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ABSTRACT

Dust-mitigating surfaces typically consist of high-aspect-ratio structures that separate particles from resting on the bulk material, thereby
limiting adhesion due to short-range van der Waals forces. These surfaces can find uses in solar-panel coatings and a variety of dust-resistant
optics. The current method for quantifying surface contamination is optical microscopy, but this method is inadequate for observing particles
at the submicrometer scale due to the diffraction limit. Furthermore, regardless of the microscopy technique, particle identification becomes
problematic as the particle contaminates approach the same length scale of the surface structures. In this work, we demonstrate a method to
identify micro-/nanoparticle contaminates on nanostructured surfaces using electron microscopy and image processing. This approach allows
the characterization of particles that approach the length scale of the surface structures. Image processing, including spectrum filters and edge
detection, is used to remove the periodic features of the surface nanostructure to omit them from the particle counting. The detection of these
small particles using electron microscopy leads to an average of 5.62 particles/100 μm2 detected compared to 0.63 particles/100 μm2 detected
for the traditional confocal optical detection method. Beyond dust-mitigation nanostructures, the demonstrated particle detection technique
can find applications in nanobiology, the detection of ice nucleation on a structured surface, and semiconductor mask inspections.

Published under an exclusive license by the AVS. https://doi.org/10.1116/6.0003043

I. INTRODUCTION

Nanostructures are able to create many unique surface proper-
ties including dry adhesives, self-cleaning surfaces, and anti-ice mate-
rials. Gaining inspiration from the structure of Gecko setae, dry
adhesive surfaces can be made from branching high-aspect-ratio
nanostructures that conform to the roughness of a surface, maximiz-
ing the short-range van der Waals force.1 In a similar manner, self-
cleaning2 and anti-ice3,4 surfaces take advantage of the lotus effect.5

This effect is based on nano-/microscale textures along with low
surface energy, which together prevent water from fully wetting the
surface, effectively suspending a water droplet on a bed of air in the
Cassie–Baxter state.6–10 One particular application of interest is sur-
faces with low adhesion energy, which can be used in a variety of
applications such as dust-mitigating surfaces, which have already

shown significant promise.11–13 These surfaces are of particular inter-
est to missions to the moon where lunar dust causes significant
damage to sensors and equipment, limiting the duration of mis-
sions.14,15 Therefore, dust mitigation is recognized as one of the
main obstacles for continued space exploration.15 In addition, parti-
cle contamination causes many problems for terrestrial applications,
including in the optics, automobile, aerospace, and healthcare
industries.2,11,12,16–21 For example, solar panels must be frequently
cleaned to maintain efficiency that can be reduced by up to 40% if
not properly maintained.11,12,16,19,20

One challenge in the study of dust-mitigating surfaces is the
quantification of the dust-reduction effect. Particle identification is
especially difficult when the dust particles are at a similar length
scale to the nanoscale to microscale surface features. Another key
challenge is characterization throughput that limits whether the
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technique can be scaled for applications requiring large areas.
There are many existing methods to detect particles,22–28 but all
have limiting factors for this use case. Specifically, to detect parti-
cles on a nanostructured substrate, the detection approach must be
able to discern between the particles and features of the substrate.
The system must also be able to characterize relatively large areas
in a reasonable time frame. Along with this, the method must
retain high enough resolution to resolve individual particles and
gather collective data on size. Many methods exist to detect parti-
cles moving through fluid by measuring a signal change caused by
particles moving through a sensor. Such devices include a resistive
pulse sensor coupled with a fluorescent particle detector,22,23 which
together detect particles moving through a channel. Similar
methods are used to detect airborne particles including devices,
which detect changes in the intensity of a beam of light when parti-
cles cross, or a sensor that can detect changes in emitted α-particles
such as in a smoke detector.24,25 These devices are very accurate for
detecting relatively high concentrations of particles but are limited by
the need for a fluid to carry the particles.

