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Executive Summary  

As Autonomous Vehicle (AV) technology advances, transportation planners need to assess its 

transformative impacts on the transportation infrastructure of U.S. megaregions. This research 

report presents the results of our study on the impact of autonomous vehicles (AVs) on 

transportation networks in the Texas Triangle megaregion. Our GIS-based Megaregion 

Transportation Planning Model (MTPM) integrates AVs to evaluate their effects on mobility and 

accessibility within the Texas Triangle, accounting for their interaction with traditional vehicles. 

Given the evolving uncertainties in AV operational features, we developed multiple scenarios to 

investigate how capacity increases and the changes of vehicle trips in megaregional areas are 

influenced by AV penetration.  

Our study finds that  (1) AV adoption improves accessibility but increases congestion in urban 

areas, where capacity benefits are limited by high demand and complex traffic patterns, (2) 

capacity enhancements outside metro areas effectively reduce congestion and enhance travel 

efficiency due to lower baseline traffic volumes and less induced demand, (3) AV introduction 

increases Vehicle Miles Traveled (VMT) and Vehicle Time Traveled (VTT) overall, but 

combining AV adoption with capacity improvements partially offsets these increases, and, (4) AV 

introduction has a more significant effect on passenger transportation compared to freight. 

Policymakers should implement targeted capacity enhancements alongside AV adoption in urban 

areas to mitigate congestion and optimize travel efficiency.  
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1. Introduction 

The increasing importance of megaregions in transportation planning and infrastructure 

development has been recognized globally (Amekudzi et al., 2007). According to the United 

Nations (UN), megaregions are defined as urban areas with populations of 10 million or more, 

serving as rapidly growing population hubs (Lang & Dhavale, 2005). Economic productivity is a 

key factor in identifying these regions (Florida et al., 2008), and their competitiveness is further 

strengthened by the growing interconnectedness of urban areas in the globalization era. 

Megaregions consists of clusters of geographic areas connected by similar characteristics and 

common interests (Hagler, 2009). They feature integrated economic networks, rely on shared 

natural resources and ecosystems, exhibit consistent settlement and land usage patterns, and share 

similar cultural and historical backgrounds. Megaregions also collaborate to address common 

transportation challenges, such as air quality, goods distribution, and road safety, which cross 

political boundaries. However, planning processes are often confined by these borders. Adopting 

a megaregional planning perspective offers a way to tackle emerging challenges and capitalize on 

opportunities around major metropolitan hubs and their surrounding areas, which are linked by 

existing environmental, economic, cultural, and infrastructural connections (Nelson, 2017).  

As of 2016, there were 31 megacities globally with populations exceeding 10 million. Projections 

indicate that by 2030, this number will increase to 41, with a combined population exceeding 729 

million (U.N., 2016). In the United States, approximately 13 megaregions have been identified, 

some crossing state boundaries and collectively accommodating 80% of the nation's population. 

The projected 22% increase in the US population to 390 million, along with the expected 115% 

growth in GDP to $36.7 trillion between 2015 and 2045, highlights  the growing importance of 
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megaregions in the US economy (Dewar & Epstein, 2007; G. D. Nelson & Rae, 2016; Woodall et 

al., 2024). These regions, characterized by dense populations, concentrated employment, and 

significant economic activities, contribute to around 90% of the country's economic output (Steiner 

et al., 2022). The rising inter-city commutes, travel, and freight shipments further enhance their 

economic productivity and highlight their critical role in driving national economic growth. 

AVs (autonomous vehicles) and connected and autonomous vehicles (CAVs) have great potential 

to improve accessibility, enhance in-vehicle travel experiences, increase energy efficiencies, 

promote car-sharing and ride-sharing services, and reduce traffic congestion, environmental 

degradation, air pollution, noise disturbances, and social exclusion for individuals currently unable 

to drive (Nikitas et al., 2020). As a result, AVs and CAVs are expected to become the foundation 

of intelligent urban transportation systems (Nikitas et al., 2017; Papa & Ferreira, 2018) and are 

considered a top priority for research and development investments in urban planning (Arakawa 

et al., 2019; Knowles et al., 2020; Strand et al., 2014). Figure 1 illustrates the six levels of vehicle 

automation as classified by the Society of automotive engineers (SAE) (Hopkins & Schwanen, 

2021). 

Leading companies in automobile industry like Toyota, Tesla, Google (Waymo), and Apple have 

launched extensive pilot testing programs to pave the way for the advent of the AV era. The trend 

has been subsequently followed by additional automobile manufacturers and entrepreneurial 

startups in the sector. Projections suggested a 50% rise in AV sales and a 30% increase in the 

number of AVs on the road by 2040 (Bagloee et al., 2016). According to Global Industry Analysts 

Inc. (2022), there is a significant rise in the quantity of AVs both in the US and worldwide. The 

US market was projected to expand from 3,400 to 5,400 AVs, while the global market surged from 
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6,100 to 13,800 AVs between 2021 and 2022. By 2026, the global AV market was anticipated to 

reach 110,100 units.  

 

Figure 1. The Levels of Automation for Autonomous Vehicles Proposed by the Society of Automotive 

Engineers (SAE) 

The dramatical increase in the adoption of AVs, particularly in North America, is set to transform 

urban spatial structures, reshape built environment, and change the design of transportation 

infrastructure. For example, AVs will require narrower lane widths and create more space-efficient 

rights-of-way, potentially boosting the capacity of transportation systems (Chapin et al., 2016; 

Swami & Swami, 2023). Moreover, it will significantly impact travel patterns, transportation 

efficiency, commuter behavior, and individual lifestyles. This transition will reduce reliance on 

highly skilled drivers while increasingly leveraging emerging technologies like machine learning 

in transportation.  

As AVs mature and establish themselves as a safer and less risky travel option, their economic 

viability will increase. AVs are expected to deliver substantial social benefits, including  improved 

fuel efficiency, enhanced accessibility, and greater mobility for marginalized communities, all 

while maintaining superior safety standards than human-driven vehicles. Given that U.S. 
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transportation infrastructure spans multiple administrative boundaries and has a megaregional 

scope (Woodall et al., 2024), AVs offer substantial potential to improve mobility and accessibility 

within densely populated and highly concentrated employment areas (Huang et al., 2020). 

Although researchers have thoroughly explored the various impacts of AVs on transportation 

systems at a regional level, there has been limited focus on the movement of AVs within a 

megaregion. Most existing studies have measured the mobility impacts of introducing AVs at the 

megaregion scale, such as VMT, VKT, and mode share (Huang et al., 2020), while largely 

overlooking the integration of destination accessibility. Additionally, the existing literature on 

megaregions is primarily driven by academic interests, with limited emphasis on practical 

application in planning processes. This study aims to fill these gaps by investigating the impact of 

AVs on various traffic scenarios in the Texas Triangle region, including the metropolitan areas of 

Dallas/Fort Worth, San Antonio, Austin, and Houston.  

The Texas Triangle region has experienced rapid population growth and increasing ethnic 

diversity, while maintaining strong economic dynamism (Cisneros et al., 2021). As a home to 18.2 

million people or 6% of the U.S. population, the Texas Triangle encompasses 66 counties and 

spans 58,400 square miles. Its thriving economic centers accounted for 7% of the U.S. GDP in 

2010 (Todorovich, 2007). With its heavily automobile-dependent urban landscape, more 

pronounced than in other megaregions, the Texas Triangle provides an ideal setting for examining 

the implementation and impacts of advanced transportation innovations, such as AVs (Huang et 

al., 2020). 

The research integrates AVs into the GIS-based Megaregion Transportation Planning Model 

(MTPM) developed in our previous projects, facilitating an evaluation of their effects on 

transportation system performance. Furthermore, our analysis also accounts for the effect of mixed 
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traffic flows resulting from the integration of AVs and human-driven vehicles (HDVs) in our 

analysis. Given the uncertainty about the future features of autonomous vehicles (AVs), this study 

offers one of the initial estimates of the impacts of AV integration on megaregion transportation. 

It evaluates two primary effects: (i) enhancements in system performance and (ii) changes in travel 

demands due to traffic growth. These impacts are evaluated for both personal vehicle traffic and 

freight flows throughout the Texas Triangle region. 

2. Studies on AVs in Megaregion Transportation 

2.1 The Challenges to Investigate the Effects of AVs in Megaregion Transportation  

Urban agglomerations are characterized by their high population density, economic centers, and 

extensive transportation systems. These features arise from the concentration of attraction and 

production areas connected by transportation networks. The changing spatial dynamics of 

megaregions have transformed employment patterns and industrial landscapes, leading to complex 

travel demands and significant impacts on urban land use development (Monolith Press, 2013). 

Concurrently, the demographic growth and urban transformation have intensified logistical sprawl, 

prompting logistics facilities to relocate along highway intersections (Lindsey et al., 2014). This 

shift worsens negative environmental effects (e.g., noise, air pollution, safety concerns, and 

congestion) for nearby communities.  

These dynamics underscore the intricate relationships between urban spatial structure and the 

transport systems with passenger and freightflows, highlighting their symbiotic interaction and 

mutual relationship (Cidell, 2010; Hesse, 2016). Consequently, changes in urban spatial structure 
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can affect both passenger and freight traffic patterns and volumes, driven by various supply and 

demand factors.  

Travel demand models (TDM) are essential for transportation planning at national, state, and local 

scales. They serve various purposes, such as formulating projects and programs, evaluating and 

prioritizing plans and policies, and assessing economic and social impacts of transportation 

investments (Donnelly & Moeckel, 2017; Seedah & Harrison, 2011). However, few TDM 

extensions have been developed for transportation planning at the megaregion scale, which extends 

beyond metropolitan areas. Moreover, the intricate interactions between transportation networks, 

land use configurations, and socio-economic factors further complicate the understanding and 

modelling of megaregion transportation systems’ effectiveness.  

