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EXECUTIVE SUMMARY 

Extreme heat exposure has emerged as a significant public health challenge, particularly in urban regions. 

This study evaluates the impact of heat vulnerability on Emergency Medical Service (EMS) incidents in 

Austin, Texas, exploring the relationship between extreme heat, social vulnerability, and EMS accessibility. 

Our findings provide valuable insights for urban planners and policymakers, helping to prioritize resources 

for addressing heat-related health risks in vulnerable neighborhoods. The research utilizes data-driven 

methods, such as PCA analysis, bivariate mapping, and negative binomial regression, to examine heat 

exposure, sensitivity, and adaptive capacity across different regions of Austin-Travis County. 

Key Findings of this research include: 

1) The peri-urban fringes in the east and north Austin (i.e., Pflugerville) show high overlap between 

heat vulnerability and longer EMS response times. 

2) Urban centers and east Austin have the largest overlap between heat vulnerability and heat-related 

EMS incidents. Hispanic communities in north Austin also showed significant overlap. 

3) Neighborhoods with more impervious surfaces, higher Hispanic and Black populations, individuals 

living alone, and the elderly are more likely to experience increased heat-related EMS incidents. 

4) Neighborhoods with higher percentages of children, road density, green spaces, and housing 

density are more likely to experience a decrease in heat-related EMS incidents. 

5) Hispanic populations are more likely to experience heat-related EMS incidents throughout all 

periods, with a slightly corresponding pattern with monthly temperature. 

6) The percentage of housing units without an air-conditioning system is only significant in August, 

increasing the heat-related EMS incidents by about 8.2% in those neighborhoods. 

7) Higher heat exposure and sensitivity, combined with lower adaptive capacity, are likely to increase 

heat-related EMS incidents in neighborhoods. 

8) Heat vulnerability assessments and bivariate mapping are powerful tools for allocating financial 

and technical mitigation services. Social vulnerability factors, such as race and economic 

challenges, are highly associated with increased heat-related illnesses. Specific heat mitigation 

strategies for socially isolated populations or residents with poor conditions, as well as urban 

resilience initiatives, are essential for improving community health outcomes. 
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ABSTRACT 

Extreme heat exposure and sensitivity have been a growing concern in urban regions as the effects of 

extreme heat pose a threat to public health, the water supply, and the infrastructure. Heat-related illnesses 

demand an immediate Emergency Medical Service (EMS) response since they might result in death or 

serious disability if not treated quickly. Despite increased concerns about urban heat waves and relevant 

health issues, a limited amount of research has investigated the effects of heat vulnerability on heat-related 

illnesses. This study explores the geographical distribution of heat vulnerability in the city of Austin and 

Travis County areas of Texas and identifies neighborhoods with a high degree of heat vulnerability and 

restricted EMS accessibility. We conducted negative binomial regressions to investigate the effects of heat 

vulnerability on heat-related EMS incidents. Heat-related EMS calls have increased in neighborhoods with 

more impervious surfaces, Hispanics, those receiving social benefits, people living alone, and the elderly. 

Higher urban capacity, including efficient road networks, water areas, and green spaces, is likely to reduce 

heat-related EMS incidents. This study provides data-driven evidence to help planners prioritize vulnerable 

locations and concentrate local efforts on addressing heat-related health concerns.  

 

 

 

Keywords: 

Extreme heat, Social vulnerability, Environmental justice, EMS incidents, Climate resilience   
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1. INTRODUCTION 

Urban heat exposure and sensitivity is a developing concern in urban societies, as the metropolitan heat 

island effect causes substantially higher temperatures in urban regions compared to adjacent rural 

surroundings, posing a significant climate-related hazard (Bixler et al., 2021). Extreme heat events, 

increased due to climate change, threaten public health, the water supply, and the state's infrastructure in 

urban areas (Luber and McGeehin, 2008; Mitchell et al., 2016). Heat-related illnesses, which often arise 

due to extreme heat events, require extremely time-sensitive Emergency Medical Services (EMS), given 

that heat-related illnesses can cause permanent disability or death if emergency treatment is not provided 

in a timely manner (CDC, 2011; Luber and McGeehin, 2008). Thus, it is important to understand the 

relationship between extreme heat vulnerability and local EMS service accessibility. 

More recent studies have made advances in understanding if urban heat vulnerability is associated with 

heat-related illnesses. Studies have demonstrated that environmental factors and urban landscape features 

are critically significant in heat-related health (Kim and Kim, 2017; Peng et al., 2016), while research on 

heat sensitivity that causes particular populations to be more vulnerable to heat exposure has proven that 

heat-related illnesses increase with low socioeconomic status (Li et al., 2021a). However, there has been 

limited research on whether heat adaptive capacity in urban areas is associated with heat-related illnesses 

and can alleviate detrimental health outcomes, given the context that heat vulnerability is anchored by three 

pillars: sensitivity, exposure, and adaptive capacity (Mallen et al., 2019; Inostroza et al., 2016). Thus, a 

comprehensive approach to assessing heat vulnerability must be developed, and the extent to which heat 

vulnerability components exacerbate heat-related illnesses by region must be predicted. Such an 

examination will provide evidence for heat-related health interventions from urban planning perspectives 

and guide policies targeted at addressing spatial disparities in heat vulnerability attributes.  