On the other hand, methods for detecting particle contami-
nates on a flat substrate are relatively limited compared to detection
in a fluid. Common methods include optical confocal microscopy
and scanning electron microscopy (SEM) inspection. A confocal
microscope generates a topographic map of a surface, and thereby,
any raised point can be identified as a contaminant. This method is
very accurate when detecting defects on a flat surface26 but is
limited in that its accuracy decreases as the surface roughness
increases, causing many particles to sit above or below the focal
plane. Furthermore, the lateral resolution of an optimized confocal
microscope is around 180 nm, but the axial resolution is limited to
around 500 nm. This limit in axial resolution prevents the micro-
scope from resolving individual defects and creates challenges
when trying to resolve particles in close proximity. SEM inspection
methods offer a far higher resolution and depth of field, allowing
individual particles to be resolved, even if the surface is not per-
fectly flat. Recent works have demonstrated precise particle count-
ing on a flat substrate using both SEM imaging and transmission
electron microscope (TEM) imaging.27,28 However, this approach is
generally limited to relatively low particle concentrations as the par-
ticle detection is done manually by locating the particle edges,
thereby limiting the metrology throughput.27 In studies where par-
ticle detection is performed automatically through the software
analysis of a TEM image,28 a high contrast between the particle
and a flat substrate is required. Furthermore, the identification of
particles on nanostructures with features that have a similar length
scale is challenging and less studied.13 Concurrently, as dust-
mitigating structures get more effective against all particles larger
than the features, it is critical to identify very small particles that
can potentially overcome the antiadhesion effects.

In this work, we present a method for detecting particles on a
nanostructured substrate with similar feature sizes using SEM
imaging and image processing. This approach employs Fourier fil-
tering to remove periodic nanostructures on the surface and iden-
tify dust particles that are smaller than the structures. A multistep
particle detection method is used to identify each particle, allowing
for large areas to be inspected in a short time frame. The proposed
method is experimentally compared with particle identification

using confocal microscopy on nanostructured dust-mitigation sub-
strates with 500 nm period. The detection of these small particles
using these methods led to an increase of 5.62 particles/100 μm2

detected, compared to 0.63 particles/100 μm2 for the traditional
confocal optical detection method, successfully demonstrating the
detection of particles smaller than features of the periodic nano-
structures. This approach improves the metrology of micro/nano-
scale particles on nanostructured surfaces and can find applications
in quantifying the dust-mitigation performance of these structures
as well as identifying and characterizing contaminates in semicon-
ductor and display manufacturing.

II. EXPERIMENT

The fabrication of the dust-mitigating nanostructures in this
work is done via a high-throughput nanocoining method using
thermal nanoimprint to create periodic structures in polycarbonate
substrates.13,29,30 These structures have a period of 500 nm, an
aspect ratio of 0.86, and a tip radius of 150 nm. For this experi-
ment, the samples are coated with a 10 nm thick layer of gold

FIG. 1. Representative outputs of the particle-counting method using confocal
microscopy. (a) Measured height map of the nanostructured surface with parti-
cles after tilt and warp corrections. (b) Resulting image of regions identified as
particles are shaded and numbered.
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using a sputter coater to reduce charging effects during SEM
imaging. Samples without gold sputtering are also fabricated to
examine the effects of charging on the particle-identification algo-
rithm. The patterned surfaces are then chemically treated to reduce
their surface energy. This is accomplished by cleaning the sub-
strates with oxygen plasma etching to activate the surface hydroxyl
groups and coating a monolayer of trichloro(octyl)silane using
vapor phase deposition. After surface treatment, the static contact
angle of the 500 nm periodic nanostructure increased from 111.7°
to 132.9°, demonstrating a decrease in the surface energy. The pre-
pared samples are then contaminated by spooning on a thick layer of
lunar dust (Exolith, LMS-1; lunar mare simulant)31 to completely
cover the surface. The covered samples are then tilted vertically to
allow the dust to be removed via gravity. The remaining dust con-
taminates on the samples are inspected using both confocal micros-
copy (Keyence VK-X1100 Confocal Microscope) and SEM.

