Brute Force Data Integration in CrysAlisPro

For some problem data sets, you can use a feature in CrysAlisPro using a batch job to adjust several parameters sequentially when integrating your data. This allows you to adjust parameters such as mask size, background measurement, resolutions limits, etc. Essentially, it allows you to do data reduction with options and change many parameters. For the different changes you make, CrysAlisPro will generate an hkl and cif_od file for each set of changes. You can then take all the different hkl files and copy them into the same OLEX2 or WinGX folder and run least-squares using the different hkl files and choose the one that gives the best result in terms of R1, wR2, Rint, etc.

This procedure is discussed in a video describing data processing of Electron Diffraction data. I have uploaded the video to my UTBox account in the folder, 3DED-workshop-videos. This procedure is described in the video CrysAlisPro data reduction. It is discussed near the end of the video.

Use care when using one hkl file over another. The value for wR2 is influenced by the weighting scheme used so you should allow the weighting factors to refine. This is the default in OLEX2 but the weight can be fixed. I look at the $I/\sigma(I)$ values, the % completeness and the GooF value as well as the agreement factors.

Don't expect dramatic differences but you may lower certain parameters so that they become acceptable to the CIF police.

Open your data in CrysAlisPro.

Type xx proffitloop (note the two f's) and hit the enter key

The data reduction menu will appear. Here you can remove frames that are unusable because of ice buildup or extremely high background because the X-ray beam clips the steel pin of the cryoloop.

	data reductio	on assistant (1.	0.30)				
Profile	fitting	data red	uction		Ç	RYSAL	IS ^{PRO}
Step 1: Orientatio	n matrix for dat	a reduction					
UB - matrix: -0.040133 0.156661 0.005542 10.01042 (109.03721 (V = 4335	-0.066673 0.004602 0.041009 0.00078) 0.02279)	0.013041 (0.017433 (0.071896 (21.68752 (97.06713 (0.000022 0.000010 0.000022 0.00601) 0.01139)	0.000020 0.000008 0.000019 22.21102 103.16860	6.000017 6.000007 6.000016 (0.003 (0.013))) 506) 298)	
Selected cell (44 10.0104	from UM rr/UM 1 21.6875 2	ttt/OM f): 2.2110 109.03	72 97.06	71 103.1680	5 .	₽	
Lattice extinctio	from UM rr/UM 1 21.6875 2 ons (filter Brava Iter (P-lattice)	s lattice extincti	72 97.06" ons) Inc	ommensurate	s structures a reduction	ар 3	
Selected cell (44 10.0104 Lattice extinction Don't use f Use filter for	from UH rr/UH 1 21.6875 2 ons (filter Bravai Iter (P-lattice) r:	is lattice extincti	72 97.06' ons) Inc •	ommensurate Normal data Single q-ve Other (redu	structures a reduction ctor ction list)) (HKL) Edit q	m=0 Load

Bad backgrounds usually occur at the end of the framesets. You can use the 'Edit end num of selected run' to instruct CrysAlisPro to skip the affected frames starting at the frame number you select. If the issue is frames from the start of a run use 'Edit start num of selected run'.

