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ABSTRACT 
Shared micromobility has been popular in many cities in the U.S. The rise of shared micromobility 

brings significant operational challenges such as fleet management and demand forecasting. This 

project develops a Context-Aware Long Short-Term Memory (CALSTM) recurrent neural network 

to enhance the prediction of daily travel demand for scooter-sharing in Austin, Texas. The 

CALSTM model boosts prediction accuracy by integrating the impact of nearby points-of-interest 

(POIs) and daily weather conditions on scooter usage. It processes historical scooter-sharing 

demand and weather information through separate LSTM modules to extract temporal 

information. The outputs from these modules are combined through element-wise multiplication 

to establish temporal dependencies. Additionally, POI information is analyzed using a Multi-Layer 

Perceptron (MLP) to capture spatial dependencies. These spatial and temporal dependencies are 

then integrated by another MLP module to produce the forecast outputs. Case study experiments 

in Austin, TX, demonstrated that the CALSTM model significantly outperformed benchmark 

models, achieving improvements of 28% in Mean Absolute Error (MAE) and 19% in Root Mean 

Squared Error (RMSE) over traditional LSTM models. These results offer valuable insights for 

transportation planning and the enhancement of shared micromobility in urban settings. 
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1. INTRODUCTION 

Shared micromobility, including dockless bike-sharing and scooter-sharing, has been popular in 
many cities in the U.S. These modes are appealing due to their compact size and the convenience 
of on-demand access, positioning them as effective low-carbon options for short-distance travel. 
Recent trends show a remarkable expansion in shared micromobility's usage. According to a 
report by NACTO (2024), Americans undertook 133 million trips using these services in 2023, split 
between 65 million e-scooter trips and 68 million bike-sharing trips. This represents a 16% 
increase in usage compared to the previous year.  

The rise of shared micromobility brings with it significant operational challenges, particularly in 
the distribution and rebalancing of e-scooter fleets. It is essential to ensure that scooters are 
strategically deployed across urban areas to meet high demand and avoid both scarcity and 
congestion. Achieving an optimal distribution requires precise demand forecasting, which also 
facilitates efficient fleet management. Moreover, operators must carefully balance affordability 
for users with profitability. Effective demand forecasting can further support the development of 
dynamic pricing strategies, aligning costs for users with revenue goals for service providers. 

The travel demand forecasting problem has been extensively studied by researchers. Deep 
learning methods, such as Transformer (Vaswani et al., 2017), LSTM (Hochreiter and 
Schmidhuber, 1997), and GRU (Cho et al., 2014), have been proven effective in processing time 
series data due to their robust architectures and ability to capture sequential dependencies and 
complex non-linear relationships. These methods typically use historical demand data as input 
and conduct time series modeling to forecast future demand. However, forecasting for e-scooter 
sharing involves complexities beyond simple time series analysis due to significant spatial 
influences on demand. Studies indicate that shared micromobility usage is concentrated in urban 
downtowns near entertainment and retail centers, and on university campuses. Additionally, 
there is evidence of a strong linkage between micromobility demand and economic activity. 
Incorporating point-of-interest data can enhance prediction accuracy. Furthermore, research 
highlights the impact of weather conditions—like temperature, precipitation, and wind—on e-
scooter usage (Noland, 2021; Xu et al., 2024; Xu et al., 2023). For instance, adverse weather 
conditions notably decrease the usage of e-scooter services (Noland, 2021). Therefore, including 
weather data is crucial for accurate demand forecasting in shared micromobility. 

This project develops a context-aware long short-term memory (CALSTM) network to predict 
daily travel demand for scooter-sharing in Austin, Texas. The CALSTM model enhances prediction 
accuracy by incorporating the influence of nearby points-of-interest (POIs) and daily weather 
conditions on scooter usage. The findings from this study provide critical insights that can inform 
transportation planning efforts aimed at enhancing shared micromobility in urban areas. By 
identifying areas of high demand influenced by local economic activities, this research supports 
strategic decisions to promote scooter-sharing as a viable urban transport option. 

This report consists of five sections. Section 2 reviews related literature on travel demand 
forecasting. Section 3 formally defines the research problem and introduces the details of the 
proposed method. Section 4 presents the application of the proposed method in forecasting 
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travel demand for shared e-scooters in Austin, TX. Section 5 concludes this project and discusses 
limitations and future directions.  