For baseline comparison, confocal microscopy analysis was
conducted to generate a topographic map of the surface. The file
analyzer included with the microscope software is used to identify
particles in each obtained image using the following procedure.
First, any tilt of the surface is removed by creating a reference plane
through the manual selection of dust-free areas in each of the four
corners in the image. Since the substrate is a flexible polycarbonate,
any warping of the surface is removed by fitting the surface to a
higher-order polynomial. The resulting image then shows all parts
of the bare nanostructured surface at approximately the same
height as shown in Fig. 1(a). Once this is visually verified, any
raised points on the surface can be identified by setting a height
threshold and minimum area, as shown in Fig. 1(b). The threshold
parameters are typically set manually in a case-by-case basis
depending on the effectiveness of the reference-plane and wave-
form-removal procedures. In this analysis, the height threshold is
set to 300 nm and the minimum area is set to 550 nm, slightly
larger than the nanostructure features so that the surfaces

structures will not be counted as particles. The program then
outputs the area and diameter of the identified particle regions,
allowing the particle coverage area to be calculated as the percentage
of the surface that is covered by residual particles. This method
works well for large dust particles since they tend to rest on the tips
of the nanostructures and are easily identified. On the other hand,
particles close to the length scale of the nanostructures are often
missed. Reducing the threshold parameters to count the smaller par-
ticle would result in large areas of the nanostructured surface to be
counted as well, resulting in an overestimate of the particle coverage
area.

FIG. 2. Block diagram of image filtering and particle detection algorithm with
the key parameters for each step.

FIG. 3. Top-view SEM images of a particle-contaminated sample without
gold coating before (a) and after (b) brightness normalization using adaptive
histogram equalization.
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The particle detection method used in this study is based on
SEM imaging and image processing. The SEM offers many advan-
tages due to its higher resolution, which allows small particles to be
resolved even if they rest below the nanostructures. Two significant
challenges occur when using the SEM identification method. First,

it is difficult to identify the particles due to poor contrast between
the nanostructures and the particles, which yield the same second-
ary electron signals during imaging. Second, the high resolution of
the SEM causes the individual features of the periodic nanostruc-
tures to be identified by traditional particle-counting programs
causing significant overestimates in the particle coverage area.

For this work, a custom algorithm was implemented in
MATLAB to overcome these challenges. The algorithm includes
multiple image filtering techniques as well as a multiple-stepped
approach to identify the particles, as illustrated in Fig. 2. The first
operation performed by the program is to normalize the bright-
ness and contrast in the obtained SEM due to nonuniform elec-
tron signals. This step is especially necessary for nongold coated
samples where charging effects cause regions to have a wide range
of signal brightness. Normalization is performed using adaptive
histogram equalization that divides up the image into a set
number of tiles, generates a histogram of the brightness values in

FIG. 5. Effects of the guided filter. (a) The guided-filtered image and (b) the
high-pass filter applied to guided-filtered image.

FIG. 4. Low-pass filtering process using Fourier transform. (a)
Normalized-brightness image to be filtered using adaptive histogram equaliza-
tion. The inset image depicts a separate higher magnification micrograph
showing the nanostructured surface. (b) Resulting image after high-frequency
signals have been filtered. (c) Fourier transform of the normalized image with an
overlayed low-pass filter.
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each tile, and then adjusts the histogram to fit the desired distri-
bution. In our case, the images are divided into 16 384 tiles
(128 × 128 divisions) and the brightness histogram was fit to a
Rayleigh distribution. An example of the output of this process
for a bare polycarbonate sample with 500 nm nanostructures is
shown in Fig. 3.