TDMs for megaregion planning need to incorporate factors such as rapid technological 

advancements, socio-economic uncertainties, the necessity for interagency coordination, and the 

social and equity impacts of transportation policies and investments. However, TDMs developed 

for megaregion transportation planning often lack important components related to demographic, 

economic, and environmental factors. 

In transportation planning practice, state transportation agencies and Metropolitan Planning 

Organizations (MPOs) often face challenges due to inadequate data and unsuitable analytical 

methodologies for gauging travel demands and evaluating how well transportation infrastructure 

supports the movement of people and goods across megaregions. This hampers collaboration 

among individual MPOs and cities within a megaregion in developing and implementing 

megaregion travel demand models. To examine the socio-economic and environmental effects of 

transportation systems at the megaregion level, it is essential to use integrated urban models 
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(IUMs) specifically designed for megaregions, rather than relying solely on models developed by 

MPOs or State DOTs (Miller, 2018; M. Zhang et al., 2007).  

In September 2017, Senate Bill 2205 was enacted, regulating and legalizing AVs in Texas. 

Prototypes of highly or fully automated vehicles, specifically classified as SAE Levels 4 and 5, 

have been extensively tested on public roads in the Texas Triangle region, one of the largest 

megaregions in the U.S. Recently, Waymo, a California-based AV technology company, began 

testing its fully autonomous cars in Austin, one of the major cities in Texas Triangle. As vehicle 

technologies continue to advance, it becomes increasingly important, from both sustainability and 

equity perspectives, to scrutinize the potential impacts of AVs on road capacity, traffic growth, 

and accessibility of both personal and freight vehicles across the megaregion.  

However, as previously discussed, most existing AV studies focus on municipal, metropolitan, 

state, and national levels, leaving a significant research gap in understanding the effects of AVs 

on travel behaviour, congestion, equity, and environmental sustainability at the megaregion scale.  

Such research would enable government entities and policymakers to anticipate vital implications 

and develop proactive strategies to facilitate AV adoption in the megaregion context.  

2.2 Potential Benefits of AVs 

AVs offer significant potential to improve the capacity of existing roadways and intersections 

(Guler et al., 2014), leading to reduced congestion and travel times (Duranton & Turner, 2011). 

They also broaden mobility opportunities for a wider demographic (Truong et al., 2017), reduce 

vehicular accidents (Papadoulis et al., 2019; Taeihagh and Lim, 2019) and enhance air quality 

(Rafael et al., 2020). AVs are expected to stimulate travel demand (Soteropoulos et al., 2019), 

optimize traffic flow, increase lane capacity, enhance speeds, and reduce congestion, even during 
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peak hours. They are also anticipated to lower costs associated with automobile travel, reduce 

travel time and delays, and enhance network capacities, ultimately resulting in an overall increase 

in vehicle miles travelled (VMT).  

While AV adoption may lead to increased automobile VMT, careful transportation planning and 

policy interventions can mitigate its negative impacts. Strategies like transit-oriented development, 

smart growth policies, and shared mobility initiatives can foster high-quality and livable land use 

(Nadafianshahamabadi et al., 2021). AVs have the potential to extend access to opportunities for 

individuals who currently lack personal vehicles, including those with physical disabilities, or 

without driver's licenses or car ownership (Truong et al., 2017). By enabling travelers to engage 

in other tasks while on the road, AVs are expected to reduce the inconvenience of travel time, 

potentially making longer trips more tolerable and appealing (Auld et al., 2017).  

Beyond their significant impact on automobile transportation,  AVs could enhance the efficiency 

of public transit systems by improving first/last mile connections, potentially increasing transit 

usage (Levin et al., 2019). Additionally, AVs could reduce the demand for parking spaces in 

congested urban areas, freeing up land for housing and other uses, potentially contributing to more 

concentrated urban growth rather than sprawl to suburban and rural areas (Stead & Vaddadi, 2019). 

These combined factors could lead to induced demand (Meyer et al., 2017; Soteropoulos et al., 

2019), potentially undermining AVs' ability to reduce congestion and potentially leading to 

increased emissions of greenhouse gases (GHGs) and harmful air pollutants (Brown and Dodder, 

2019; Chen et al., 2019; Taiebat et al., 2018; Wadud et al., 2016). These insights into the potential 

benefits and drawbacks of AV implementation highlight the importance of carefully considering 

the future integration of AVs into the road network (Anderson et al., 2014; Ashkrof et al., 2019). 

In this context, it is crucial to adopt land use and transportation policies that promote sustainable 
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urban development while integrating AVs into the planning framework (González-González et al., 

2019; Huang Y. et al. 2020; Layzell, et al., 2021; Obaid 2022).  

 

2.3 The Impacts of AVs on Travel Behavior  

The effects of AVs can be examined in three stages. The initial stage includes traffic, travel cost, 

and travel choices. The second stage covers vehicle ownership, sharing, location choices, land use, 

and transport infrastructure. The third stage addresses energy consumption, air pollution, safety, 

social equity, economy, and public health (Ashkrof et al., 2019; Milakis et al., 2017).  

Evaluating AVs' impacts on travel behavior must include an evaluation of their effects on travel 

demands. Factors such as driver acceptance, variability in travel time, confidence in efficiency, 

willingness to own or use shared AVs, and environmental benefits can potentially help mitigate 

the drawbacks associated with automated driving transport services (ADTS).  

Studies exploring the impacts of AVs on travel behavior have revealed varied outcomes 

concerning VMT, vehicle kilometers travelled (VKT), and mode choice. Research indicates that 

private AVs may lead to increased VMT, especially in scenarios with reduced value of time and 

parking costs, resulting in shifts from other transportation modes (Auld et al., 2017; Kim et al., 

2015). Similar results were observed for shared autonomous vehicles (SAVs) when the value of 

time was reduced and costs were low (Hörl et al., 2016; Liu et al., 2017). However, research also 

indicates that VMT could decrease if a large portion of travelers choose ridesharing (Heilig et al., 

2017; Martinez & Viegas, 2017), or if the cost of SAVs is high, leading travelers to select shorter 

trips (Soteropoulos et al., 2019). 
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Research assessing the impacts of AVs on Vehicle Hours Traveled (VHT) indicates that VHT 

generally increases with the use of private AVs, particularly when there are significant reductions 

in the value of time and parking costs. Conversely, SAVs could lead to a reduction in VHT, 

especially when costs are high and private vehicle use is not an option (Kim et al., 2015; 

Soteropoulos et al., 2019). 

Similarly, research on the impacts of AVs on mode share suggests that AVs could decrease the 

use of public transport and slower mode shares when they compete with existing modes. For 

private AVs, studies indicate larger mode shifts, particularly with significant reductions in the 

value of time and parking or operating costs, resulting in an increase in the share of private car use 

(de Almeida Correia & van Arem, 2016; Kim et al., 2015; Kröger et al., 2019). Similarly, studies 

on SAVs also suggest a decrease in public transport and slower mode shares with high reductions 

in the value of time and low operating costs (Bösch et al., 2017; Chen & Kockelman, 2016). 

However, SAVs may reduce the share of private car use. For instance, studies assuming a complete 

ban on privately owned vehicles and considering specific operating costs report increases in public 

transport and slower mode shares, as individuals choose these options, particularly for short trips, 

to avoid expenses (Heilig et al., 2017; Soteropoulos et al., 2019). 

2.4 Barriers to Implementing AVs  

One major barrier to the widespread adoption of AVs among travelers is their cost. Current LIDAR 

system prices for AVs range from $30,000 to $85,000 each (Shchetko, 2014), and despite cost 

reduction efforts, the price may still be $25,000 to $50,000 per AV vehicle with mass production 

(Dellenback, 2013; Boesler, 2012), posing a challenge for consumer affordability compared to 

conventional vehicles at a price of $16,000 to $27,000 (Hensley et al., 2009). However, other 

significant obstacles to implementing AVs encompass multiple facets of individual travelers' 
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experiences, such as comfort, travel time reliability and efficiency, AV certification, liability and 

public perception, safety and security features, and privacy concerns (Fagnant & Kockelman, 

2015). Additional barriers include urban space reallocation, change of design and planning 

procedures, financial constraints, policy discrepancies, and insufficient research (Ashkrof et al., 

2019; Fagnant & Kockelman, 2015).  

Many unanswered research questions still remain, such as the potential of vehicle automation 

systems to decrease travel time variability (Steck et al., 2018),  the public's willingness to own or 

utilize shared Avs (Wang et al., 2020), and  the influence of vehicle automation on the volume and 

spatial distribution of parking demand (W. Zhang & Wang, 2020).  Federal, state, and local 

stakeholders must expand research initiatives in the field of AVs while setting standards related to 

their liability, security, and data privacy (Wong & Shaheen, 2020). Therefore, further research is 

needed in the realm of “policy innovation” relating to interventions.  

While governments currently have various tools to facilitate the transition of vehicles from human 

drivers to AVs, additional mechanisms are required. Implementing regional land-use planning 

measures can help to regulate the potential sprawl associated with the widespread AV adoption. 

Moreover, authorities will need tools to govern the overall behavior of AVs and ensure the 

readiness of non-AV drivers to adapt themselves to AVs (Kyriakidis et al., 2015). It is crucial to 

focus on AV interactions with vulnerable transportation users (Taeihagh & Lim, 2019). This 

highlights the importance of exploring and developing innovative policies to effectively manage 

the integration of AVs into our existing transportation systems. Surprisingly, only a small number 

of planners believe that urban transport planning should be adapted, with the majority viewing it 

as a concern for the more distant future. This observation contrasts with the strong industry 

advocacy for AVs (Cohen & Cavoli, 2019; Fraedrich et al., 2019). 
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The lack of jurisdiction at the megaregion level poses challenges for adopting AVs in terms of 

government regulation and policy (Addie et al., 2020). Addressing AV implementation at the 

megaregion scale is inherently more complex compared to enforcement and planning at the 

metropolitan level. Effectively planning for AVs requires dedicated policy initiatives that must be 

extensively deliberated and then put into action at the megaregion level. 