 

2. LITERATURE REVIEW 

2.1 Shared E-scooter Usage  

Recent studies have extensively analyzed the usage patterns of shared e-scooters, focusing on 
aspects such as trip distance, duration, and purpose, as well as their spatiotemporal distribution. 
For instance, the average trip duration across the U.S. and Canada in 2022 was 11 minutes, but 
this varied by city (Caspi et al., 2020; Jiao and Bai, 2020; McKenzie, 2019). In Austin, the typical 
e-scooter trip covered 0.77 miles and lasted 7.55 minutes, while in Washington DC, trips were 
shorter, averaging 0.6 km in distance and 5 minutes in duration (Jiao and Bai, 2020; McKenzie, 
2019). Additionally, research has shown that most e-scooter trips are for non-commuting 
purposes like errands and leisure, underscoring the versatility of e-scooters in urban mobility (Bai 
et al., 2021; Caspi et al., 2020; Nikiforiadis et al., 2021; Shah et al., 2023). 

Temporal usage patterns also differ from traditional traffic peaks (Liu et al., 2019; NACTO, 2024; 
Xu et al., 2022). For example, a peak in e-scooter use across the U.S. was noted between 4 pm 
and 6 pm, while in Indianapolis, peak times extended from 4 pm to 9 pm on weekdays and 2 pm 
to 7 pm on weekends (NACTO, 2024; Liu et al., 2019). Spatially, e-scooter trips are heavily 
concentrated in downtown and university areas, with significantly lower densities in suburban 
zones (Bai and Jiao, 2020; Hosseinzadeh et al., 2021; McKenzie, 2019, 2020; Xu et al., 2022). 

Various factors influencing e-scooter usage have been identified. Demographic elements such as 
age, gender, income, education level, ethnicity, marital status, and residency significantly affect 
user preferences, with a trend toward higher usage among younger individuals, males, those with 
higher incomes and education levels, and singles (Cao et al., 2021; Christoforou et al., 2021; Laa 
and Leth, 2020; Lee et al., 2021; Sanders et al., 2020). Zonal demographic characteristics like 
population density, employment rates, and the presence of young adults and highly educated 
individuals also correlate positively with e-scooter usage (Bai and Jiao, 2020; Caspi et al., 2020; 
Merlin et al., 2021). 

Moreover, the built environment plays a crucial role. Streets with better conditions and cycling 
amenities experience more e-scooter trips (Caspi et al., 2020; Hosseinzadeh et al., 2021). 
Proximity to city centers and transit stations enhances usage, and areas with diverse land uses 
and more commercial zones tend to see higher intensities of e-scooter trips (Bai and Jiao, 2020; 
Merlin et al., 2021; Hosseinzadeh et al., 2021). 

Weather conditions also significantly impact e-scooter usage. Studies have shown that adverse 
weather, such as rain, snow, or extreme temperatures, leads to a noticeable decrease in e-
scooter trips (Noland, 2021). Conversely, mild and sunny weather tends to increase usage rates, 
as more people choose e-scooters for transportation or leisure activities (Bai et al., 2021; Caspi 
et al., 2020). Weather-related data is thus crucial for predicting daily and seasonal fluctuations in 
e-scooter demand (Noland, 2021; Xu et al., 2024; Xu et al., 2023). 
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2.2 Travel Demand Forecasting Using Deep Learning   

Deep learning models have increasingly been applied to predict travel demand, with significant 
attention on ridesourcing (Ke et al., 2021; Geng et al., 2019), taxi services (Liu et al., 2019; Xu et 
al., 2017; Yao et al., 2018), and bike-sharing systems (Lin et al., 2018; Li et al., 2019; Kim et al., 
2019). These studies have shown that deep learning outperforms traditional statistical methods 
like ARIMA and machine learning techniques such as gradient-boosted trees and random forests 
in forecasting accuracy. Specific neural network architectures, including convolutional neural 
networks (CNNs), recurrent neural networks (RNNs) like LSTM and GRU, and Transformers, are 
employed to handle time-varying data effectively (Chen et al., 2020; Pan et al., 2019; Li et al., 
2021). Moreover, recent studies have combined different neural networks into an integrated 
spatiotemporal model to simultaneously capture both spatial and temporal patterns. Research 
indicates that spatiotemporal models generally surpass individual CNN or RNN models in 
performance due to their ability to simultaneously analyze spatial and temporal data, enhancing 
prediction accuracy (Tang et al., 2021; Geng et al., 2019; Yao et al., 2018; Li et al., 2021; Zhang et 
al., 2024). However, the complexity of these models leads to challenges such as extended training 
times and limited scalability when processing long data sequences (Xu et al., 2023; Cai et al., 
2020; Xu et al., 2020). These limitations stem from the intricate architectures required to 
integrate and process multiple data dimensions effectively. 