After brightness and contrast normalization, the 2D Fourier
transformation of the image is calculated using fast Fourier trans-
form (FFT) to analyze the spatial-frequency spectra. An example of
this process is shown in Fig. 4, wherein the starting image is of a
sample that was gold coated and the dimensions of the image are
identical to what is obtained from the confocal microscope for
comparison. The distinct peaks of the periodic nanostructures can
be clearly observed in Fig. 4(c), which is aligned at around 45° and
shows a fourfold symmetry for the square lattice. The fundamental
frequency can be identified as fo ¼ 2 μm�1, corresponding to the
Λ ¼ 1/fo ¼ 500 nm period structures fabricated. Higher-order har-
monics can also be observed. The high-frequency signals are then
removed using a low-pass filter that effectively removes the periodic
elements from the image. To set the cut-off frequency of the image,
the radius of the depicted blue circle can be adjusted and any fre-
quencies outside of this circle will be removed. For this work, a
cut-off frequency of 0:9 fo is selected to filter out the first- and
higher-order peaks while preserving as much of the components

near DC. The filtered image and its corresponding frequency
spectra are shown in Figs. 4(b) and 4(c), respectively, which shows
the effective removal of the periodic surface structures.

Next, the images are smoothed using gaussian filtering to
remove artifacts induced from the previous steps while still retain-
ing the details of the dust particles. To do this, a guided filter is
used where the Fourier-filtered image acts as the guide and the
brightness normalized image is filtered. The function selectively
applies a mean filter everywhere except where edges are detected in
the guide image, allowing details of the dust particles to be recov-
ered while further blurring the background nanostructure as shown
in Fig. 5(a). The variance threshold parameter referenced in Fig. 2
modifies the allowable brightness variance in a given radius before
it will identify as an edge. Therefore, a higher variance threshold
causes increased smoothing of edges.32 After these steps, the surface
nanostructures appear to be adequately removed. To further enhance
the boundaries of the dust particle contaminates, a high-pass filter
with a cut-off frequency of 0:1 fo is used to increase the edge con-
trast. The filtered image is shown in Fig. 5(b), which has sharpened
particle edges and can improve the accuracy of the edge-detection
algorithm.

The edges of the particles are then identified using the Canny
method,33 as illustrated in Fig. 6. This method accurately selected
many of the particle edges but due to the rough surfaces of the dust

FIG. 6. Illustrated results using the Canny edge-detection algorithm. (a) The original unfiltered SEM image and corresponding (b) base edge detection and (c) dilated
edge detection. (d) Particles identified after edges were eroded by the same dilation amount.
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particles, many edges are detected on the interiors. These interior
lines cause the fill function to not cover the entire particle, as lines
drawn within the particles form closed loops that are not filled,
leading to hollow particles that are not physical. This is best dem-
onstrated in Fig. 6(b), showing the result from the unmodified
edge-detection method. To get the particles to be completely
enclosed, the as drawn edges are expanded using the dilate func-
tion, which expands the width of the drawn edges by a set number
of pixels. This caused the interior lines within a particle to connect,
and the small gaps that are not already covered can be closed using
a fill function. This filling operation introduces one more challenge
in that the particle coverage areas are slightly overestimated as
shown in Fig. 6(c). To correct for this, a final step was performed
to cut back slightly on the drawn edges using the erode function
that cuts around the as drawn edges using a structuring element
with a set radius in pixels.34,35 This command removes all filled
areas without overlapping the originally drawn edges using a struc-
turing element.

Finally, once the particles are all detected and filled, a simple
command is used to label each particle with a number. The tabu-
lated data on each particle area and diameter are generated in
micrometer units. These data can then be used to directly compare
with the particle coverage area and average particle diameter values
obtained from the confocal particle-identification method. The par-
ticle identified using both confocal and SEM methods was verified
manually to ensure that the counting has been performed correctly.