2.5 The Integration of AVs into Transportation models 

Levin & Boyles (2015) present a four-step model that categorizes demand based on the time value 

and AV ownership by treating AVs as private vehicles. Their nested logit approach, which assesses 

choices between parking, repositioning, and transit, incorporates a generalized cost function with 

factors including time, fuel, and tolls in static traffic assignment. Levin (2015) advanced the model 

by integrating dynamic traffic assignment (DTA) with endogenous departure time choices, 

offering a more realistic depiction of traffic flow and intersection control. Their research reveals 

that while AVs enhance intersection capacity, they do not significantly alleviate overall 

congestion.  

Similarly, Auld et al. (2017) utilized the so-called POLARIS simulation model, which merges the 

activity-based model ADAPTS with a traffic simulation model. Their adjustment of road capacity 

to regulate market penetration regionally underscores the significant influence of both capacity 

and time value on VKT. Likewise, Kloostra & Roorda (2019) focused on the impact of adaptive 

cruise control (ACC) technology of AVs on road capacity. They modified road link capacities to 

simulate the potential throughput increase from AV driving behavior, differentiating between 

freeways and arterial roads. Their static assignment using Emme 4 also includes an analysis of 

parking operations, indicating the broader implications of AV technology on urban infrastructure.  
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Jordan (2012) analyzed the utility of SAVs, considering trip length, speed, fleet size, and vehicle 

costs. Their findings confirm the economic benefits of SAVs in cities like Ann Arbor, Babcock 

Ranch, and Manhattan. Fagnant & Kockelman (2014) employed MATSim to simulate SAVs in 

Austin, highlighting the crucial role of effective fleet management and relocation strategies. Their 

subsequent study on electric SAVs (Fagnant & Kockelman, 2015) uncovers range limitations, a 

challenge further addressed by Chen et al. (2016) through the incorporation of charging stations in 

their model.  

Zhang et al. (2015) extended Fagnant & Kockelman (2014)’s model by adding user income and 

dynamic ridesharing (DRS); they explored parking strategies, demonstrating that DRS can 

reduce VKT and waiting times. Boesch et al. (2016) modelled the relationship between AV fleet 

size and demand, finding it non-linear. Levin et al. (2017) developed an event-based SAV 

framework with first-come, first-served vehicle assignment and limitless parking capacity, 

emphasizing the need for efficient vehicle distribution strategies. Shen et al. (2017) used 

SimMobility to enhance first/last-mile connectivity in Singapore, achieving positive outcomes 

with shared vehicles and balanced fleet availability.  

In Texas, Kuhr et al. (2017) proposed multiple planning scenarios and developed approaches to 

examine the effects of AVs and connected autonomous vehicles (CAVs) on society and economics 

in the North Central Texas Council of Governments (NCTCOG) region. Employing an agent-

based land use and transportation model, Kuhr et al. (2017) simulated the impacts of AVs on 

household relocation. They assumed that households commuting with AVs would be less sensitive 

to parking availability and less focused on proximity to work, resulting in a decrease in transit 

ridership. The presence of AVs in urban cores, leading to a decreased demand for parking, might 

offset the urban sprawl caused by longer commutes (Llorca et al., 2022).  
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Although these studies provide valuable insights into the potential benefits and challenges of AVs 

and SAVs, none have specifically focused on the development and implementation of 

transportation models at the megaregion level. This gap presents an opportunity for further 

research to explore the impacts of AV and SAV integration on a larger, interconnected scale. 

Addressing this gap could significantly enhance our understanding of how AVs and SAVs might 

transform transportation systems across broader, more complex regions, ultimately contributing to 

more efficient and sustainable urban mobility solutions. 

2.6 Operational Megaregion Transportation Models and AV Integration 

Improving accessibility and mobility for both passengers and freight emerged as key factors in the 

regional long-range planning framework (Read et al., 2017). Existing studies have pointed out a 

lack of clear guidance for planning agencies in dealing with megaregional issues. They also 

highlight a growing trend of interregional collaboration across jurisdictional borders concerning 

transportation, air and water quality, and resilience. Some researchers examined publicly available 

data to study commute and truck flows, although they developed a conceptual and descriptive 

approach, lacking quantitative analysis (Dewar & Epstein, 2007). Researchers from the University 

of Texas, Austin conducted a study that examines mode choices, congestion levels, and trip 

distances before and after assuming an increase of trip generation rates in Texas Triangle region 

(Huang et al., 2020). However, these studies have not considered the adoption of AVs into their 

framework. 

Various aspects of the transportation system in large planning areas are often under the purview 

of different public agencies. MPOs are responsible for developing transportation improvement 

plans (TIPs) and maintaining regional transportation plans (RTPs). State transportation agencies 

also have their statewide transportation improvement programs (STIPs) and State Long-Range 
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Transportation Plans (SLRTPs). The necessity of travel forecasting models has grown to evaluate 

policies, plans, and projects at regional and state levels. Donnelly & Moeckel (2017) have 

highlighted the blurred distinction between regional and state models as their level of resolution 

converges, with an increasing demand for fine-grained analyses. 

The study of megaregion transportation is a complex and relatively unexplored topic, partly due 

to the heterogeneity of data sources and variations in spatial and temporal definitions. The 

delineation of megaregion boundaries is challenging because these conceptual areas are defined 

by interconnected transportation networks, geographies, socio-economic activities, and 

demographic characteristics. As a result, many studies rely on qualitative descriptions and case 

study research, primarily emphasizing policy issues and governance frameworks for megaregions. 

However, there is a significant lack of academic research and professional programs that 

specifically explore the development and applications of operational megaregion transportation 

models. There are even fewer studies exploring both passenger and freight movement within 

megaregions. Moeckel et al. (2015) emphasized the limited research conducted on modelling 

megaregions, despite an extensive body of literature available on megaregion analysis. Moeckel 

et al. (2015) also pointed out the lack of operational megaregion models in a synthesis report for 

the National Cooperative Highway Research Program (NCHRP). It stated that the Chesapeake Bay 

Megaregional Model is currently the only operational travel demand model for megaregions, yet 

it has not been extensively used.  

Integrated Urban Models (IUMs) offer potential for extending spatial analysis from metropolitan 

to megaregion level. They can evaluate transportation performance for both passenger and freight 

traffic in megaregions, assisting in decision-making and policy analysis for megaregion 

transportation planning. The substantial progress in computer software and hardware, along with 
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advanced GIS techniques, large urban spatial databases, and advanced model estimation software, 

has made it possible to develop and implement operational Integrated Urban Models (IUMs). This 

progress has in turn facilitated the creation and use of operational transportation models for 

megaregions (Miller, 2018).  

Recognizing the limitations of existing models and the potential of IUMs, Pan & Chun (2018) built 

an analytical model for estimating spatial and temporal patterns of megaregion truck flows based 

on the available datasets. They selected Texas Triangle as an empirical case to implement the 

megaregion truck flow model. They also emphasized several limitations of their study, including 

the design of virtual network centroids using highway intersections rather than traffic analysis 

zones (TAZs) and the indirect estimate of temporal patterns of megaregion truck flows through 

nighttime light data. 

To gain a better understanding of the movement of both people and goods within megaregions, 

Pan & Chun (2020) developed a GIS-based operational transportation model with an analytical 

framework for personal and freight flows in megaregions. Their model intended to improve 

personal access to various opportunities and facilitate truck access to freight facilities. It also aimed 

to strike a balance between academic research priorities and the needs of operational planning 

agencies, providing insights into decision-making on socio-economic and environmental issues 

related to megaregion transportation. The Texas Triangle was selected as an empirical case to 

demonstrate the application of the megaregion transportation model for both passenger and truck 

flows.  

Based on Pan and Chun’s (2018, 2020) foundational models for the integration of AVs within 

megaregions, this study focuses on examining the effects of AVs on transportation system in the 

Texas Triangle region using the GIS-based megaregion transportation model developed by Pan 
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and Chun (2020). It utilizes a scenario-based approach, considering assumptions about possible 

transportation system alterations resulting from AV integration. The findings demonstrate how 

varying levels of AV penetration rates impact mobility, accessibility, and other key transportation 

performance metrics. 

3. Methodology 

Analyzing passenger and freight movement within megaregions using integrated models presents 

a substantial challenge (Moeckel et al., 2015). This is because integrated models must demonstrate 

robust theoretical foundations and methodological soundness to meet both academic and practical 

standards, while also fulfilling public agencies' expectations for efficiency, reliability, and user-

friendliness (Pan and Chun 2020). To tackle these issues, Pan and Chun (2020) developed a 

transportation model at the megaregion scale. Their model builds on the transportation module 

from the Southern California Planning Model (SCPM), a Lowry-type regional planning model 

(Pan & Richardson, 2015).  

The SCPM was first developed by researchers at the University of South California (USC) in the 

early 1990s to analyze spatial economic impacts within the five-county Los Angeles area 

(Richardson et al., 1993). Since then, SCPM has been implemented in Los Angeles, Houston and 

some other regions (Cho et al., 2001; Gordon et al., 2007; Pan et al., 2008), to evaluate the effects 

of natural and manmade disasters on the performance of the transportation system (Pan & 

Richardson, 2015). Over the years, the model been consistently updated with the new and updated 

data sources to include more advanced functionalities (Richardson et al., 2015). 

The SCPM model has seen significant development, evolving into a spatial input-output model. 

Originally labeled SCPM1, it employed various origin-destination (OD) matrices to study both 

local and regional passenger movements and freight transport. While it incorporated detailed 
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sectoral and geographical data, SCPM1 fell short in incorporating transportation networks and 

travel demand functions effectively (Pan, 2020). 