In the realm of shared micromobility, various deep learning frameworks have been employed for 
demand forecasting. These include RNN (Chen et al., 2020; Pan et al., 2019) and spatiotemporal 
models (Xu et al., 2023; Lin et al., 2018; Liu et al., 2019; Ai et al., 2019; Yang et al., 2020; 
Phithakkitnukoon et al., 2021; Ham et al., 2021; Song et al., 2023; Li et al., 2023; Ma and Liu, 
2024; Liang et al., 2024; He and Shin, 2020; Liang et al., 2023). For instance, Chen et al. (2020) 
evaluated various RNN architectures for forecasting real-time demand in New York's station-
based bike-sharing network. Lin et al. (2018) developed a spatiotemporal architecture that 
combines GCN and LSTM to analyze complex station-level correlations within large bike-sharing 
networks. Liang et al. (2023) introduced a domain-adversarial multi-relational graph neural 
network that utilizes multimodal historical data for predicting bike-sharing demand. These 
models, particularly spatiotemporal ones, utilize advanced graph neural networks to analyze 
spatial data alongside temporal data, enhancing accuracy by incorporating variables like zonal 
functionality, demographics, and built environment characteristics. Nevertheless, as the graph 
size increases, these models face significant computational challenges (Xu et al., 2023). 
Furthermore, while recent research has begun to address dockless micromobility systems, the 
majority of studies still focus on station-based systems, highlighting a notable research gap and 
potential for accuracy improvements in dockless micromobility forecasting. 

 

3. METHODS 

This project develops a context-aware long short-term memory (CALSTM) recurrent neural 
network to predict daily travel demand for scooter-sharing. In this section, we first describe the 
formal definition of the scooter-sharing demand prediction problem. Then we introduce the 
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framework for the proposed CALSTM model and the details of each model component. 

 

3.1 Problem Definition 

In this project, we forecast the daily scooter-sharing travel demand at census tract level. The 
number of scooter-sharing uses in each area during a specific time interval is defined as the travel 

demand for scooter-sharing. The scooter-sharing demand of an area 𝑖 at time 𝑡 is denoted by 𝑥𝑡
𝑖. 

The scooter-sharing demand of all areas at time 𝑡 is 𝑋𝑡 = [𝑥𝑡
1, 𝑥𝑡

2, … , 𝑥𝑡
𝑁], where N is the number 

of areas. The historical demand is denoted by a matrix 𝑿𝑁×𝑇 = [𝑋𝑡−𝑇+1, … , 𝑋𝑡], where 𝑇 is the 
length of the input time sequence. The weather condition is denoted by 𝐶 and the point of 
interest information is denoted by 𝑃𝑂𝐼.  

The scooter-sharing demand prediction problem can be defined as follows. Given historical 
demand 𝑿𝑡, weather condition 𝐶, and point of interest information 𝑃𝑂𝐼, find a mapping 
𝑓: ℝ𝑁×𝑇 → ℝ𝑁×𝑀 that maps historical demand and other information to the demand in the next 
𝑀 time 𝒀𝑡: 

𝒀𝑡  =  [𝑋𝑡+1, … , 𝑋𝑡+𝑀]  =  𝑓(𝑿𝑡, 𝐶, 𝑃𝑂𝐼) 

 

3.2 Model Framework 

The framework of proposed context-aware long short-term memory (CALSTM) recurrent neural 
network is presented in Figure 1. The inputs of the model include historical scooter-sharing 
demand, weather information, and POI information. To extract temporal information, we use a 
LSTM module to process the historical demand and use another LSTM module to process weather 
information. The outputs of the two LSTM modules are integrated by element-wise multiplication 
to generate the temporal dependencies. The POI information is processed by a Multi-Layer 
Perceptron (MLP) module to extract spatial dependencies. The spatial dependencies and 
temporal dependencies are then process a MLP module to generate the forecasting output. Note 
that the two LSTM modules share the same architecture but use different parameters. This also 
applies to the two MLP modules. 
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Figure 1. Framework of Context-aware Long Short-term Memory Network  

 

3.3 Long Short-Term Memory  

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network (RNN) 
specifically designed to address the issue of long-term dependencies in sequence prediction 
problems. Traditional RNNs struggle with learning long-term dependencies due to the vanishing 
gradient problem, where gradients of the network's weights either grow or decay exponentially 
during backpropagation, making it difficult to train the network effectively over longer 
sequences. LSTM is designed aimed at mitigating the vanishing gradient problem. 