The three primary research objectives of this study are: (1) to identify the geographic distribution of heat 

vulnerability by integrating urban heat exposure, sensitivity, and adaptive capacity; (2) to determine areas 

with higher heat vulnerability and reduced accessibility to EMS services; and finally (3) to conduct a 

regression analysis to investigate the impacts of heat vulnerability (defined by extreme heat exposure, 

sensitivity, and adaptive capacity) on the incidence of EMS calls.  

1.1. Urban Heat Intensity 

Extreme heat events have adverse effects on human physiology and health. Exposure to high temperatures 

for extended periods is a causal factor for various heat-related illnesses, including heat cramps, heat 
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syncope, heat exhaustion, heatstroke, and death (Luber and McGeehin, 2008). Extreme heat was the leading 

cause of death due to weather in the United States from 2000 to 2009 (CDC, 2011). In addition to mortality, 

extreme heat events can exacerbate existing medical conditions and place more stress on emergency rooms 

and the hospital system (CDC, 2011). Despite the relatively high mortality of extreme-heat events, the 

epidemiology of extreme heat events is limited due to the non-notifiable conditions and the 

misclassification of heat-related deaths in the United States. Heat-related illnesses often present a variety 

of symptoms and exacerbate existing conditions, making it challenging to identify the role of heat (Keatinge 

et al., 1986; Luber and McGeehin, 2008). This factor, along with the historical lack of common criteria for 

defining heat-related illnesses, may downplay the true extent to which extreme heat events have on 

morbidity and mortality (Luber and McGeehin, 2008).  

Previous studies on human physiology have attempted to characterize the link between extreme heat 

exposure and medical outcomes, such as thrombosis (blood clots), serum cholesterol level, atherosclerosis, 

and mortality caused by heart attack or stroke (Guo et al., 2018; Halonen et al., 2011; Keatinge et al., 1986; 

Petkova et al., 2013). Urban heat islands are used to characterize the tendency for urban areas to be warmer 

than less developed suburban or rural areas, and its urban heat island effect may contribute to both more 

intense and longer-lasting heat events for urban populations (Heisler and Brazel, 2010; Weber et al., 2015). 

However, this phenomenon demonstrates a degree of spatial heterogeneity within urban areas due to 

variations in environmental factors, including land use, vegetation, and built environment (Cheng et al., 

2021; Declet-Barreto et al., 2016). In addition, urban heat intensity is perpetuated by socioeconomic 

characteristics (Anderson and Bell, 2009; Gronlund, 2014; Rosenthal et al., 2014). Hence, such 

socioeconomic and demographic characteristics that influence individuals' sensitivity to environmental 

risks may assist in explaining geographic disparities. 

1.2. Heat Vulnerability  

Previous studies have divided heat vulnerability into three major categories: sensitivity, exposure, and 

adaptive capacity (Cheng et al., 2021; Mallen et al., 2019; Inostroza et al., 2016). Among the key variables 

that have been utilized to characterize heat exposure, land surface temperature (LST) is one of the most 

extensively used meteorological indicators in recent research examining heat-related vulnerability and 

population health hazards (Aminipouri et al., 2016; Buscail et al., 2012; Li et al., 2021a; Weber et al., 2015). 

The amount of impervious cover area is also commonly used as an indicator as it absorbs energy from the 

sun resulting in hotter urban environments (Declet-Barreto et al., 2016). Vegetation or tree canopy density 

has been established as having a regulatory effect on LST (Declet-Barreto et al., 2016).  
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Heat sensitivity points to variables that may make individuals particularly susceptible to adverse health 

outcomes due to exposure to extreme heat. Race and ethnicity are crucial variables due to their association 

with lower income, poorer health conditions, living areas with sparse vegetation and more heat-absorbing 

surfaces, fewer air conditioning systems, and/or outdoor labor (Gronlund, 2014; Nayak et al., 2018). 

Similarly, households with a lower socioeconomic status – often measured by populations below the 

poverty line or receiving social benefits – may not have the financial resources to access adequate medical 

care before and after an extreme heat event (Gronlund et al., 2014). Age is another critical factor that 

increases heat sensitivity. The elderly face chronic illnesses or an inability to regulate body temperature 

(CDC, 2017; Basu and Ostro, 2008). Infants and young children may have a metabolic activity that produces 

more heat and lower cardiac output than adults (Bytomski and Squire, 2003; Krous et al., 2001).  

Recent studies have explored heat adaptive capacity that considers factors that allow individuals and 

communities to adjust to extreme heat events. Poor housing and domestic conditions (i.e., housing 

deterioration with heat-susceptible exterior walls, the unavailability of an air-conditioning system to cool 

the house during heatwaves, limited access to internet or telephone services) may expose susceptible 

residents to extreme heat, restricting access to local resources designed to mitigate extreme heat events such 

as cooling stations and weather forecasts. In addition, social isolation makes it harder for individuals to 

travel to cooler locations or contact EMS if they start experiencing early symptoms of heat-related illnesses 

(Gronlund et al., 2014; Kim et al., 2020). Recent research has also shed light on the vital role of urban 

infrastructures, such as road networks, urban landscapes, or water bodies, in mitigating heat exposure and 

heat-related illnesses (Kim et al., 2017; Lee and Brown, 2022).   

1.3. Extreme Heat and Emergency Medical Service (EMS) 

Emergency medical services are essential as there is a small window of time for intervention before health 

is harmed by heat waves (CDC, 2011; Luber and McGeehin, 2008). Previous studies on extreme heat 

impacts on EMS services have demonstrated an increase in EMS calls during heat waves (Kue and Dyer, 

2013; Lee and Brown, 2022; Zottarelli et al., 2021). Studies have also demonstrated the significant 

moderating impact of social vulnerability, such as age, race, family composition, and education levels, on 

heat-related EMS calls (Calkins et al., 2016; Lee and Brown, 2022; Xu et al., 2013; Zottarelli et al., 2021; 

Li et al., 2021a).   

