in 

operation, or operation in suspension, a total of 38 projects as of 2021. These are the projects that 

were put into operation. In total, there are 21 projects in operation as of 2021, 15 projects 

completed, and 2 projects’ operations in suspension.  

Housing data-U.S.: The research team has access to Zillow’s ZTRAX data for this project. While 

the ZTRAX program will end in 2023, we can still use the data for this project according to the 

existing agreement. We have obtained 4TB of data for more than 150 million homes in 51 states 

from Zillow. Our dataset includes information from more than 374 million detailed public 

transaction records since the 1900s to present across over 2,750 counties for residential and 

commercial properties. The data also include property assessment information such as property 

and building characteristics, property addresses, and prior assessor valuations of approximately 

200 million parcels in over 3,100 counties, via twice-a-year independent property assessments.

http://www.caep.org.cn/sy/dqhj/gh/202107/t20210725_851241.shtml
https://co2re.co/FacilityData
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