In the late 1990s, SCPM 2 emerged as a later iteration, coded in C and C++. Notably, it improved 

upon its predecessor by internalizing traffic flows and freight movements, integrating a 

transportation network model alongside gravity models to allocate indirect and induced impacts 

on Traffic Analysis Zones (TAZs) from the input-output model. This enhancement facilitated the 

dynamic adjustment of the transportation network in response to economic shifts, thereby 

influencing both travel behavior and freight movement. SCPM 2 seamlessly integrated the freight 

database into the regional transportation model, advancing its capabilities further to analyze 

changes in traffic patterns, shifts in travel behavior, and alterations in freight movement within the 

affected zones (Pan et al., 2011). However, this version was limited to modeling traffic solely 

during the 3-hour morning peak period and employing static user equilibrium assignment (Cho et 

al., 2001; Gordon et al., 2007; Pan et al., 2008). 

Unlike SCPM2, the latest version, SCPM3, inherits all capabilities from its predecessors while 

advancing the model with the addition of time-of-day functions. This upgrade enables the 

modeling of traffic not only during the AM peak period but also during the PM peak and off-peak 

periods. SCPM3 can analyze the effects of peak-load pricing on transportation network 

performance at the link level and evaluate activity effects at the TAZ level (Pan et al., 2011).  

Expanding the SCPM transportation module from the regional level to a megaregion necessitates 

the integration of passenger and freight trips between metropolitan areas into the modeling process. 

Building on the framework of intraregional and interregional data processing outlined by Pan 

(2006) and Giuliano et al. (2010), as well as the two-layer structure of the Chesapeake Bay 

Megaregion Model described by Moeckel et al. (2015), Pan and Chun (2020) adopted a framework 
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of two geographic layers to examine intra-metropolitan and inter-metropolitan transportation flows 

(Figure 2). 

Unlike passenger flows, freight movement poses a significantly more complex and relatively 

unexplored challenge. This complexity primarily stems from the costs associated with data 

collection, the heterogeneous nature of data sources, the ambiguity surrounding classifications, 

and the absence of adequate methodologies (Pan, 2006). Giuliano et al. (2010) addressed this 

challenge by leveraging reliable secondary data sources, such as small-area employment data, to 

derive estimates of commodity flows when vehicle (trip)-based freight data were unavailable. 

However, in the past decade, there has been a notable increase in the availability of truck 

movement data, including origin-destination trip matrices, at various local, state, and federal 

transportation agencies. 

 

Figure 2. An analytical framework of the megaregion transportation model. 
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Pan and Chun (2020) took advantage of this opportunity and developed an analytical framework 

for the megaregion transportation model. Their approach builds upon the foundation of previous 

SCPM models while integrating newly available freight datasets. Their framework consists of four 

key components: (1) Megaregion transportation data processing, which includes processing of 

intra-metropolitan and inter-metropolitan transportation data, (2) Megaregion transportation data 

tool functions, (3) Megaregion transportation data integration, including the combination of intra-

metropolitan and inter-metropolitan personal trips and the combination of intra-metropolitan and 

inter-metropolitan truck trips, and (4) Megaregion network modeling. 

As depicted in Figure 2, the analytical framework divides megaregion transportation into two 

spatial layers: intra-metropolitan and inter-metropolitan layers, for both passenger and truck trips. 

Intra-metropolitan transportation pertains to the movement of passengers and trucks between 

traffic analysis zones (TAZs) within a single metropolitan area of a megaregion. Conversely, inter-

metropolitan transportation involves the movement of passengers and trucks where either the 

starting point or the destination (or both) of their trips are located outside the boundaries of the 

same metropolitan area within the megaregion.  

The local MPOs within a megaregion can provide intra-metropolitan transportation data for their 

respective regions. These datasets typically includes origin-destination (OD) pairs for personal 

trips across various trip purposes, as well as OD pairs for different truck types, along with traffic 

analysis zones (TAZs) and network link files (Pan, 2006).  

The inter-metropolitan transportation component focuses on capturing passenger and truck 

movements between different metropolitan areas within a megaregion. This includes collecting 

data on trips that either originate from or are destined for areas outside a specific metropolitan area 

within the megaregion, as well as those that extend beyond the megaregion itself. State or federal 
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transportation agencies typically provide datasets relevant to inter-metropolitan transportation 

(Donnelly & Moeckel, 2017; Pan & Chun, 2018).  

The Bureau of Transportation Statistics (BTS) and the Federal Highway Administration (FHWA) 

utilize various data sources like the Commodity Flow Survey (CFS) for inter-metropolitan freight 

transportation. These datasets are crucial for building the Freight Analysis Framework (FAF), 

which provides a comprehensive view of freight movement between states and major metropolitan 

areas across different transportation modes 1 . The FAF provides data on freight shipments, 

including tonnage, value, and ton-miles, categorized by origin and destination, commodity type, 

and transportation mode (Giuliano et al., 2018). To facilitate analysis, tool functions are needed 

for data conversion, such as transforming tons into dollars, jobs, trucks, or passenger-car-

equivalents (PCEs). Pan and Chun (2018) have developed essential tool functions for this purpose. 

For inter-metropolitan personal trips, the US Census Bureau’s American Community Survey (ACS) 

offers data on commuting trips between workers' residences and workplaces at the county level2. 

The dataset includes information on commuters' workplace locations, trip start times, chosen 

transportation modes, and trip durations. The most recent available datasets are the 2016-2020 5-

Year ACS commuting flows.  

Pan and Chun (2020) outline a procedure for integrating intra-metropolitan and inter-metropolitan 

transportation data into the megaregion transportation system using a GIS-based platform (Figure 

2). This method utilizes GIS functions to create Traffic Analysis Zones (TAZs) within 

metropolitan areas and zones beyond, such as county boundaries, to establish Megaregion Analysis 

Zones (MAZs). These MAZs serve as the primary units for analyzing the megaregion 

 
1 https://ops.fhwa.dot.gov/freight/freight_analysis/faf/  
2 https://www.census.gov/topics/employment/commuting/guidance/flows.html  

https://ops.fhwa.dot.gov/freight/freight_analysis/faf/
https://www.census.gov/topics/employment/commuting/guidance/flows.html
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transportation system, including both personal and truck trips that originate from or are destined 

for the MAZs, as well as their movement through the megaregion’s transportation networks. 

After integrating megaregion transportation data, Pan and Chun (2020) proceed with developing 

megaregion network models. Their model incorporates megaregion personal and truck trip Origin-

Destination (OD) data into the megaregion highway networks using capacity constraint network 

assignment functions. During this process, both passenger and truck trips are simultaneously 

considered within an equilibrium-based model, addressing the network's overloading condition. 

This approach ensures a comprehensive evaluation of the network's performance and capacity 

utilization through the following equations: 
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where ax  is the total flow on link a, 

)(tC a
is the cost-flow function which calculates the average travel cost on link a, 

od

pa, is the link-path incidence variable; it equals one if link a belongs to path p 

connecting OD pair o and d , 
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od

ph  represents the flow on path p connecting OD pair o and d, including both 

passenger flow 𝑃𝑝
𝑜𝑑  and truck flow 𝐹𝑝

𝑜𝑑, 

odT  represents the total trips between origin node o and destination node d, 

encompassing both passenger and truck trips, 

p refers to a network path, while o and d denote two end nodes on the network. 

The assignment models for both passenger and truck flows are based on the functions outlined by 

Sheffi (1985). These functions were derived from the mathematical model formulated by Beckman 

et al. (1956) to represent Wardrop's first principle, which states that no traveler can lower their 

travel costs by changing routes. This modeling approach, with the objective function (3.1) aiming 

to minimize travel costs while treating link flows and zonal demands as constraints, was previously 

employed by Giuliano et al. (2010) to load freight traffic onto regional highway networks. 

Similarly, Pan (2003, 2006) applied this approach to assign both passenger and truck trips in 

regional transportation models. 

To implement the model, it's essential to iteratively generate all feasible values. The objective is 

to minimize travel costs to satisfy the objective function (3.1) until the model reaches convergence. 

The procedure is outlined as follows, 

 

Step 0: Initialization. Conduct an all-or-nothing approach to simultaneously assign both 

passenger and truck trips, utilizing free flow travel costs, )0(aa CC = , for each link, 

a, on the empty network. Link flows 
ax are obtained. 

Step 1: Update link travel times. The travel time on link a  is updated as )( aaa xCC = . 
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Step 2: Find a feasible descent direction. Use the updated travel time { aC } for an all-or-

nothing assignment for passenger and truck trips, resulting in a set of auxiliary link 

flows { au } combining passenger trips with truck trips in PCEs.  

Step 3: Find optimal parameter. Apply a linear approximation algorithm (LPA), such as the 

Golden section or Bisection method outlined in Sheffi (1985), to determine the 

optimal parameter,  , that satisfies the following equation: 

Min  
−+

a

xux

a
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0
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Step 4: Update link flows. Link flows 
ax  is changed to be )( aaa xux −+  

Step 5: Test Convergence. The process concludes when a convergence criterion is met, and 

the link flows reach optimal equilibrium conditions. If the criterion is not satisfied, 

return to Step 1 and repeat the process. 

Pan (2003, 2006) employed this methodology to assign passenger and truck flows together onto a 

congested regional highway network while maintaining a user equilibrium condition. Similarly, 

Pan and Chun (2020) applied this approach to load both passenger and truck trips onto megaregion 

highway networks under congested conditions.  

Our study builds on the extensive framework developed by Pan and Chun (2020) to examine the 

impact of AVs on megaregion transportation performance across various scenarios.  
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4. Analysis 

4.1 Study Area 

A megaregion transportation model, developed by following the analytical framework shown in 

Figure 2, has been implemented to examine the impacts of AVs on passenger and truck flows in 

the Texas Triangle, one of the largest megaregions in the U.S. identified by the Regional Planning 

Association (RPA) (2006, 2017).  

 

The Texas Triangle consists of the state's four largest cities and metropolitan areas, i.e. Austin, 

Dallas, Houston, and San Antonio, connected by major interstate highways including I-10, I-45, 

and I-35. According to the US Census Bureau, the combined population of these four metropolitan 

areas within the Texas Triangle grew significantly by 19.7% between 2010 and 2019, increasing 

from 16.2 million to 19.4 million. This significant population increase reinforces its status as one 

of the fastest-growing megaregions in the United States. By comparison, the population of Texas 

was recorded at 29.1 million in 2020 and estimated to be 30.2 million in 2022 by the US Census 

Bureau. 