Although research on the influence of extreme heat events on heat-related diseases has thus far concentrated 

on social vulnerability factors, built-environmental features, and more recently, geographic inequalities, 

few studies have investigated heat vulnerability as a composite of a model organized by heat exposure, 



 

Page | 11  
 

sensitivity, and adaptive capacity, to find the links with heat-related illnesses. Hence, the extent to which 

communities with increased heat vulnerability, as measured by the three components, report a higher rate 

of heat-related health consequences should be investigated. Such research will give policymakers data-

driven information and guide policies to prioritize communities with increased heat vulnerability and fewer 

EMS services. To address this gap, our study will focus on the following research questions: 

• What is the geographic distribution of heat vulnerability in Austin and Travis County regarding 

heat exposure, sensitivity, and adaptive capacity? 

• Is the heat vulnerability associated with the response time of EMS services and the number of 

incidents? 

• What heat vulnerability factors impact EMS incidents? 

2. RESEARCH DESIGN 

2.1. Study Area and Period  

Austin-Travis County, Texas, was selected given the unprecedented urbanization and rapidly increasing 

urban heat island zones in the area over the past decades. Since 2000, Austin's economic potential has 

resulted in population increase and typically accompanying urban difficulties such as housing affordability, 

a lack of infrastructure, and excessive energy and water utilization. Such issues have been coupled with 

environmental threats from extreme weather, putting a disproportionate burden on underprivileged 

populations. The geographic disparity determines the different levels of exposure and sensitivity to climate 

risks of neighborhoods.  

This study is limited to a constrained time period from May to September 2020 and 2021. Figure 1 illustrates 

the typical weather in Austin based on a historical monthly weather report from 1981 to 2019. The hot 

season lasts for about five months, from May to September, and it is consistent with other studies on heat 

and health in the U.S. (Calkins et al., 2016; Zottarelli et al., 2021).       
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Figure 1. Average high and low temperatures (ºF) and precipitation (inch) by month in Austin and 

Travis County. Data Source: U.S. Climate Data.   

 

2.2. Data Sources, Construct, and Measures 

EMS Incidents and Response Time. The emergency medical services (EMS) incident data was obtained 

from the Austin-Travis County Emergency Medical Services (ATCEMS). The time span for this study, the 

summer season from May to September, was chosen because temperatures in Austin are at their highest, 

and extreme heat events are much more likely than in other seasons. The number of incidents by month is 

represented in Figure 2.  

 
Figure 2. The number of heat-related EMS incidents from May to September 2020 and 2021. Data 

Source: ATC EMS Service.  
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The EMS dataset was cleaned and processed using Python. The data were filtered to include specific calls 

for heat-related medical conditions, broadly selected as proxy events for extreme heat cases based on the 

literature (Keatinge et al., 1986; Halonen et al., 2011; Luber and McGeehin, 2008).i The total of 28,431 

EMS call records were used in this study. Hospital coordinates were then added to the dataset using Google 

Maps to determine the longitude and latitude of the hospitals listed in the dataset. One component of the 

reaction time was calculated by subtracting the time when the call was first picked up and when the unit 

first arrived on the scene. This element indicates how long it took for an ambulance to arrive at the scene 

of the emergency. Using ArcGIS Pro, the second reaction time component was calculated by estimating the 

shortest routes using existing road networks and their respective driving times and distances from the call 

location to the hospital. Then the total response time was calculated by adding these two reaction times.  

Heat Exposure. This study considered land surface temperature (LST), impervious cover, and tree canopy 

as proxies for environmental factors measuring heat exposures by region. To determine LST, we used 

Landsat 8 satellite images available from May to September 2020 and 2021, with land cloud coverage 

below 20%, and the calculated LST pixel scores were averaged at a block group level.ii In addition, urban 

imperviousness and tree canopy layers provide a relative assessment of heat risk phenomena (Bixler et al., 

2021). In this study, the digitized Impervious Cover of 2019 data and Tree Canopy of 2018 data were 

collected through Austin's Open Data Portal and averaged at the block group level using ArcGIS Pro.  

Heat Sensitivity. The American Community Survey (ACS) 2015-2019 data from the U.S. Census were 

collected and geocoded to the corresponding block group using STATA 16.1. We included sensitivity 

factors: (1) Hispanics, (2) households receiving any social benefit, (3) Non-Hispanic Blacks, (4) persons 

living alone, and (5) children (Wilson and Chakraborty, 2019; Inostroza et al., 2016; Nayak et al., 2018). 

From the total number of block groups in Travis County (580), two block groups, one that corresponds to 

Austin-Bergstrom International airport and another that implemented floodplain buyouts, were omitted 

from the dataset because they have no population.  

Heat Adaptive Capacity. Adaptive capacity includes access to communication technologies, a water supply, 

medical services, roads, or cooling facilities (Mallen et al., 2019; Cheng et al., 2021). This study adapted 

factors discussed in previous research and categorized them into social isolation, domestic capacity, and 

urban capacity. First, social isolation factors shape the adaptive capacity of older adults, old housing units, 

and households without an internet connection or computer installation. Second, the availability of 

telephone services and air-conditioning systems is counted as proxies to assess domestic adaptive capacity. 

