• Skip to primary navigation
  • Skip to main content
  • Skip to footer
Cockrell School of Engineering
UT Shield
Center for Mechanics of Solids, Structures and Materials
  • Home
  • Faculty
  • Research
  • Facilities
  • Seminars
  • Events
  • News
  • Contact
You are here: Home / Seminars / Archived Seminars / 2017-18 Seminars / Multifunctional Microvascular Composites: Computational Analysis and Design

Seminar Schedule – Spring 2018


Tuesday, March 06, 2018
Time: 3:30pm – 5:00pm
Place: WRW 102

Multifunctional Microvascular Composites: Computational Analysis and Design

Philippe H. Guebelle, University of Illinois at Urbana-Champaign

Inspired from many living organisms, microvascular composites form a new class of fiber-reinforced polymeric matrix composites that contain a circulatory system made of an embedded network of microchannels. Based on the choice of the fluid circulating in the microvascular network, a wide range of multi-functionalities are being considered for these materials, including autonomic healing of internal damage, switching embedded antennas, and active cooling for high temperature applications. A recent development in the manufacturing of this class of composites, based on specially treated sacrificial fibers that are woven in the original fabric, undergo the composite cure cycle before undergoing a vaporization process, has led to the creation of microvascular networks that are integrated directly into the composite microstructure. This technology is being considered for a variety of active cooling applications, including skin materials for hypersonic aircrafts, actively cooling of car batteries and radiative cooling of nanosatellites.

This new manufacturing process provides a lot of flexibility in the configuration of the embedded network. To assist with the material design process, a novel numerical tool based on an interface-based generalized finite element method (IGFEM) has been developed to model accurately and efficiently the impact of the coolant flowing through the microchannels on the thermal field in the composite. A gradient-based shape optimization scheme is then used together with the IGFEM solver to optimize the configuration of the embedded microchannel network based on a variety of objective functions and constraints. Various 2D and 3D configurations of the microchannels are investigated and compared, based on their thermal and flow efficiency and on their impact on the structural integrity of the composite. We also optimize the microchannel network for redundancy.

In the last part of the talk, I will present some recent advances made in the development of a new, energy-efficient manufacturing method for composite materials based on the frontal polymerization of the thermosetting resin. Although the new method can be applied to a variety of �conventional� fiber-reinforced composites, I will show how this method can be used to make microvascular composites.

For further information, please contact Dr. Ravi-Chandar at ravi@utexas.edu or (512) 471-4213.

Footer

About Us

Privacy Policy
UT Directory

News

  • Fall 2022August 26, 2022
  • Kenneth M. Liechti featured in an Applied Mechanics Reviews PodcastJanuary 23, 2019

Contact Us

Aerospace Engineering Building – ASE 5.212 (map)
2617 Wichita Street
1 University Station, C0600
Austin, Texas 78712-0235

Phone: 512-471-5963
Fax: 512-471-5500

  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2025