 

It should be noted that the boundaries of the four major metropolitan areas within the Texas 

Triangle differ from the freight analysis zones defined by freight analysis framework version 4 

(FAF4) and utilized in the commodity flow survey (CFS). Figure 3 illustrates the broader areas 

covered by the FAF4 zones compared to the traffic analysis zones (TAZs) defined by the respective 

local MPOs for the metropolitan areas. Additionally, the figure shows the extent of the Texas 
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Triangle as determined by the personal job accessibility calculations from the study conducted by 

Pan and Chun (2020). 

 

 

Figure 3. The study area - Texas Triangle with its megaregion analysis zones (MAZs) 

Note: This figure was adopted from Figure 2 in Pan and Chun (2020) 

 

4.2 Data Collection 

Our data has been collected from various agencies at two different geographic levels: the intra-

metropolitan level and the inter-metropolitan level. Key data sources at the metropolitan level 

include MPOs. These federally mandated and funded organizations are responsible for developing 

transportation plans and policies for regions with a population of 50,000 or more. They are required 

to create a Regional Transportation Plan (RTP), a long-term transportation plan, as well as a 

Transportation Improvement Program (TIP), a four-year plan. Our traffic analysis zones, original-
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destination matrix, and transportation network data for metropolitan areas were obtained from the 

respective local MPOs. 

 

The Austin MPO, also known as the Capital Area Metropolitan Planning Organization (CAMPO), 

is responsible for transportation planning in Bastrop, Burnet, Caldwell, Hays, Travis, and 

Williamson Counties. In our study, we obtained transportation modeling data from CAMPO 

(2018)'s 2040 regional transportation plan. This dataset included origin-destination (OD) 

information for passenger and truck trips across 2,102 internal traffic analysis zones (TAZs) and 

59 external zones, a detailed road network consisting of 17,169 links covering 6,533 miles, and 

396 existing and planned transit routes. In the metropolitan areas, a total of 11,678,748 daily 

passenger vehicle trips and 1,031,178 truck trips were recorded. Of these trips, 320,610 passenger 

vehicle trips and 51,333 truck trips had one end outside the CAMPO region (see Table 1). 

Passenger trip tables were provided for various trip purposes, occupancy levels, and times of day. 

The TAZ system covered the entire six-county CAMPO region, corresponding with the FAF4 zone 

designation for the Austin metropolitan area (see Figure 4a). 
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a. Austin  b. Dallas 

 

c. Houston  

 

d. San Antonio  

 

Figure 4. Transportation data collected for Austin, Dallas, Houston, and San Antonio 

 

 

Table 2. Passenger and truck trips in the four metropolitan areas of Texas Triangle 

 

Metropolitan area 

Passenger Trips Truck Trips 

Intra-metropolitan External Total Intra-metropolitan External Total 

Austin 11,358,138 320,610 11,678,748 979,844 51,333 1,031,178 

Dallas 19,511,249 331,914 19,843,163 662,478 95,528 758,006 

Houston 15,545,394 181,121 15,726,515 1,122,215 31,924 1,154,140 

San Antonio 6,435,229 175,658 6,610,887 590,453 31,509 621,961 

   Source: Author calculation based on the data from local MPOs. 

 



34 

 

The North Central Texas Council of Governments (NCTCOG) serves as the Metropolitan Planning 

Organization (MPO) for the Dallas-Fort Worth region. They provided us with transportation data 

for Collin, Dallas, Denton, Ellis, Hill, Hood, Hunt, Johnson, Kaufman, Parker, Rockwall, Tarrant, 

and Wise Counties. The NCTCOG data includes passenger and truck trip origin-destination (OD) 

information for 5,386 traffic analysis zones (TAZs), consisting of 5,303 internal and 83 external 

zones. The road network data includes 41,454 links covering 19,404 miles. Passenger trip tables 

are categorized by time of day and occupancy, while truck trip tables are available for various 

times of day. A total of 19,843,163 passenger trips and 758,006 truck trips are generated within 

the NCTCOG area every day. This includes 331,914 external passenger trips and 95,528 external 

truck trips (see Table 2). The NCTCOG's TAZs cover a smaller area compared to the FAF4 zone 

designated for the Dallas metropolitan area, which extends to additional counties such as Cooke, 

Henderson, Hopkins, Grayson, Palo Pinto, Navarro, and Somervell (see Figure 4b). 

 

The Houston-Galveston Area Council (H-GAC) works with local governments in the Houston 

metropolitan area to address regional planning challenges. Their transportation plans cover eight 

counties: Brazoria, Chambers, Fort Bend, Galveston, Harris, Liberty, Montgomery, and Waller. 

We obtained ODs for passenger and truck trips across 2,954 internal TAZs and 46 external zones, 

as well as a road network consisting of 68,314 links covering 30,167 miles. Passenger trip tables 

are available for various trip purposes. A total of 15,726,515 passenger trips and 1,154,140 truck 

trips are generated daily within the eight-county H-GAC region. This includes 181,121 passenger 

trips and 31,924 truck trips that enter or exit the region through its external zones (see Table 1). 

The FAF4 zone designated for the Houston metropolitan area includes Austin, Matagorda, Walker, 
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Washington, and Wharton Counties, which are included in the eight-county H-GAC region (see 

Figure 4c). 

 

The Alamo Area Metropolitan Planning Organization (AAMPO) develops transportation plans 

and programs for the greater San Antonio area, which includes Bexar, Comal, Kendall, Guadalupe, 

and Wilson Counties. This area is smaller than the FAF4 zone designated for the San Antonio 

metropolitan area. Atascosa, Bandera, and Medina Counties are part of the FAF4 zone but are not 

included in the AAMPO transportation plans (see Figure 4d). We obtained the ODs for passenger 

and truck trips across 1,248 internal zones and 42 external zones, as well as a road network 

consisting of 16,140 links covering 6,256 miles. Overall, 6,610,887 passenger trips and 621,961 

truck trips are generated, including 175,658 passenger trips and 31,509 truck trips classified as 

external trips (see Table 2). 

 

Along with the metropolitan-level transportation data, we also obtained inter-metropolitan data 

from federal agencies. The US Census Bureau provided us with passenger commuting data through 

their 2011-2015 5-Year ACS Commuting Flows dataset, which offers information on commuting 

trips from workers' residence county to workplace county. We also obtained freight transportation 

data from the Freight Analysis Framework version 4 (FAF4). The FAF4 offers an origin-

destination matrix for commodity flow, including tonnage and dollar value, across 132 pre-defined 

domestic regions referred to as economic centroids. In Texas, there are nine FAF4 economic 

centroids: Austin, San Antonio, Dallas-Fort Worth, Houston, Laredo, Beaumont, Corpus Christi, 

El Paso, and the rest of Texas. Among these economic centroids, Austin, Dallas-Fort Worth, 

Houston, and San Antonio are located within the Texas Triangle. By utilizing the Census ACS 
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commuting flow data and the FAF4 commodity flow data, we were able to address the gaps in 

passenger and freight trips that involve at least one end outside of the four metropolitan areas of 

the megaregion. 

 

One advantage of this research is that the diverse transportation data we collected from various 

sources are in a similar format and nearly based on the same year. For instance, the H-GAC 

provided us with data from their 2015 base year model, while the US Census commuting tables 

cover the 2011-2015 5-Year ACS commuting flows. 

4.3 Analysis Results and Discussions 

Following the data collection phase, we utilized the analytical framework shown in Figure 2 to 

analyze both intra-megaregion and inter-megaregion data on passenger and freight flows. The 

initial step has data validation, which includes multiple checks. We compared passenger trips with 

population and employment data at the Traffic Analysis Zone (TAZ) or county level, examined 

calculated truck ratios within the total vehicle fleet, compared truck trip data obtained from MPOs 

and FAF4, and evaluated passenger and truck trip densities to ensure their distribution patterns 

matched urban forms. Additionally, we converted the dollar value or tonnage of inter-metropolitan 

commodity flows into the number of trucks and further into Personal Consumption Expenditures 

(PCEs) using ratios estimated from transportation data tool functions. 

In parallel to data validation, we aggregated passenger trip OD data by trip purpose, occupancy, 

or time of day to establish daily passenger trip ODs for each of the four metropolitan areas: Austin, 

Dallas, Houston, and San Antonio. Similarly, we combined truck trip ODs categorized by truck 
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type, highway type, or time-of-day to create daily truck trip ODs for each of the four metropolitan 

areas. 

 

Regarding inter-metropolitan transportation data, we encountered a discrepancy between the 

geographic locations of county-level passenger commuting data and truck flow data within the 

FAF4 zonal system. To address this issue, we created a comprehensive zonal system for the 

megaregion using a Geographic Information System (GIS) platform. This system integrates the 

intra-metropolitan zonal systems from MPOs, counties outside of metropolitan areas but within 

the state, and external zones outside of the state. Altogether, it includes 12,436 Megaregion Area 

Zones (MAZs) for the Texas Triangle, as outlined in Table 3. 