Finally, urban adaptive capacity was estimated using infrastructure factors in neighborhoods, such as road 
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density, water amenities, and green spaces. The 2015-2019 ACS data TxDOT roadway inventory dataset, 

GIS data, and Landsat 8 satellite images were collected and analyzed through ArcGIS Pro. Table 1 depicts 

definitions and descriptive statistics for variables used in this study. Some variables were omitted when 

conducting specific analyses. This will be discussed in detail in the result section.  

 

Table 1. Definitions and descriptive statistics for variables used in the principal component analysis 

(PCA), bivariate mapping, and negative binomial regression (NBR) models (N = 578). 
Category SubCategory Variable Description Mean SD Min Max 

EM
S 

in
ci

d
en

ts
 

an
d

 
re

sp
o

n
se

 

ti
m

e
 

EMS incidents  EmsTotal Total Number of heat-related EMS incidents in a block group from 
May to September 

48.96 76.33 0 1477 

EmsMay The number of heat-related EMS incidents in a block group in May  9.35 15.17 0 295 

EmsJune The number of heat-related EMS incidents in a block group in June 9.61 14.52 0 272 

EmsJuly The number of heat-related EMS incidents in a block group in July  10.13 16.01 0 302 

EmsAug The number of heat-related EMS incidents in a block group in 
August 

10.20 16.69 0 320 

EmsSep The number of heat-related EMS incidents in a block group in 
September 

9.68 15.20 0 288 

EMS response 
time 

EmsTime Average response time of heat-related EMS incidents in a block 
group (minutes)  

19.76 5.83 0 45.17 

H
ea

t 

Ex
p

o
s

u
re

 Environmental 
Factors 

LST Land Surface Temperature (°C)  36.20 2.79 14.01 39.96 

Impervious  Percentage of Impervious Cover (%)  43.31 17.54 1.76 89.76 

NoTree Percentage of Non-Tree Canopy Coverage (100-TC) (%) 72.22 17.02 16.33 99.94 

H
ea

t 

Se
n

si
ti

vi
ty

 SocioECconomic 
Status 

Hispanic Percent population that is Hispanic (%) 31.49 22.79 0.00 96.93 

SocialBenefit Percentage of households receiving any kind of social benefits (%) 9.73 13.41 0.00 75.00 

Social Minority Black Percentage population that is Black (Non-hispanic Black) (%) 7.20 9.02 0.00 45.45 

LivingAlone Percentage of persons living alone (%) 31.03 15.54 0.00 81.45 

Child Percentage of Children under 5 years old (%) 52.19 7.08 0.00 73.95 

H
ea

t 
A

d
ap

ti
ve

 C
a

p
ac

it
y 

Social Isolation Elderly  Percentage of population 65 years of age and over (%) 10.69 7.75 0.00 46.18 

OldHome Percentage housing units built before 1980 (%) 38.05 29.55 0.00 100.00 

NoComputer Percentage of households without internet connection or 
computer (%) 

11.75 11.46 0.00 63.43 

Domestic 
Capacity 

NoPhone Percentage of households with no telephone service available (%) 1.63 2.30 0.00 17.45 

NoHVAC Percentage of housing units without HVAC system (%) 0.35 0.95 0.00 5.84 

Urban Capacity RoadDensity Roads in a block group area (km/km2)  5.12 3.01 0.15 19.96 

Water Percentage of Water Area (%)   1.20 4.78 0.00 38.67 

GreenSpace The normalized difference vegetation index (NDVI)  0.22 0.04 0.10 0.30 

Confounding Variables  HUDensity Number of housing units in a block group area, Count per sqft 
(X10000)  

0.86 0.80 0.00 5.29 

Popdensity  Number of populations in a block group area, Count per sqft 
(X10000) 

1.94 1.96 0.01 18.21 

 

2.3. Methods  

PCA Analysis. To develop the heat vulnerability index (HVI) for the Austin-Travis County area, a principal 

component analysis (PCA) with varimax rotation was performed. This approach helps identify groups of 

covariant heat risk factors as represented by a number of principal components (PC), which indicate 

variables with synergistic effects (Wolf and McGregor, 2013). From the 25 initial variables, five variables 

(the percentage of foreign-born households, those who speak English “less than very well,” below the 

poverty level, with a disability, and unemployment) were excluded due to data availability at the block 
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group level. The commonly used normalization technique in social indicator research, the min-max feature 

scaling methods, were then used to normalize the data (Bixler et al., 2021; Tarabusi and Guarini, 2013).  

  𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑋𝑚𝑖𝑛 

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (1) 

A PCA analysis was conducted on the normalized dataset to assess the variance of the variables and identify 

optimized components. Ten variables were omitted, leaving 16 variables to build the Heat Vulnerability 

Index (HVI) at the block group level. The components above the eigenvalue of 1.0 were selected, with the 

loading score for each factor (> |.30) based on our sample size of 578 (Hair et al., 1998). Table 2 identifies 

six clustered sub-categories identified by PCA analysis: environmental factors, socioeconomic status, social 

minority, social isolation, domestic capacity, and urban capacity. iii Based on the literature, they were 

grouped into heat exposure, sensitivity, and adaptive capacity. The orientation of all variables, except three 

in urban capacity, indicates a positive direction, corresponding to a higher heat vulnerability, while the 

direction of three variables in urban capacity was adjusted in an opposite way to combine all variables for 

calculating the numerical vulnerability score with the same cardinality.  

Table 2. Principal component analysis summary (variance) at the block group level. 