III. RESULTS AND DISCUSSION

The SEM particle-counting program demonstrated excellent
results in most cases but also revealed some persisting problems.
For this work, images are taken with an FEI Quanta 650 ESEM
using a beam energy of 10 kV and a resolution of 3072 × 1920. A
variety of SEM images were analyzed by the program with inspec-
tion areas ranging from 1000to 60 000 μm2 as well as images of
gold-coated samples and nongold-coated samples. The program
worked best for gold-coated samples with low particle density and
minimal particle grouping but was still able to identify particles
under worst-case conditions albeit with lower accuracy. In address-
ing the characterization throughput, the estimated time to analyze
100 images is calculated for each method. These values are esti-
mated by averaging the processing, equipment, and setup time it
has taken for collecting the images in this study and previous
studies. To capture and analyze 100 images, it is estimated that the
confocal method would take about 370 min, whereas the SEM is
estimated to take only 170 min. The time saving for the image

analysis step is even higher, where the processing per image of the
confocal takes on average 2 min, whereas the SEM particle-
counting program takes less than 10 s per image after configuration.
Therefore, the proposed SEM approach would only take 20 min to

FIG. 7. Illustration of worst-case scenario of low contrast and particle grouping
artifact. (a) Original SEM image of the nongold-coated sample and (b) initial
particle detection with particle grouping artifact.

TABLE I. Experimentally obtained averaged values from all confocal and SEM analyses.

Measurement type
Average

diameter (μm)
Coverage
area (%)

Particles/
100 μm2

Confocal, gold coated 1.77 0.52 0.238
SEM, gold coated 1.28 3.48 2.547
Confocal, no gold 2.44 5.00 1.030
SEM, no gold 2.21 19.07 8.701
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process 100 images, whereas the confocal method would require
170 min.

For the SEM image that covered the exact same dimensions as
the confocal image (282 × 211 μm2), the surface area coverage was
determined to be 2.87 ± 0.96%, whereas the confocal analysis gave a
coverage of 0.52 ± 0.20%. From the ten confocal images collected, an
average of 142.4 particles was detected in the 59 500 μm2 inspection
area. However, the SEM analysis detected 824 particles in the same
inspection area. To confirm that the SEM was effectively detecting
smaller particles, the average particle diameters are also calculated.
For the SEM, the average particle diameter is 1.27 ± 0.52 μm,
whereas the confocal reported an average diameter of 1.78 ± 0.1 μm.
These error bars were determined by taking the standard deviation
of the reported averages based on seven SEM images and five confo-
cal Images. These results clearly demonstrate that the added resolu-
tion of SEM imaging allows for the improved detection of small
particles. In fact, in every test performed spanning both gold and
nongold coated samples as well as the range of inspection areas, the
SEM particle detection method yielded a higher number of particles
counted. The count of particles with the SEM method was also man-
ually confirmed by overlaying each region the program identified as
a particle on the original image to verify that there is a particle corre-
sponding to each area.

To directly compare the confocal and SEM methods, the
number of particles per 100 μm2 area is calculated. For the
nongold-coated samples, the measured particle densities are 1.03
and 8.70 particles/100 μm2 for confocal and SEM, respectively. It

should be noted that for the gold-coated samples, fewer particles
are observed for both detection methods as the gold coating
decreases the adhesion force by removing the contribution from
static charge. For this case, the measured particle densities are 0.24
and 2.55 particles/100 μm2 for confocal and SEM, respectively. A
summary of these data comparing both the gold-coated and bare
polycarbonate samples for both detection methods is shown in
Table I; these data include the averages of all magnifications looked
at. The average diameter measurement is the average value of all
particles identified on the sample, which is an important parameter
for determining which size of particles the structure is effective
against. The coverage area is used to determine how effective the
antidust structures are by examining what percentage of the surface
retained residual dust. Finally, the number of particles detected
within a 100 μm2 area is a good reference figure for the ability of
the measurement devices to resolve the dust particles.