An LSTM unit is intricately structured, comprising a cell and three regulatory gates: an input gate, 
an output gate, and a forget gate. The cell is crucial as it retains values over arbitrary time 
intervals, ensuring the continuity of information through the sequence of data. Each gate within 
the unit plays a pivotal role in the flow of information. The forget gate determines what 
information to discard from the previous state. It does this by analyzing both the previous state 
and the current input, then mapping this information to a value between 0 and 1. A value close 
to 1 indicates that the information is important and should be retained, while a value closer to 0 
means it should be forgotten. Simultaneously, the input gate decides which new information is 
significant enough to update the current cell state. It uses a similar mechanism to the forget gate, 
evaluating the new data to decide which parts are stored and which are disregarded, ensuring 
that only relevant information is kept. Finally, the output gate controls the information that is 
emitted from the cell state. It assesses the current cell state, along with previous outputs, to 
assign a value between 0 and 1 to each piece of information, where 1 means fully passing the 
information through and 0 means blocking it. This selective output enables the LSTM network to 
utilize and maintain useful, long-term dependencies. These dependencies are critical as they 
allow the network to make informed predictions, affecting both current and future time-steps in 
the data sequence. The framework of a LSTM unit is presented in Figure 2. 
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Figure 2. Framework of Long Short-term Memory Unit 

In Figure 2, the input gate is 𝐼𝑡, the forget gate is 𝐹𝑡, and the output gate is 𝑂𝑡. The three gates 
are calculated by: 

𝐼𝑡 = 𝜎(𝑥𝑡𝑊𝑥𝑖 + ℎ𝑡−1𝑊ℎ𝑖 + 𝑏𝑖) 

𝐹𝑡 = 𝜎(𝑥𝑡𝑊𝑥𝑓 + ℎ𝑡−1𝑊ℎ𝑓 + 𝑏𝑓) 

𝑂𝑡 = 𝜎(𝑥𝑡𝑊𝑥𝑜 + ℎ𝑡−1𝑊ℎ𝑜 + 𝑏𝑜) 

where 𝑊𝑥𝑖, 𝑊𝑥𝑓, 𝑊𝑥𝑜 and 𝑊ℎ𝑖, 𝑊ℎ𝑓, 𝑊ℎ𝑜 are weight parameters; 𝑏𝑖, 𝑏𝑓, and 𝑏𝑜 are bias 

parameters; 𝜎(∙) is the sigmoid function. 

The input node �̃�𝑡 is calculated by: 

�̃�𝑡 = tanh(𝑥𝑡𝑊𝑥𝑐 + ℎ𝑡−1𝑊ℎ𝑐 + 𝑏𝑐) 

where 𝑊𝑥𝑐 and 𝑊ℎ𝑐 are weight parameters; 𝑏𝑐 are bias parameters; tanh(∙) is the hyperbolic 
tangent function. 

The memory cell internal state 𝐶𝑡 and the hidden state ℎ𝑡 is updated by: 

𝐶𝑡 = 𝐹𝑡 ⊗ 𝐶𝑡−1 + 𝐼𝑡 ⊗ �̃�𝑡 

ℎ𝑡 = 𝑂𝑡 ⊗ tanh(𝐶𝑡) 

where ⊗ is the element-wise product operator. 

 

3.4 Multi-Layer Perceptron  

Multi-Layer Perceptron (MLP) is a class of feedforward artificial neural network that consists of 
at least three layers of nodes: an input layer, a hidden layer, and an output layer. Unlike other 
neural networks, MLPs use a supervised learning technique called backpropagation for training, 
which involves adjusting the weights of the network to minimize the difference between the 
actual output and the predicted output. 
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Each node in the network, except for the input nodes, is a neuron that uses a nonlinear activation 
function. MLPs are differentiated from other neural networks by their deep structure with one 
or more hidden layers. Each neuron in a hidden layer transforms the values from the previous 
layer with a weighted linear summation, followed by a non-linear activation function. 