Variable 

(Normalized) 

Loading 

Scores 
Category Sub-category Component Eigenvalue 

Variance 

Explained (%) 

1 LST 0.3279 

Heat Exposure Environmental Factors Comp1 3.79 23.70 2 Impervious 0.3237 

3 NoTree 0.4091 

4 Hispanic -0.3864 

Heat 

Sensitivity  

Socioeconomic Status Comp2 2.36 14.78 
5 SocialBenefit -0.3178 

6 Black 0.3216 

Social Minority Comp6 1.07 6.71 7 LivingAlone 0.3321 

8 Child 0.7359 

9 Elderly 0.355 

Heat Adaptive 

Capacity  

Social Isolation Comp5 1.09 6.83 10 OldHousing 0.3418 

11 NoComputer 0.3190 

12 NoPhone 0.5598 
Domestic Capacity Comp4 1.15 7.18 

13 NoHVAC 0.5587 

14 RoadDensity 0.4373 

Urban Capacity* Comp3 1.49 9.30 15 Water -0.4249 

16 GreenSpace 0.4226 

* The expected cardinality is negative for urban capacity in the vulnerability index. Thus, the normalized values were inverted 

when creating the composite heat vulnerability index.  

** Total Variance Explained 68.50% 

 

Bivariate Mapping. In this study, bivariate mapping was utilized to identify overlapping areas with 

increased heat vulnerability and lower heat-related EMS services. The heat vulnerability index was 

generated using the result of principal component analysis on a scale of 0 to 1, where a score of 0 represents 
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optimal conditions with decreased heat vulnerability and a score of 1 reflects the greatest and worst heat 

vulnerability scores. Heat-related EMS services were measured by two aspects: their response time and the 

number of incidents. A longer response time was considered a lower EMS service. Each variable was 

classified into three discrete classes using quantile classification.  

Negative Binomial Regression (NBR) Model. To determine whether the heat vulnerability – including heat 

exposure, sensitivity, and adaptive capacity – impacts the heat-related EMS incidents, we tested negative 

binomial regression models, commonly used for a nonnegative count dependent variable with skewed 

distribution and overdispersion (Ver Hoef and Boveng, 2007). Data preparation and statistical analysis were 

performed using STATA 16.1. The following distribution provides the probability of y equaling m 

conditional on the linear combination of x1, x2, ... and parameter λ (Long and Freese, 2006). 

 P(y = m |𝜆, 𝑥1, 𝑥2 … ) =  
𝑒−𝜆𝜆𝑚

𝑚!
 (2) 

Compared to Poisson models or zero-inflated models, we chose the negative binomial models because (1) 

overdispersion exists in the data in that the variance is larger than the mean value (preferring a Poisson 

model), and (2) there is no excessive number of zeros (favoring than zero-inflated models). In this study, 

the negative binomial regression models predict an incidence rate ratio (IRR), which refers to the strength 

of the association between the exposure and the outcome. An IRR greater than 1.0 indicates a positive 

association or increased rate for the heat-related EMS calls with increased heat vulnerability factors, while 

an IRR less than 1.0 shows a negative association between the predictors and heat-related EMS incidents. 

Total counts of incidents were divided into five categories by month from May to September to test NBR 

models for a monthly comparison. The authors initially conducted univariate analyses to test the impact of 

heat vulnerability on the EMS incidents. By checking multicollinearity and the statistical significance of 

each variable with a significant level of 0.10, five variables – LST, NoTree, OldHousing, NoComputer, and   

– were excluded from the final models.  

3. RESULTS  

3.1. Heat Vulnerability Index  

Figure 3 exhibits the heat exposure, sensitivity, adaptive capacity, and the composite heat vulnerability 

index (HVI) in the Austin-Travis County area. The normalized heat exposure index score ranges between 

0, denoting a minor amount of exposure to extreme heat, and 1, indicating the most exposure (dark red in 

Figure 3).iv Block groups in the urban core and in the north and south of Austin have some heat risk 
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compared to the suburban areas. However, when it comes to the heat sensitivity index, central-east and 

northeast Austin show higher heat sensitivity scores. Figure 3c displays the geographic distribution of the 

heat adaptive capacity score. For consistency in the cardinality of the values, the direction of the values in 

urban capacity factors was inverted to represent 0.00 as the lower risk, meaning a higher adaptive capacity, 

whereas a value of 1.00 represents neighborhoods with a higher risk in adaptive capacity. The distribution 

pattern is dispersed in Travis County, showing the urban core and central Austin areas at higher risk in 

adaptive capacity. Finally, Figure 3d exhibits the composite HVI score, ranging between 0.00 (most minor 

heat vulnerability, shaded ivory) and 1.00 (greater heat vulnerability, shaded dark red). There is a definite 

geographical pattern of block groups with increased heat vulnerability along with the areas of the south, 

north, and southeast Austin.  

 

Figure 3. Heat vulnerability index (HVI) score in the Austin-Travis County area. 
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3.2. Heat Vulnerability and Heat-related EMS Services.  

The timely response of EMS, including arriving at the scene and transporting the patient to the hospital, is 

an essential adaptive factor for extreme heat events, as a delay may result in severe impairment or heat-

related death (Hu et al., 2020; Xiong et al., 2022; Cui et al., 2021). As presented in Figure 4a, the highest 

levels of concurrence in heat vulnerability and the total response time of heat-related EMS incidents appear 

in block groups in the peri-urban fringes in the east and north Austin (i.e., Pflugerville), showing an 

overlapped vulnerability in heat and EMS services. Block groups in urban cores and downtown areas show 

higher heat vulnerability but a relatively shorter EMS response time due to the proximity to EMS stations 

and hospitals. In contrast, neighborhoods far away from either EMS stations or hospitals inherently generate 

longer EMS response times, exacerbating heat-related health outcomes.  