While the proposed approach allows more accurate detection
of particles, it also faces challenges for smaller particles. One
unavoidable problem with the SEM particle detection program is
separating large groups of particles. The dilation method used to
fully fill in each particle also resulted in nearby particles being con-
nected. This problem is especially evident for the nongold-coated
samples where charging from the SEM creates low contrast
between the particles and the substrate. This effect is demonstrated
in Fig. 7(b), where a large group of scattered particles are grouped
together as one large particle. In this worst-case scenario of very
low contrast along with grouped particles, significant errors are

FIG. 8. Demonstration of particle counting for various inspection areas of gold-coated samples. 3500 μm2 area showing (a) original SEM and (b) identified particles.
13 000 μm2 area showing (c) original SEM and (d) identified particles.
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made in the program by overcounting the actual area covered. It
should be noted that images with higher contrast, including all the
gold-coated samples, are not subjected widely to this problem.
Furthermore, even including the grouping effect, which counts
closely clustered particles as a single particle, the average particle
diameters are still smaller than the confocal measurements.

For the gold-coated samples, the SEM images are much
sharper and exhibit little charging. In examining the particle detec-
tion of these samples, the program appeared to detect each particle
very accurately at a wide range of magnifications. Figure 8 shows
the detection of particles at higher magnifications with inspection
areas of 3500 (a) and 13 000 μm2 (b). These images gave average
particle diameters of 1.18 and 1.17 μm and a particle coverage area
of 1.52% and 3.38% for the higher and lower magnifications,
respectively. The higher particle coverage for the higher magnifica-
tion images can be attributed to operator bias since large particles
can cover the majority of the field of view at this scale and, there-
fore, are omitted during SEM imaging. In addition, while the
higher magnification images can better resolve smaller particles,
the corresponding areas are smaller. A higher magnification allows
for increased resolution to identify smaller particles but also creates
higher variation in the particle area coverage as a smaller region of
the sample is inspected. The lowest magnification analysis is dem-
onstrated earlier when comparing the analysis to the same inspec-
tion area as the confocal.

In future work, we will examine the size distributions of
detected particles on the nanostructured surfaces. Improvements for
detecting particles on the nongold coated samples will also be made
so that the samples can be reused after inspection. As it stands, the
current method of particle detection for these samples does work
well for relative comparisons as the grouping of particles is consistent
for all samples. Furthermore, the dilation process that allows particles
to be fully detected also increases the area that is counted for each
particle; this results in an artificial increase in the particle coverage
area. The degree of area estimation will be examined further by using
higher magnification SEM images, which is a part of on-going
research. A major benefit of the SEM particle detection over the con-
focal analysis is the removal of bias from the user. The confocal
program requires a manual input for the height threshold at which
the particles to be counted and provides visual feedback as this value
is changed. In contrast, the SEM particle analysis only requires a
manual input when selecting the low-pass filter size, a parameter
that is coupled to the feature size of the nanostructured surface and
does not directly change the number of particles counted. In this
way, the SEM particle detection becomes more repeatable and avoids
unconscious skewing of the data. For this reason, even with the exist-
ing problems, specifically, the overestimation of the particle coverage
area due to particle grouping and dilation, the SEM particle detection
method performs better for quantifying the degree of residual dust
particles on a nanostructured surface. Future work will focus on
implementing automatic SEM imaging over large areas to calculate
the particle distribution across the entire substrates.

IV. SUMMARY AND CONCLUSIONS

This research demonstrates a more accurate and repeatable
method for quantifying the degree of dust particle contamination

on a periodic nanostructure. The proposed method of quantifying
dust contamination uses SEM imaging to resolve features smaller
than possible with traditional optical methods. In addition, Fourier
filters prevent any periodic elements of the underlying substrate
from being counted as particles. In the experiment, the proposed
method showed an increase in detected particle densities from 0.24
and 2.55 particles/100 μm2 for confocal and SEM, respectively. This
result demonstrates significant improvement in the detection of
dust particles on a periodic nanostructure, allowing for the
improved quantification of dust-mitigating properties. However,
these results are best used for relative comparisons as problems
with overcounting due to feature dilation as well as grouping
persist but are constant among equally magnified images. In addi-
tion, the proposed SEM detection method can be tuned for a wide
range of applications that involve the detection of defects on a peri-
odic structure. This can include the inspection of semiconductor
masks, detection of particles in nanobiology, and detection of
nucleation sites on a structured surface.
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