Table 3. The megaregion transportation analysis zones (MAZs) for Texas Triangle 

Name TAZs Internal Zones External Zones Descriptions 

Ext-Tex 391 N/A N/A External zones located out 

of Texas 

Austin 2,161 2,102                 59 TAZs in Austin 

Dallas 5,386 5,303 83 TAZs in Dallas 

Houston 3,000 2,954 46 TAZs in Houston 

San Antonio 1,290 1,248 42 TAZs in San Antonio 

TexCounty-OutMetro 208 N/A N/A Texas counties out of the 

four metropolitan areas 

defined by FAF4 

SUM 12,436 N/A N/A Total number of zones for 

the megaregion 

     Source: Author preparation using the data from local MPOs and FAF4 

The zonal system for the Texas Triangle megaregion encompasses 391 external stations designed 

for the state of Texas. These stations are identified through the FAF4 zonal system, border entries, 

and other geographic information. Additionally, the zonal system incorporates both internal and 

external zones of the four metropolitan areas within the megaregion, aligning with the TAZ 

systems defined by their respective MPOs. It also includes the counties located outside the four 

metropolitan areas, with their boundaries defined by FAF4. Similar to the development of TAZ 

systems in regional transportation analysis or census tracts in socio-demographic studies, the 
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design principle of the megaregion zonal system features smaller-sized zones in areas with higher 

population density. Figure 3 displays the megaregion zonal system, while Figure 4 shows the 

internal and external zones for each individual metropolitan area within the megaregion. 

 

Following the analytical framework outlined in Figure 2, the intra-metropolitan passenger trip 

tables for the four metropolitan areas in the Texas Triangle are combined with inter-metropolitan 

passenger trip ODs to create a megaregion passenger trip OD. Similarly, the intra-metropolitan 

truck trip tables for the Texas Triangle’s metropolitan areas are combined with inter-metropolitan 

truck trip tables to create a megaregion truck trip OD. 

 

To facilitate the network analysis of passenger and truck movement within the megaregion, we 

use the transportation network provided by FAF4, which includes 39,160 network links in Texas. 

Assuming all network links are bidirectional, the total number of network links in the FAF4 dataset 

amounts to 78,320. Additionally, we include two-way centroid connectors to each of the 12,436 

network centroids. As a result, the megaregion transportation system includes a total of 103,192 

network links, combining 24,872 centroid connectors with the 78,320 FAF4 network links. 

 

In our study, the 103,192 highway network links are organized in the forward star data structure, 

as described by Sheffi (1985), to optimize computer memory usage and manage the sequence list 

of links effectively. "In addition to the from-node, to-node, length, and lanes attributes, the network 

link attributes also include link capacity, speed, and link type. Link capacity is derived from the 

FAF4 dataset, which estimates capacity using the methodology outlined in the Highway Capacity 

Manual (HCM). Link speed is estimated based on the link type. 
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Once the megaregion passenger and truck trip ODs are prepared and the network links are 

developed, we use a user-equilibrium-based model with capacity constraints. This approach, 

following the iterative procedure outlined in the methodology section, allocates both passenger 

and truck flows onto the megaregion transportation network. 

 

To align with passenger trips, truck trips are measured in Personal Consumption Expenditures 

(PCE). This is derived from freight tonnage in the FAF4 database using the ton-per-PCE ratio 

estimated by Giuliano et al. (2010). Figure 5a and Figure 5b display the link volumes estimated 

by the user equilibrium assignment with link capacity constraints, showing passenger flows and 

truck flows, respectively. They clearly show that passenger and truck flows have similar 

distributions within the Texas Triangle, with intra-metropolitan trips displaying significantly 

higher volumes compared to inter-metropolitan trips.  
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Figure 5(a). Passenger Flows in Texas Triangle  

 

 

Major highways such as I-20, I-35, I-45, I-10, and I-37 experience high volumes of inter-

metropolitan trips. There are fewer trips crossing the state boundary compared to those crossing 

the boundaries of metropolitan areas within the Texas Triangle. 
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Figure 5(b) Truck Flows in Texas Triangle  

Traffic volume trends were projected for future years, and growth rates were predicted for both 

the lower bound and upper bound scenarios as shown in Table 4. 

 

Table 4. Vehicle Growth rates for year 2015-2035 

Projected for 

Years 
Lower bound Upper bound 

2015 1% 2% 3% 7% 

2015-2035 122% 149% 181% 387% 

2020-2035 116% 135% 156% 276% 

Source: Author calculation.  
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Additionally, traffic growth scenarios are based on 1% and 3% growth rates. The analysis includes 

separate scenarios for capacity increases of 50% and 100%. Combined scenarios of traffic growth 

and capacity increase are also considered to assess the impact of AVs on the traffic stream.  

Table 5. Analysis Results 

Region Variables Modes 

Scenarios 

Volume 

 + 1% 

Volume 

 + 3% 

Capacity 

+ 50% 

Capacity 

- 100% 

Volume 

 + 1% & 

Capacity 

+ 50% 

Volume 

 + 1% & 

Capacity 

+ 100% 

Volume 

 + 3% & 

Capacity 

+ 50% 

Volume 

 + 3% & 

Capacity 

+ 100% 

Entire 

Texas 

Accessibility 
Passenger 12.84% 25.03% 9.60% 13.09% 29.03% 13.09% 68.28% 86.53% 

Freight 12.02% 20.95% 10.61% 14.50% 29.68% 14.50% 67.11% 87.03% 

VMT 
Passenger 22.07% 83.09% 0.14% 0.27% 22.00% 22.19% 80.81% 80.81% 

Freight 22.01% 83.12% 0.11% 0.24% 21.89% 22.10% 80.57% 80.57% 

VTT 
Passenger 34.86% 210.84% -8.83% -11.17% 14.88% 10.10% 74.86% 74.86% 

Freight 36.00% 220.24% -9.95% -12.60% 14.07% 8.53% 74.06% 74.06% 

Volume 
Passenger 21.94% 80.78% 0.00% 0.00% 21.94% 21.94% 80.78% 80.78% 

Freight 21.89% 80.59% 0.00% 0.00% 21.89% 21.89% 80.59% 80.59% 

Texas 

Triangle 

Accessibility 
Passenger 13.13% 26.53% 9.15% 12.42% 28.76% 12.42% 68.67% 86.33% 

Freight 12.10% 21.35% 10.47% 14.26% 29.60% 14.26% 67.21% 86.98% 

VMT 
Passenger 22.02% 82.73% 0.20% 0.32% 22.05% 22.25% 80.86% 80.86% 

Freight 21.99% 82.82% 0.18% 0.31% 21.97% 22.19% 80.70% 80.70% 

VTT 
Passenger 33.59% 195.24% -8.13% -10.34% 15.46% 11.03% 75.36% 75.36% 

Freight 34.80% 205.14% -9.32% -11.85% 14.62% 9.39% 74.60% 74.60% 

Volume 
Passenger 21.94% 80.77% 0.00% 0.00% 21.94% 21.94% 80.77% 80.77% 

Freight 21.91% 80.65% 0.00% 0.00% 21.91% 21.91% 80.65% 80.65% 

Source: Author calculation. 

As anticipated, our study confirms that increasing capacity by 50% and 100% does not lead to any 

changes in traffic volumes across both the Texas Triangle and the entire state of Texas. However, 

the introduction of AVs at 1% and 3% penetration rates leads to an increase in traffic volume in 

both regional contexts, with a slightly higher rate observed at 3% compared to 1%. Surprisingly, 

this trend continues even when AV penetration is coupled with capacity increases. These findings 

suggest that while expanding infrastructure capacity has no effects on congestion, the additional 

traffic generated by AVs negates these benefits. Our findings show that combining AV adoption 
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with capacity enhancements does not reduce the rise in traffic volume, highlighting the 

complexities of integrating AVs into existing transportation systems. These consistent results for 

both freight and passenger transportation in Texas and the Texas Triangle regions emphasize the 

urgent need for careful planning to manage potential congestion and optimize infrastructure 

utilization as AV technology advances. 

 

Our findings show that increasing capacity has minimal impact on VMT for both freight and 

passenger transportation in Texas and the Triangle regions. However, with autonomous vehicle 

(AV) penetration rates of 1% and 3%, we observe substantial increases in VMT—around 22% and 

83%, respectively, across both regions. Notably, the combination of AV adoption and capacity 

enhancements did not lead to a significant reduction in VMT for either passenger or freight traffic 

in these regions. Similar to the previous results, these findings highlight the significant impact of 

AV adoption on increasing travel distances. This suggests that effectively managing the integration 

of AVs into transportation systems will require strategic planning to optimize infrastructure use 

while addressing potential increases in traffic volume.  

 

As expected, our analysis demonstrates that increasing capacity by 50% and 100% leads to reduced 

travel times for both passenger and freight transportation in both Texas and the Triangle regions, 

with decreases of approximately -9% and -12%, respectively. In contrast, at AV penetration rates 

of 1% and 3%, travel times increase significantly—at approximately 34% and 220%, respectively, 

across both regions. Interestingly, in combined scenarios with 1% AV penetration and capacity 

increases of 50% and 100%, the VTT decreases from approximately 35% to 10% for both 

passenger and freight traffic across both regions. These results highlight the importance of 
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integrating AV adoption with concurrent increases in infrastructure capacity. Doing so is essential 

to manage the potential increases in travel times associated with AVs effectively, while also 

optimizing overall transportation efficiency and reducing congestion.  

 

Next, we analyze changes in passenger and freight accessibility across different scenarios. As 

expected, both AV penetration and capacity enhancements contribute to increased accessibility. 

At AV penetration rates of 1% and 3%, accessibility increases by approximately 12% and 25%, 

respectively, compared to the baseline. Similarly, with capacity increases of 50% and 100%, 

accessibility rises by approximately 9% and 13%, respectively. In combined scenarios for both 

regions, with 1% AV penetration and capacity increases of 50% and 100%, accessibility improves 

by 29% and 13%, respectively. Similarly, with 3% AV penetration and capacity enhancements of 

50% and 100%, accessibility increases by 69% and 87%, respectively, compared to the baseline. 

These findings highlight the combined benefits of AV adoption and capacity improvements in 

enhancing accessibility for both passenger and freight transportation. Planning and policy efforts 

should aim to harness these synergies to maximize accessibility benefits while addressing the 

complexities introduced by increased presence of AVs in transportation networks. 