The capability of MLPs to learn non-linear models and non-linear decision boundaries is one of 
their primary advantages. They are widely used in applications where complex pattern 
recognition, such as speech recognition, image recognition, and machine translation, is essential. 
The depth and size of the MLP can be adjusted to handle different levels of complexity within the 
data, making MLPs a versatile tool in the realm of artificial neural networks. However, MLPs can 
be prone to overfitting, particularly with datasets of limited size, requiring techniques such as 
regularization, dropout, or sufficient training data to mitigate this risk. 

 

4. EXPERIMENTS 

We conducted a case study based on the dockless scooter-sharing demand in Austin, TX. During 
the case study, we compared the performance of our model against leading benchmark models 
to establish its relative effectiveness and advancements in the field. This section introduces the 
data, the model setting, and the model comparison results in detail. 

 

4.1 Data  

The data used in this study includes daily scooter-sharing data, the weather condition data, and 
the POI data. This section introduces the data collection process and data descriptions. 

We collected the scooter-sharing trip information for Austin from the local government’s data-
sharing web portal1. This data includes scooter-sharing trips made between January 1, 2021, and 
March 31, 2022. The temporal and spatial distributions of the scooter-sharing trips are presented 
in Figure 3 and Figure 4. 

 
1 https://data.austintexas.gov/ 
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Figure 3. Temporal Distribution of Scooter-Sharing Trips 

 

Figure 4. Spatial Distribution of Scooter-Sharing Trips 

Weather data—comprising precipitation levels, average temperatures, and wind speeds—were 
sourced from the Global Historical Climatology Network (GHCN) database. Meanwhile, POI 
information was gathered from the City of Austin Open Data Portal and the Google Maps API. 
The collected POIs encompassed recreational facilities, tourist attractions, restaurants, and 
hotels. 
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4.2 Model Setting  

The experiments were conducted on an NVIDIA RTX A6000 GPU. The batch size was set to 64. 
The input time sequence length was 14 and the output time sequence length was 1, which means 
we used the previous 14 days scooter-sharing demand to forecasting the demand in the next 
day. For the LSTM modules, the number of layers was set to 3 and the number of units per layer 
was set to 64. For the MLP modules, the number of layers was set to 3, the number of units was 
set to [32, 64, 32], and the dropout rate was set to 0.5. The model was trained using the RMSprop 
optimizer and L1 loss function, with an initial learning rate of 0.001. We allocated 60% of the data 
for training, 20% for validation, and the remaining 20% for testing. Training was conducted over 
300 epochs, incorporating an early stopping mechanism to prevent overfitting. 

 

 4.3 Model Performance Comparison  

We used two metrics, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), to 
evaluate the performance of the proposed model. The calculation of the two metrics is: 

𝑀𝐴𝐸 =
1

𝑛
∑|�̂�𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

where 𝑦𝑖 is the actual observations and �̂�𝑖 is the prediction. Note that smaller MAE and RMSE 
indicate better forecasting accuracy. 

We compared the proposed CALSTM model with multiple machine learning models, including 
Historical Average (HA), Decision Tree (DT), Random Forest (RF), Multi-Layer Perceptron (MLP), 
and Long Short-Term Memory (LSTM). HA is a foundational statistical approach in time series 
forecasting that generates prediction by averaging past observations. DT is a machine learning 
model that uses a tree-like structure of decisions and their possible consequences to perform 
prediction tasks. RF is an ensemble learning method that constructs multiple decision trees 
during training and outputs the mean prediction of the individual trees. MLP and LSTM are deep 
learning methods introduced in Section 3.  

The performance of the proposed model and the benchmark models is presented in Table 1. Note 
that all the models had been fine-tuned. According to the results, we found that the proposed 
CALSTM model overperformed all benchmark models. Compared with the LSTM model, the 
improvements of CALSTM model were 28% for MAE and 19% for RMSE. The RNN-based models, 
LSTM and CALSTM, significantly outperformed the classical machine learning models and the 
statistical models.  

Table 1. Model Performance 

Model MAE RMSE 
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HA 16.53 21.18 

DT 10.93 16.03 

RF 7.79 11.43 

MLP 6.59 9.66 

LSTM 1.90 2.69 

CALSTM 1.36 2.18 

 
 

5. CONCLUSIONS 

This project introduces a Context-Aware Long Short-Term Memory (CALSTM) recurrent neural 
network, specifically designed to enhance the prediction of daily travel demand for scooter-
sharing in Austin, Texas. By effectively leveraging the impacts of nearby POIs and daily weather 
variations on scooter usage, the CALSTM model substantially improves prediction accuracy over 
traditional approaches. It utilizes two separate LSTM modules to process historical scooter-
sharing demand and weather data, extracting crucial temporal patterns from these inputs. The 
outputs of these LSTM modules are then synthesized through element-wise multiplication, 
establishing robust temporal dependencies essential for accurate demand forecasting. 
Additionally, the model employs a MLP to analyze POI data, thereby extracting spatial 
dependencies that further refine the accuracy of its predictions. Another MLP module integrates 
these spatial and temporal insights to generate the final forecast outputs. This layered approach 
ensures that both spatial and temporal factors are meticulously accounted for, enhancing the 
model's predictive capabilities. 