		SAIISPTO (lata redu	iction as	sistant (1.	.0.30)						
									3			PRO
	۲r	ofile	fittin	g dat	ta red	ucti	on			(15/	ALIS	>
Step	2: 1	Experiment	t run list fo	ordata re	duction							
	I	EVENT 3	022	N Deserved	LARE CI		- OFF CD	EEN				
Run	list:	E:\FN1-2	UZZ\Rose	Brenna	VDC855_GI	REENING	C855_GR	EEN				
										* rodh	voix	
										1		
lmag	e di	r: E:\FNT-	-2022\Ro	se∖Brenn	a\bc855_(GREEN'	\frames					
+	type	start	end	width	exposure	omega	detector	kappa	phi	start	end	
		-11.00	16.00	0.50	17.00	-	-47.29	23.00	-46.00	1,	54	
1							104 52	22.00				
1		-173.00	-95.00	0.50	62.00	-	-104.32	-20.00	148.00	1,	156	
1 2 3	•	-173.00 -122.00	-95.00 -37.00	0.50	62.00 17.00	-	-47.29	-23.00	148.00	1,	156	
1 2 3 4	0 0 0	-173.00 -122.00 -59.00	-95.00 -37.00 -32.00	0.50 0.50 0.50	62.00 17.00 62.00	-	-47.29	-23.00 -23.00 77.00	148.00 148.00 -150.00	1, 1, 1,	156 170 54	
1 2 3 4 5	0 0 0	-173.00 -122.00 -59.00 40.00	-95.00 -37.00 -32.00 116.00	0.50 0.50 0.50 0.50	62.00 17.00 62.00 17.00	-	-47.29 -104.52 47.29	-23.00 -23.00 77.00 23.00	148.00 148.00 -150.00 -46.00	1, 1, 1, 1,	156 170 54 152	
1 2 3 4 5 6		-173.00 -122.00 -59.00 40.00 -110.00	-95.00 -37.00 -32.00 116.00 -35.00	0.50 0.50 0.50 0.50 0.50	62.00 17.00 62.00 17.00 62.00	-	-104.52 -47.29 -104.52 47.29 -104.52	-23.00 -23.00 77.00 23.00 125.00	148.00 148.00 -150.00 -46.00 0.00	1, 1, 1, 1,	156 170 54 152 150	
1 2 3 4 5 6 7		-173.00 -122.00 -59.00 40.00 -110.00 -13.00	-95.00 -37.00 -32.00 116.00 -35.00 23.00	0.50 0.50 0.50 0.50 0.50 0.50	62.00 17.00 62.00 17.00 62.00 17.00	-	-104.52 -47.29 -104.52 47.29 -104.52 47.29	-23.00 -23.00 77.00 23.00 125.00 -23.00	148.00 148.00 -150.00 -46.00 0.00 148.00	1, 1, 1, 1, 1, 1,	156 170 54 152 150 72	
1 2 3 4 5 6 7 8		-173.00 -122.00 -59.00 40.00 -110.00 -13.00 95.00	-95.00 -37.00 -32.00 116.00 -35.00 23.00 178.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50	62.00 17.00 62.00 17.00 62.00 17.00 62.00		-104.52 -47.29 -104.52 47.29 -104.52 47.29 104.52	-23.00 -23.00 77.00 23.00 125.00 -23.00 23.00	148.00 148.00 -150.00 -46.00 0.00 148.00 -46.00	1, 1, 1, 1, 1, 1, 1,	156 170 54 152 150 72 166	
1 2 4 5 6 7 8 9		-173.00 -122.00 -59.00 40.00 -110.00 -13.00 95.00 -90.00	-95.00 -37.00 -32.00 116.00 -35.00 23.00 178.00 -22.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	62.00 17.00 62.00 17.00 62.00 17.00 62.00 17.00		-104.52 -47.29 -104.52 47.29 -104.52 47.29 104.52 -47.29	-23.00 -23.00 77.00 23.00 125.00 -23.00 23.00 125.00	148.00 148.00 -150.00 -46.00 0.00 148.00 -46.00 90.00	1, 1, 1, 1, 1, 1, 1, 1,	156 170 54 152 150 72 166 136	
1 2 4 5 6 7 8 9 10		-173.00 -122.00 -59.00 40.00 -110.00 -13.00 95.00 -90.00 -66.00	-95.00 -37.00 -32.00 116.00 -35.00 23.00 178.00 -22.00 25.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	62.00 17.00 62.00 17.00 62.00 17.00 62.00 17.00 17.00		-104.52 -47.29 -104.52 47.29 -104.52 47.29 104.52 -47.29 -47.29	-23.00 -23.00 77.00 23.00 125.00 -23.00 23.00 125.00 77.00	148.00 148.00 -150.00 -46.00 0.00 148.00 -46.00 90.00 -60.00	1, 1, 1, 1, 1, 1, 1, 1, 1,	156 170 54 152 150 72 166 126 182	
1 2 4 5 6 7 8 9 10 11		-173.00 -122.00 -59.00 40.00 -110.00 -13.00 95.00 -90.00 -66.00 -25.00	-95.00 -37.00 -32.00 116.00 -35.00 23.00 178.00 -22.00 25.00 13.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	62.00 17.00 62.00 17.00 62.00 17.00 62.00 17.00 17.00 17.00		-47.29 -104.52 47.29 -104.52 47.29 104.52 47.29 104.52 -47.29 -47.29 -47.29 47.29	-23.00 -23.00 77.00 23.00 125.00 -23.00 23.00 125.00 77.00 -19.00	148.00 148.00 -150.00 -46.00 0.00 148.00 -46.00 90.00 -60.00 0.00	1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	156 170 54 152 150 72 166 136 182 76	
1 2 3 4 5 6 7 8 9 10 11 12		-173.00 -122.00 -59.00 40.00 -110.00 -13.00 95.00 -90.00 -66.00 -25.00 -21.00	-95.00 -37.00 -32.00 116.00 -35.00 23.00 178.00 -22.00 25.00 13.00 17.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	62.00 17.00 62.00 17.00 62.00 17.00 62.00 17.00 17.00 17.00 17.00 17.00		-104.32 -47.29 -104.52 47.29 -104.52 47.29 104.52 -47.29 -47.29 -47.29 47.29 47.29	-23.00 -23.00 77.00 23.00 125.00 -23.00 23.00 125.00 77.00 -19.00 -19.00	148.00 148.00 -150.00 -46.00 0.00 148.00 -46.00 90.00 -60.00 0.00	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	156 170 54 152 150 72 166 136 182 76 76	
1 2 3 4 5 6 7 8 9 10 11 12		-173.00 -122.00 -59.00 40.00 -110.00 -13.00 95.00 -90.00 -66.00 -25.00 -21.00	-95.00 -37.00 -32.00 116.00 -35.00 23.00 178.00 -22.00 25.00 13.00 17.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	62.00 17.00 62.00 17.00 62.00 17.00 62.00 17.00 17.00 17.00 17.00	-	-104.32 -47.29 -104.52 47.29 104.52 47.29 104.52 -47.29 -47.29 -47.29 47.29 47.29	-23.00 -23.00 77.00 23.00 125.00 -23.00 23.00 125.00 77.00 -19.00 -19.00	148.00 148.00 -150.00 -46.00 0.00 148.00 -46.00 90.00 -60.00 -60.00	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	156 170 54 152 150 72 166 182 76 76 76	