 

We now present maps that show how the introduction of AVs under different scenarios affects 

accessibility, VMT, and VTT. These visualizations enhance our understanding of how AV 

adoption, coupled with various levels of capacity improvements, affects these key transportation 

parameters.
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Figure 6. Personal Vehicle Accessibility for the (a) Baseline, (b) a 50% increase in capacity with a 1% growth in traffic, and (c) a 100% increase in 

capacity with a 3% growth in traffic scenarios in Northern Texas  
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Figure 7. Change in passenger accessibility when (a) traffic growth is 1% and capacity is increased by 50%, and (b) traffic growth is 3% and capacity is 

increased by 100% in Northern Texas 

 

Figures 6 and 7 illustrate passenger accessibility in the Northern Texas region under three scenarios: (a) Baseline, (b) a 50% increase in 

capacity with 1% traffic growth, and (c) a 100% increase in capacity with 3% traffic growth. Figure 6 presents the accessibility levels 

for each scenario, while Figure 7 illustrates the changes in accessibility compared to the baseline for scenarios (b) and (c). The figures 

reveal a notable improvement in both scenarios (b) and (c) compared to the baseline, with scenario (c) demonstrating the most substantial 

increase. 
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Figure 8. Personal Vehicle Accessibility for the (a) Baseline, (b) a 50% increase in capacity with a 1% growth in traffic, and (c) a 100% increase in 

capacity with a 3% growth in traffic scenarios in Southern Texas 
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Figure 9. Change in passenger accessibility when (a) traffic growth is 1% and capacity is increased by 50%, and (b) traffic growth is 3% and capacity is 

increased by 100% in Southern Texas 

 

Similarly, Figures 8 and 9 present the same scenarios and changes for Southern Texas, including Houston, San Antonio, and Austin. 

Figure 8 shows passenger accessibility levels for three different scenarios: (a) Baseline, (b) a 50% increase in capacity coupled with 1% 

growth in traffic, and (c) a 100% increase in capacity along with a 3% growth in traffic. Figure 9 highlights the changes in accessibility 

relative to the baseline for scenarios (b) and (c). Much like in Northern Texas, passenger accessibility significantly improves in both 

scenarios (b) and (c) compared to the baseline, with scenario (c) demonstrating the greatest enhancement. It's evident that both increased 

AV penetration and capacity enhancements lead to improved accessibility. It is noteworthy that Austin and San Antonio experience 

greater changes in passenger accessibility compared to other metropolitan areas. This may be due to several factors that were not 

explored in this study and warrant further investigation. 
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Figure 10. Freight Vehicle Accessibility for the (a) Baseline, (b) a 50% increase in capacity with a 1% growth in traffic, and (c) a 100% increase in 

capacity with a 3% growth in traffic scenarios in Northern Texas 
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Figure 11. Change in freight accessibility when (a) traffic growth is 1% and capacity is increased by 50%, and (b) traffic growth is 3% and capacity is 

increased by 100% in Northern Texas 

 

Figures 10 and 11 illustrate freight accessibility and its changes in the Northern Texas region across three scenarios: (a) Baseline, (b) a 

50% increase in capacity with a 1% growth in traffic, and (c) a 100% increase in capacity with a 3% growth in traffic. Figure 10 shows 

the accessibility levels for each scenario, whereas Figure 11 compares the changes in accessibility relative to the baseline for scenarios 

(b) and (c). These figures show that freight accessibility significantly improves in both scenarios (b) and (c) compared to the baseline, 

with scenario (c) exhibiting the most significant enhancement. However, freight accessibility catchments are substantially lower 

compared to passenger accessibility in North Texas.  
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Figure 12. Freight Vehicle Accessibility for the (a) Baseline, (b) a 50% increase in capacity with a 1% growth in traffic, and (c) a 100% increase in 

capacity with a 3% growth in traffic scenarios in Southern Texas  
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Figure 13. Change in freight accessibility when (a) traffic growth is 1% and capacity is increased by 50%, and (b) traffic growth is 3% and capacity is 

increased by 100% in Southern Texas 

Figures 12 and 13 illustrate freight accessibility and its changes in the Southern Texas region across the same scenarios: (a) Baseline, 

(b) a 50% increase in capacity with a 1% growth in traffic, and (c) a 100% increase in capacity with a 3% growth in traffic. Figure 12 

shows the accessibility levels for each scenario, whereas Figure 13 contrasts the changes in accessibility relative to the baseline for 

scenarios (b) and (c). These figures show that freight accessibility markedly improves in both scenarios (b) and (c) compared to the 

baseline, with scenario (c) showing the greatest improvement. These scenarios indicate that integrating AVs into the traffic flow and 

increasing capacity are likely to enhance accessibility for both passengers and freight traffic. Freight accessibility in Austin and San 

Antonio has risen significantly compared to Dallas and Houston. Additionally, the South Texas region has seen a more substantial 

increase in freight accessibility under the two scenarios compared to the North Texas region, surpassing the improvements observed in 
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passenger access. Due to the close proximity of the three major metro areas—Houston, San Antonio, and Austin—freight movement is 

expected to be higher in these areas, leading to improved accessibility. 

 
Figure 14. Personal Vehicle Travel Time for the (a) Baseline, (b) a 50% increase in capacity with a 1% growth in traffic, and (c) a 100% increase in 

capacity with a 3% growth in traffic scenarios in Northern Texas 
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Figure 15. Change in passenger vehicle travel time when (a) traffic growth is 1% and capacity is increased by 50%, and (b) traffic growth is 3% and 

capacity is increased by 100% in Northern Texas 

 

Figures 14 and 15 evaluate the same scenarios in terms of passenger vehicle travel time. These figures show that the integration of AVs 

into the traffic stream, along with increased capacity, is projected to significantly impact passenger vehicle travel time. Figure 14 presents 

the travel time for each scenario, while Figure 15 highlights the changes in travel time relative to the baseline for scenarios (b) and (c). 

These figures indicate that the adjustments in capacity and traffic growth can lead to a notable increase in total vehicle travel time. 

Scenario (c) shows the greatest increase in travel time compared to the baseline. However, it is important to note that with the integration 

of AVs into traffic streams, capacity enhancements are essential to alleviate congestion, as indicated by our descriptive analysis results. 
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Figure 16. Personal Vehicle Travel Time for the (a) Baseline, (b) a 50% increase in capacity with a 1% growth in traffic, and (c) a 100% increase in 

capacity with a 3% growth in traffic scenarios in Southern Texas 
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Figure 17. Change in passenger vehicle travel time when (a) traffic growth is 1% and capacity is increased by 50%, and (b) traffic growth is 3% and 

capacity is increased by 100% in Southern Texas 

 

Figures 16 and 17 evaluate the same scenarios for passenger vehicle travel time in Southern Texas. These figures illustrate the expected 

changes resulting from the integration of AVs into the traffic stream and increased capacity. Figure 16 details the travel times for each 

scenario, while Figure 17 highlights the changes in travel time compared to the baseline for scenarios (b) and (c). These figures suggest 

that adjustments in capacity and traffic growth can lead to a significant increase in total vehicle travel time. Once again, scenario (c) 

shows the greatest increase in travel time compared to the baseline. Austin stands out in these scenarios, with some areas of the city 

experiencing reduced travel times compared to the baseline in scenario (a) and minimal travel times in scenario (b), in contrast to other 

metropolitan areas in the Texas Triangle region. Additionally, we observe reduced travel times outside metropolitan areas, while travel 

times within the metro areas tend to increase.  
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Figure 18. Freight Vehicle Travel Time for the (a) Baseline, (b) a 50% increase in capacity with a 1% growth in traffic, and (c) a 100% increase in 

capacity with a 3% growth in traffic scenarios in Northern Texas 
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Figure 19. Change in freight vehicle travel time when (a) traffic growth is 1% and capacity is increased by 50%, and (b) traffic growth is 3% and 

capacity is increased by 100% in Northern Texas 

 

 

Figures 18 and 19 evaluate the same scenarios for freight transportation in Northern Texas. These figures illustrate the expected changes 

of freight transportation resulting from integrating AVs into the traffic stream and increasing capacity. Figure 18 provides details on 

freight travel times for each scenario, while Figure 19 highlights the changes in travel time compared to the baseline for scenarios (b) 

and (c). These figures suggest that changes in capacity and traffic growth can lead to a significant increase in total freight vehicle travel 

time. Once again, scenario (c) shows the greatest increase in travel time compared to the baseline.  
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Figure 20. Freight Vehicle Travel Time for the (a) Baseline, (b) a 50% increase in capacity with a 1% growth in traffic, and (c) a 100% increase in 

capacity with a 3% growth in traffic scenarios in Southern Texas 
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Figure 21. Change in freight vehicle travel time when (a) traffic growth is 1% and capacity is increased by 50%, and (b) traffic growth is 3% and 

capacity is increased by 100% in Southern Texas 

 

Figures 20 and 21 evaluate the same scenarios for freight transportation in Southern Texas. These figures illustrate the expected changes 

resulting from the integration of AVs into the traffic stream and increased capacity. Figure 20 outlines the freight travel times for each 

scenario, while Figure 21 highlights the changes in travel time compared to the baseline for scenarios (b) and (c). These figures indicate 

that changes in capacity and traffic growth can lead to a significant increase in total freight vehicle travel time. Once again, scenario (c) 

shows the greatest increase in travel time compared to the baseline. Austin continues to demonstrate significant reductions in travel 

times compared to the baseline in scenario (a) and minimal travel times in scenario (b), for both passenger and freight transportation. 

Outside metropolitan areas, travel times decrease noticeably, whereas within metro areas, they tend to increase. This highlights that the 

integration of AVs into the traffic stream has a more pronounced effect than capacity enhancements in metro regions, whereas the 

opposite is observed outside metro areas.  Overall, the maps of vehicle travel time suggest that integrating AVs into the traffic stream, 
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even with increased capacity, will lead to an increase in total vehicle travel time. This is likely due to induced demand, where improved 

conditions attract more freight traffic, counteracting the initial congestion reductions.  