Figure 4b shows the overall HVI and the number of heat-related EMS events in Austin-Travis County. 

Heat-related EMS events are more common in vulnerable downtown regions. Urban centers and east Austin 

have the largest HVI and heat-related EMS overlap. Hispanic communities had the most overlap between 

HVI and heat-related EMS cases in north Austin. The next section discusses negative binomial regressions 

conducted to quantify the relationships between heat vulnerability factors and heat-related EMS incidents.  
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Figure 4. Bivariate map between (a) the heat vulnerability index (HVI) and total response time of 

EMS services and (b) the heat vulnerability index (HVI) and the total number of heat-related EMS 

incidents. Data Source: City of Austin, ATC EMS, TxDOT. 
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3.3. Impact of Heat Vulnerability on Heat-related EMS Incidents  

Table 3 shows the results of the negative binomial regression analyses of the six models.v Model 1 shows 

the effects of heat vulnerability factors on the overall heat-related EMS incidents occurring from May to 

September 2020 and 2021. Models 2 to 6 show the effects of heat vulnerability features on heat-related 

EMS incidents for each month, from May to September, respectively. The results reveal that heat 

vulnerability features and heat-related EMS incidents vary depending on the block group factors by month. 

Generally, the percentage of impervious areas, Hispanic, Black, persons living alone, and the elderly have 

a statistically significant effect on increasing the rate of heat-related EMS incidents. In contrast, the 

percentage of children, road density, green space, and housing density are more likely to decrease the rate 

of heat-related EMS incidents in the overall period and during each month.  

Table 3. Incidence rate ratios (IRRs) for heat-related EMS incidents with multivariate analysis (N = 

578).  

 

As for heat exposure, in Model 1, a one percent increase in the impervious area in a block group would 

increase the rate of heat-related EMS incidents by 0.8 percent, holding all other variables in the model 

constant. Similarly, in Models 2 to 5, a higher percentage of impervious areas in a block group shows an 

increase in heat-related EMS incidents from May to August, resulting in an adverse impact on heat-related 

health.  

   Total Model Month-specific Models (May to September) 

Category Subcategory Variable 
Model 1 (May-Sep) Model 2 (May)  Model 3 (June)  Model 4 (July)  Model 5 (Aug)  Model 6 (Sep)  

IRR Sig SE IRR Sig SE IRR Sig SE IRR Sig SE IRR Sig SE IRR Sig SE 

Heat 
Exposure 

Environmental 
Factor 

Impervious 1.008 ** 0.004 1.008 * 0.004 1.012 *** 0.004 1.009 ** 0.004 1.009 ** 0.004 1.006   0.004 

Heat 
Sensitivity 

Socioeconomic 
Status  

Hispanic 1.010 *** 0.002 1.009 *** 0.002 1.011 *** 0.002 1.010 *** 0.003 1.013 *** 0.003 1.007 *** 0.002 

Social_Benefit 1.006 
 

0.004 1.007 * 0.004 1.007 * 0.004 1.007 
 

0.004 1.005 
 

0.004 1.006 
 

0.004 

Social Minority Black 1.011 ** 0.005 1.010 ** 0.005 1.010 ** 0.005 1.010 * 0.005 1.014 *** 0.005 1.009 * 0.005 

Living_Alone 1.014 *** 0.003 1.014 *** 0.003 1.013 *** 0.003 1.014 *** 0.004 1.013 *** 0.003 1.014 *** 0.003 

Child 0.991 * 0.005 0.989 ** 0.005 0.985 *** 0.005 0.991 * 0.006 0.991   0.006 0.995   0.006 

Heat 
Adaptive 
Capacity 

Elderly Isolation Elderly  1.010 * 0.005 1.011 * 0.006 1.011 ** 0.006 1.008   0.006 1.010 * 0.006 1.008   0.006 

Domestic Capacity No_HVAC 1.058 
 

0.043 1.051 
 

0.045 1.052 
 

0.044 1.064 
 

0.046 1.082 * 0.048 1.057 
 

0.046 

Urban Capacity Road_Density  0.911 *** 0.015 0.900 *** 0.017 0.905 *** 0.016 0.910 *** 0.017 0.923 *** 0.017 0.914 *** 0.017 

Water 0.990 
 

0.009 0.986 
 

0.009 0.988 
 

0.009 0.994 
 

0.010 0.996 
 

0.010 0.985 
 

0.009 

Green Space  0.916 *** 0.013 0.911 *** 0.014 0.932 *** 0.014 0.923 *** 0.015 0.916 *** 0.014 0.909 *** 0.014 

Con- 
founding 
Factors 

Confounding 
Factors 

Housing Density  0.732 *** 0.078 0.747 ** 0.087 0.801 ** 0.087 0.768 ** 0.094 0.735 ** 0.088 0.660 *** 0.081 

Population 
Density 

1.010   0.040 1.008   0.044 0.955   0.041 0.991   0.047 0.997   0.044 1.057   0.048 

(Constant) 250.845 *** 126.366 66.617 *** 35.827 41.067 *** 21.027 45.145 *** 25.202 43.516 *** 24.069 58.425 *** 31.713 