The effectiveness of the CALSTM model was rigorously tested through a series of experiments as 
part of a case study in Austin, TX. The results were impressive, showing that the CALSTM model 
not only outperformed selected benchmark models but did so with substantial margins—
achieving improvements of 28% in MAE and 19% in RMSE compared to conventional LSTM 
models. These significant enhancements highlight the model's potential to transform 
transportation planning and improve the operational efficiency of shared micromobility systems 
in urban areas. 

Incorporating the influence of nearby points-of-interest (POIs) and daily weather conditions into 
forecasting models like the CALSTM can significantly improve accuracy because these factors 
directly affect user behavior in shared transportation systems, such as scooter-sharing. 

POIs, such as commercial centers, tourist attractions, and recreational facilities, inherently draw 
varying volumes of traffic, which fluctuates daily and seasonally. Understanding the geographical 
distribution and the type of these POIs allows models to predict potential demand surges and 
declines more accurately. For example, a scooter-sharing station near a popular café or museum 
may experience spikes in demand during opening hours, while stations near office buildings 
might see increased demand at the beginning and end of workdays. By analyzing the spatial 
relationships between scooter stations and these POIs, forecasting models can anticipate 
changes in demand based on likely user destinations and origins. 
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Weather conditions also play a crucial role in the usage patterns of transportation services, 
especially in modes sensitive to environmental factors, like scooters. Adverse weather conditions 
such as rain or extreme temperatures can significantly reduce the likelihood of using scooters, 
while favorable weather can increase usage. By integrating real-time or forecasted weather data 
into predictive models, the accuracy of predicting daily travel demand can be enhanced. This 
integration allows the models to adjust demand forecasts based on anticipated weather changes, 
providing operators with the information needed to optimize fleet management and deployment 
strategies. 

The findings from this study provide critical insights that could inform future urban planning and 
policy-making efforts, aiming to optimize the integration and management of shared 
micromobility solutions. By adapting to and predicting changes in urban mobility demand more 
effectively, city planners and transportation authorities can better accommodate the dynamic 
needs of urban populations, ensuring that shared transportation resources are utilized optimally 
to benefit both users and the environment. 

 

6. FUTURE WORK 

Building on the successes of the CALSTM model, several avenues for future research and 
development present exciting opportunities to further enhance the predictive accuracy and 
utility of our forecasting models for scooter-sharing demand. First, to refine the granularity of 
our demand forecasts, transitioning from daily to hourly predictions could significantly enhance 
operational strategies for scooter-sharing systems. Hourly forecasting would allow us to capture 
the intraday variability in user behavior, which is influenced by factors such as work schedules, 
meal times, and social events. This level of detail can aid in more dynamically allocating resources 
throughout the day and better managing peak and off-peak periods. Implementing hourly 
forecasts requires a detailed analysis of time-series data and may involve adjusting existing 
models to accommodate the faster cycles of demand fluctuation. 

Secondly, the Transformer model, known for its effectiveness in handling sequences, offers a 
promising alternative to LSTM due to its ability to process entire sequences simultaneously and 
its enhanced capability for capturing long-range dependencies. By adopting Transformer models, 
we can potentially overcome some of the limitations inherent in LSTMs. This change could lead 
to improvements in learning complex temporal patterns more effectively, thus providing more 
accurate predictions. 

Third, incorporating more comprehensive spatial information, such as the built environment and 
demographic data, could significantly refine the model's contextual awareness. Factors such as 
population density, urban design, public transit availability, and socioeconomic profiles of 
neighborhoods can influence scooter usage patterns. By integrating these spatial variables, our 
models could offer deeper insights into how different segments of the population engage with 
scooter-sharing systems under varying urban conditions. This approach would not only improve 
the accuracy of demand predictions but also assist in strategic planning and targeted marketing 
efforts, ensuring that services are tailored to meet the diverse needs of the community. 
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