 
Figure 22. Personal VMT for the (a) Baseline, (b) a 50% increase in capacity with a 1% growth in traffic, and (c) a 100% increase in capacity with a 3% 

growth in traffic scenarios in Northern Texas 
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Figure 23. Change in personal VMT when (a) growth in AV is 1% and capacity is increased by 50%, and (b) growth in AV is 3% and capacity is 

increased by 100% in Northern Texas 

 

Next, Figures 22 and 23 present personal VMT and its changes in Northern Texas. These figures illustrate the expected changes resulting 

from integrating AVs into the traffic stream and increasing capacity. Figure 22 provides details on Personal VMT for each scenario, 

while Figure 23 highlights the changes in VMT compared to the baseline for scenarios (b) and (c). These figures suggest that changes 

in capacity and traffic growth can lead to a significant increase in total personal VMT. Once again, scenario (c) shows the largest increase 

in VMT compared to the baseline. 
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Figure 24. Personal VMT for the (a) Baseline, (b) a 50% increase in capacity with a 1% growth in traffic, and (c) a 100% increase in capacity with a 3% 

growth in traffic scenarios in Southern Texas 
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Figure 25. Change in personal VMT when (a) growth in AV is 1% and capacity is increased by 50%, and (b) growth in AV is 3% and capacity is 

increased by 100% in Southern Texas 

 

Similarly, Figures 24 and 25 evaluate personal VMT and its changes in Southern Texas. Figure 24 presents the personal VMT for each 

scenario, while Figure 25 highlights the changes in VMT compared to the baseline for scenarios (b) and (c). These figures also indicate 

that changes in capacity and traffic growth lead to a significant increase in total personal VMT. Scenario (c) again shows the largest 

increase in personal VMT compared to the baseline.  

 

 

 

 



65 

 

 

Figure 26. Freight VMT for the (a) Baseline, (b) a 50% increase in capacity with a 1% growth in traffic, and (c) a 100% increase in capacity with a 3% 

growth in traffic scenarios in Northern Texas 
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Figure 27. Change in freight VMT when (a) growth in AV is 1% and capacity is increased by 50%, and (b) growth in AV is 3% and capacity is increased 

by 100% in Northern Texas 

 

Figures 26 and 27 show freight VMT and its changes in Northern Texas. These figures illustrate the expected changes resulting from 

integrating AVs into the traffic stream and increasing capacity. Figure 26 provides details on freight VMT for each scenario, while Figure 

27 highlights the changes in VMT compared to the baseline for scenarios (b) and (c). These figures suggest that changes in capacity and 

traffic growth can lead to a significant increase in total freight VMT. Once again, scenario (c) shows the largest increase in VMT 

compared to the baseline. 

 

 



67 

 

 

Figure 28. Freight VMT for the (a) Baseline, (b) a 50% increase in capacity with a 1% growth in traffic, and (c) a 100% increase in capacity with a 3% 

growth in traffic scenarios in Southern Texas 
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Figure 29. Change in freight VMT when (a) growth in AV is 1% and capacity is increased by 50%, and (b) growth in AV is 3% and capacity is increased 

by 100% in Southern Texas 

 

Finally, Figures 28 and 29 present freight VMT and its changes in Southern Texas. These figures illustrate the expected changes resulting 

from the integration of AVs into the traffic stream and increased capacity. Figure 28 presents details on freight VMT for each scenario, 

while Figure 29 highlights the changes in VMT compared to the baseline for scenarios (b) and (c). These figures again suggest that 

changes in capacity and traffic growth can lead to a significant increase in total freight VMT. Once again, scenario (c) shows the greatest 

increase in VMT compared to the baseline. 
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Collectively, our findings show that the introduction of AVs, combined with increased capacity, 

enhances accessibility, reduces VTT, and increases VMT for both freight and passenger 

transportation. AVs improve transportation efficiency and reliability, making travel more 

appealing. At the same time, increased capacity mitigates initial congestion, leading to smoother 

and faster trips. This combined effect encourages more frequent and longer trips throughout the 

network, resulting in overall increases in accessibility, VTT, and VMT.  

In Austin, the integration of AVs along with capacity enhancements provides distinct benefits 

compared to other metropolitan areas. The city experiences significant reductions in travel times 

when AVs are introduced alongside increased capacity, a trend that highlights Austin's unique 

transportation infrastructure. Unlike many other cities, Austin does not have primary interstate 

highways running east-west, which likely affects how AVs and capacity improvements influence 

travel efficiency within the city.  

Moreover, as previously discussed, these patterns indicate that AV adoption significantly affects 

travel metrics, often surpassing the impact of capacity enhancements in metropolitan areas. 

However, outside of these urban centers, the benefits of increased capacity in reducing 

congestion become more apparent. This nuanced understanding highlights the need for tailored 

planning strategies that address both AV integration and infrastructure improvements to optimize 

transportation systems effectively. 

5. Conclusions and Policy Recommendations  

With the U.S. transportation infrastructure spanning multiple administrative boundaries and 

featuring megaregional connectivity, the introduction of AVs holds the potential to revolutionize 

mobility and accessibility within these densely populated economic hubs. In this context, we 
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examine how AVs influence transportation networks across the Texas Triangle megaregion. Using 

a GIS-based Megaregion Transportation Planning Model (MTPM), we analyze various scenarios 

to evaluate the impact of AV integration on the region's transportation dynamics. Our study 

specially investigates how the penetration of AVs into the traffic stream interacts with traditional 

motorized vehicles and affects transportation patterns within the Texas Triangle megaregion. 

Our findings show significant improvements in accessibility and increased travel times in urban 

areas for both passenger and freight traffic. Meanwhile, capacity enhancements are more effective 

at reducing congestion outside metropolitan regions. This suggests that while AV adoption may 

exacerbate congestion in cities, where the benefits of increased capacity are less noticeable due to 

higher demand and more complex traffic patterns. Conversely, outside metropolitan areas, 

capacity improvements are more successful in alleviating congestion and improving travel 

efficiency in less densely populated areas, where baseline traffic volumes are lower and induced 

demand is reduced.. 

Additionally, our findings show that increasing infrastructure capacity does not affect traffic 

volumes in Texas or the Texas Triangle, whereas the introduction of AVs leads to higher traffic 

volumes, VMT, and VTT. Notably, combining AV adoption with capacity enhancements does not 

reduce the increase in VMT and VTT. However, AV penetration significantly improves 

accessibility for both passenger and freight transportation, especially when combined with 

increased capacity. Our maps indicate that VTT for both passenger and freight vehicles increase 

significantly with higher AV penetration, even with enhanced capacity. Nonetheless, capacity 

improvements can partially offset these increases. This suggests that while AVs lead to longer 

travel times due to induced demand, increased capacity can help manage the effects of congestion. 
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In Austin, the integration of AVs along with capacity enhancements demonstrates unique and 

significant benefits compared to other metropolitan areas. Notably, the city experiences 

considerable reductions in travel times and improved accessibility when AVs are introduced 

alongside increased capacity. These trends are likely notable due to Austin's unique transportation 

infrastructure, especially its reliance on Interstate 35 (I-35) as the primary north-south corridor 

connecting the city with Dallas to the north and San Antonio to the south. Unlike many other cities, 

Austin lacks major interstate highways running east-west, which likely affects how AVs and 

capacity improvements affect travel efficiency within the city. Future research should test this 

hypothesis to gain more insights into this issue.  

Based on these findings, several policy implications could be drawn. First, since AV adoption 

tends to exacerbate congestion in urban areas due to induced demand, this congestion can 

disproportionately affect lower-income communities, who may rely more on public transportation 

or have limited access to AV technology. Meanwhile, capacity enhancements outside metropolitan 

areas improve travel efficiency, potentially benefiting rural communities by increasing 

accessibility and reducing travel times.  

Policymakers should consider implementing dynamic toll rates based on real-time traffic 

conditions and vehicle occupancy. This approach could incentivize shared AV usage and off-peak 

travel, effectively alleviating peak-hour congestion. This strategy can help mitigate the increased 

congestion in urban areas caused by AV adoption, which disproportionately affects lower-income 

communities that rely more on public transportation. At the same time, these policies can leverage 

capacity enhancements outside metropolitan regions to improve travel efficiency for rural 

communities, thereby enhancing accessibility and reducing travel times. By encouraging shared 

AV usage and optimizing toll rates based on traffic conditions, policymakers can promote more 
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equitable and sustainable transportation solutions across the Texas Triangle megaregion. This 

approach can address urban congestion challenges while also improving mobility in rural areas. 

Second, to maximize the benefits of AVs without increasing VMT and VTT, policymakers should 

encourage shared mobility solutions. This includes supporting AV fleets operated under ride-

sharing models and promoting shared AV services for freight transport. Such measures can reduce 

the total number of vehicles on the road and mitigate the effects of induced demand. These 

strategies will enhance transportation access for lower-income communities that rely on public 

transit, helping to address mobility barriers. Moreover, prioritizing shared mobility models can 

help reduce environmental disparities by lowering overall vehicle emissions and alleviating 

pollution burdens in marginalized neighborhoods. 

Additionally, to ensure safe and efficient AV operations across the Texas Triangle megaregion, 

policymakers should develop robust regulatory frameworks supported by continuous data 

monitoring and analysis. This involves working with AV manufacturers and operators to share 

data on performance, traffic patterns, and user behavior. This ensures that safety standards are 

consistently maintained across regions, enhancing equitable access to safe transportation options. 

Our study also has several limitations. First, while we evaluated the impact of introducing AVs on 

accessibility, VMT, and VTT in the Texas Triangle region, we did not examine the social equity 

implications of these findings. This will require exploring how AVs interact with current and future 

transit systems and their users, as well as their role in addressing the first mile/last-mile challenges 

for various population groups.  Secondly, while our analysis explores changes in transportation 

dynamics, we did not conduct cost-benefit analyses to evaluate the economic viability of AV 

adoption. This would involve evaluating infrastructure investments, operational costs, and the 

potential economic benefits from reduced congestion and enhanced mobility.  
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