Pseudo-R2 0.0423   0.0576   0.0593   0.0493   0.0559   0.0489   

*** P < .01; ** P < .05; * P < .1.  
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Regarding heat sensitivity, in Model 1, the percentage of the Hispanic population is more likely to increase 

in heat-related EMS incidents in block groups (IRR = 1.010, 95% CI: 1.001–1.015, p < .01). Similarly, in 

Models 2-6, Hispanic populations are more likely to increase heat-related EMS incidents throughout all 

periods, and its effect shows a slightly corresponding pattern with monthly temperature (Figure 1), showing 

an increase by 1.3 percent in August (p < .01). The percentage of households receiving social benefits is 

positively significant in May and June only, with an increase in heat-related EMS calls. Social minority 

factors have statistically significant impacts on heat-related EMS calls. In Model 1, while the percentage of 

the Black population (IRR = 1.011, 95% CI: 1.002–1.020, p < .05) and persons living alone (IRR = 1.014, 

95% CI: 1.008–1.020, p < .01) have a greater effect on increasing heat-related EMS incidents, an increase 

in the number of children in a block group is more likely to decrease the EMS incidents (IRR = 0.991, 95% 

CI: 0.981–1.001, p < .10). This pattern also appears in Models 2-6. A higher percentage of the Black 

population and persons living alone are more likely to increase heat-related EMS incidents by 0.9% to 

1.4%. Unlike other factors, an increase in the number of children in a block group is expected to decrease 

heat-related EMS incidents in early summer (Models 2 to 4).  

Regarding heat adaptive capacity, in terms of social isolation, a higher percentage of the elderly population 

negatively impacted heat-related health, increasing greater heat-related EMS incidents in neighborhoods. 

Its impact is significant in the periods of May, June, and August. In addition, urban-scale adaptive capacity 

has a statistically significant effect on decreasing heat-related EMS incidents, while domestic-level adaptive 

capacity is insignificant in Model 1. Specifically, Model 1 shows that road density (IRR = 0.911, 95% CI: 

0.882–0.942, p < .01) and green space (IRR = 0.916, 95% CI: 0.891–0.941, p < .01) have strong positive 

impacts on decreasing heat-related EMS incidents. In terms of domestic adaptive capacity, the percentage 

of housing units without an air-conditioning system was only significant in August and was expected to 

increase the heat-related EMS incidents in a block group by about 8.2 percent. Meanwhile, urban adaptive 

capacity was likely to significantly alleviate heat-related EMS incidents throughout the whole of both 

summer periods. Figure 5 shows how the relationships between heat vulnerability factors and heat-related 

EMS incidents vary depending on variables for the overall period and each month.  
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Figure 5. Incidence rate ratios (IRRs) and 95% confidence intervals for May to September (2020-

2021). 

4. DISCUSSION  

This study explores how heat vulnerability indices are associated with the heat-related local EMS services 

based on their response times and incidents. Our results also showed that higher heat exposure and 

sensitivity and lower heat adaptive capacity are likely to increase heat-related EMS incidents in 

neighborhoods, consistent with previous studies tested in different areas or units of analysis (Lee and 

Brown, 2022; Zottarelli et al., 2021).   

According to our findings, locations with higher heat vulnerability also have higher climate disadvantages, 

such as increased hazard exposure, social vulnerability, and a lack of residential and urban capacity, 

worsening community resilience. In this respect, heat vulnerability assessment and bivariate mapping 

provide a powerful toolset for communities in identifying climate-induced challenges and data-driven 

evidence for the allocation of financial and technical mitigation services. Our spatial mapping for 

vulnerability reaffirms to city and community practitioners that areas called the "Eastern Crescent" in east 
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Austin are not only segregated by socioeconomic resources, urban infrastructure, and public/private 

investment, but are also disproportionately influenced by climate risks, with higher heat vulnerability and 

limited EMS services. In accordance with previous studies that have established strong links between 

current and historical segregation and climate-induced health outcomes (Li et al., 2021a; Johnson et al., 

2012), this study highlights major climate risks and climate-induced health disparities that are rooted in 

historical disinvestment and segregation, which also call for policy implications for populations affected 

by such place-based inequalities. 

Our findings from negative binomial regressions corroborate that heat disadvantages are likely to be 

strongly linked to heat-related health concerns. While our results are consistent with previous studies that 

have confirmed the relationship between heat exposure and heat-related health risks (Buscail et al., 2012; 

Ho et al., 2015), the results also extend the discussions that heat-related health outcomes vary by region 

depending on its heat sensitivity and adaptive capacity.  

First, our results show that social vulnerability factors, such as race (i.e., Hispanic and Black), social benefit 

status, and people living alone, are highly associated with heat-related illnesses. Even though 

neighborhoods have the same degree of heat exposure, those with higher heat sensitivity are likely to have 

increased heat-related illnesses. For instance, as demonstrated by HVI mapping and bivariate mapping, 

higher heat vulnerability in neighborhoods of east Austin seem to be partially derived from lower heat 

sensitivity, along with lower heat exposure, which is firmly rooted in historical redlining. As noted by Li et 

al. (2021a), long-term geographical patterns of inequalities in heat-related health should be included in heat-

hazard mitigation programs, which are currently based on entire city-level circumstances. Our research also 

advises that policymakers and practitioners devote resources and capacity building toward addressing 

inequality in these areas. Given that the allocation of financial resources for hazard reduction often favors 

particular communities (Seong et al., 2021; Seong et al., 2022), our findings will support equitable heat 

mitigation initiatives. 