Keep selecting Next until you come to the output menu.

Proffit: CrysAlisPro data reduction assistant (1.0.30)

o. ouput		
You may channe the output name and directory to keen o	eculte of data r	eductions under different
ameter sets (UB, supercells)	esults of data i	
put file name:		
nalization ontions		
nalization options	C Manua	4
nalization options Image: state	C Manua	1
nalization options Image: Space group determination Image: Automatic Image: Automatic structure solution (AutoChern) Image: Automatic structure solution (AutoChern)	C Manua	AutoChem options
nalization options Image: Space group determination Image: Automatic Image: Automatic structure solution (AutoChem) C53H47P3CoBi Image: Automatic structure solution (AutoChem) C53H47P3CoBi	C Manua	AutoChem options
nalization options Image: Space group determination Image: Automatic Image: Automatic structure solution (AutoChern) C53H47P3CoBi Z= 4.00 Image: Completeness computation: Image: Completeness computation: Image: Completeness computation:	C Manua	AutoChem options

Be sure to select **Automatic** if you want the data reduction to continue in background mode. If you select manual, you will need to intervene at the end of each integration cycle. There may be many cycles depending on your choices.

×

Select Finish. The profile fitting loop selections menu will appear. I use the 'Use short names' feature because it is easier to see the full name of the hkl file used in the refinement. There should be some slight differences in the refinement values depending on the selections chosen. With some luck, you can turn a marginal refinement model into one that is satisfactory to a reviewer.

Proffit loop dialog (1.1.0) × General options Single run Multi-run Follow sudden (discontinuous) 🔿 Yes 🔍 No ☐ Both changes of sample orientation Follow profile size changes C Yes 📀 No □ Both with incidence angle Adjust masks according to C Yes 📀 No □ Both prediction uncertainty Min Max Step C Yes 🔍 No Range Override mask size C Yes 🔍 No □ Both Smart background □ Both Reflection spot drift 🔿 Yes 🛛 🖲 No Use short names Additional info Addition file info Summary Number of loops to complete calculations: = 1 Sample file name: 7MACH_pl Note: the following dialog generates only the script with all selected options. In order to start computations type SCRIPT in command line and select PROFFITLOOP.MAC file. OK Cancel

As you select different options, the value for the number of loops to complete calculations will change. As you will see, this number can be large. With each selection, the sample file name will appear indicating the name of the hkl and cif_od files created.

When you have completed your selections, hit OK. The Command Shell will appear. Type **script** in the shell. The data directory will come up and a file 'proffitloop.mac' will appear. Double click on this file to start the data reduction process. The integration will run sequentially. You can follow the progress in the Start/Stop window under Data Reduction.

	31C 7 DAIA(E) 7 THT 2013 7 IIId		0 × 3ca	ren / Miller I
ganize 🔻 🛛 New folde	r			🎫 🕶 🚺 🚺
wingx_Q-145-pr ^	Name	Date modified	Туре	Size
Box Sync	bup	11/20/2019 9:09 AM	File folder	
	expinfo	11/20/2019 9:09 AM	File folder	
• OneDrive	📙 frames	11/20/2019 9:10 AM	File folder	
This PC	log	4/1/2022 11:08 AM	File folder	
3D Objects	movie	11/20/2019 9:10 AM	File folder	
Desktop	plots_dc	11/21/2019 1:23 PM	File folder	
	plots_red	11/21/2019 1:23 PM	File folder	
Deumleads	struct	6/24/2020 11:38 AM	File folder	
Downloads	tmp	4/1/2022 11:08 AM	File folder	
J Music	proffitloop.mac	4/1/2022 11:16 AM	MAC File	1 KB
Pictures				
Videos				
🚔 Windows (C:)				
🚊 DATA (E:) 🗸 🗸				