Second, our findings reveal the role of heat adaptive capacity in mitigating heat-related illnesses. Elderly 

isolation and poor housing conditions without an air-conditioning system are statistically significant 

predictors of increased heat-related health risks, consistent with the results of previous research 

(Benmarhnia et al., 2015; Hendel et al., 2017; Johnson et al., 2012). Thus, specific heat mitigation strategies 

for socially isolated populations (i.e., by arranging home visits to the elderly living alone, setting up cooling 

centers or community health centers) or residents with poor conditions (i.e., by providing better transit 

systems to commute to cooling centers or developing funded assistance programs for HVAC system 
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installation and/or replacement) should be established to improve adaptive capacity in neighborhoods. Our 

findings also point to the need for urban resilience initiatives in line with earlier research. Improved road 

systems (i.e., lighter-colored pavement, cool pavement technologies) and neighborhood green spaces would 

help reduce heat-related illnesses. In turn, this improved public health will be accomplished by reducing 

heat hazards and increasing the heat adaptation ability. 

5. LIMITATIONS AND CONCLUSION  

This paper adds to a growing body of literature on heat vulnerability and heat-related health effects. This 

study corroborates previous studies on heat vulnerability assessment based on exposure, sensitivity, and 

adaptive capacity and broadens the conversation to include heat-related EMS services and disparities in 

public health outcomes. A heat vulnerability assessment can help identify climate hazards and public health 

implications and offer goal-oriented resilience initiatives to reduce geographic inequities. Given that the 

vulnerability assessment relies on publicly available data (American Community Survey, City of Austin 

GIS data, and TxDOT road inventory), our approach is replicable and generalizable to assess heat 

vulnerability in different urban areas.    

Several limitations must be noted. First, owing to the data availability, this study cannot fully confirm that 

symptoms and illnesses are caused by excessive heat. Defining heat-related EMS occurrences remained a 

challenge in this study, despite the authors' decision-making and cleaning iterations to separate heat-related 

illnesses from COVID-19 or other irrelevant illnesses. Second, EMS incident data may not adequately 

capture heat-related diseases since EMS use varies by socioeconomic status. For instance, language or 

financial constraints may prevent Hispanic or low-income communities from accessing emergency medical 

care, which may understate health disparities (Li et al., 2021a). Third, EMS response time was estimated 

using the optimal route and travel time. Depending on the area, actual response time may be delayed due 

to traffic, road conditions, or other relevant considerations. Recent research used a more complex technique, 

an enhanced two-step floating catchment area (E2SFCA), to measure EMS accessibility by considering the 

EMS station and hospital service capacity (Li et al., 2021b; Hashtarkhani et al., 2020). Thus, future studies 

should seek to use a sophisticated method of assessing EMS accessibility. We are also aware of the 

increasing multi-hazard climate risks and their cascading effects in urban areas. As climate change 

increases, multifaceted health challenges related to multiple hazards, such as floods, wildfires, heat, 

drought, and tornados, ranging from acute disasters to chronic risks, should be investigated to uncover the 

contextual and multi-dimensional disparities around climate hazards.  
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This study adds insight into the relationships between extreme heat events as chronic disasters and heat-

related health issues. The study presents data-driven evidence for planning practitioners to prioritize 

vulnerable areas and communities to focus local efforts on resolving heat-related health concerns in the 

neighborhood context. As a result, the study recommends better-designed heat mitigation and community 

resilience plans to promote public health.  
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FOOTNOTES 

 
i  We filtered the original data to include the following medical conditions, occurred from May 1 to 

September 30, 2020 and 2021, as proxy events that may be aggravated by extreme heat: Abdominal Pain, 

Allergic Reaction, Altered Mentation, Attended Patient, Burn, Cardiac Arrest, Chest Pain, Diabetic, 

Environmental Exposure, Headache, Heart Problems, Respiratory, Seizure, Sick, Special Event Medical, 

Stroke, Syncopal Episode, and Unconscious. 

ii  The census block groups (BGs) are defined as statistical divisions that contain between 600 and 3,000 

populations, which is the next level above census blocks and a subdivision of a census tract in the standard 

census geographic hierarchy. As for the Landsat 8 data, the available dates were 7/17/2020, 8/2/2020, 

8/28/2020, 9/6/2021, and 9/22/2021, based on the paths on cycle day and cloud coverage. 

iii We used principal component analysis (PCA, Table 2) with varimax rotation to sort the variables to fewer 

principal components. The authors retained six components based on the following criterion: first, 

components with eigenvalue greater than one; second, components appearing before a large break 

(“elbow”) in the curve in the Scree test; third, accumulative percent of the variance of retained components 

being approximately 70%; and finally, components that follow the interpretability criterion which affirms 

that variables loading on a component shared the same concept. In short, despite its limitation in 

subcategorization, the variables were categorized based on the sign and the score of the loading factors, and 

that share the same conceptual meaning. 

iv We define extreme heat as “summertime temperature that are much hotter and /or humid than average.” 

(CDC, 2020) Texas’s hot season lasts for five months, from May to September, with a daily maximum 

temperature above 90 ºF, which can aggravate illness and death. Although high temperature does not cause 

an immediate effect on human body, it may bring about the lagged effect on heat-related illnesses and 

mortality  (Cui et al., 2020; Guo, 2017; Guo et al., 2012). Given that, we consider the entire summertime 

as “extreme heat” season and normalized the heat exposure index during this summertime.  

v Five variables that were not significant (p > .10) in all models –LST, NoTree, OldHousing, NoComputer, 

and NoPhone – were excluded from further analysis. 


