Demand-System Asset Pricing: Theoretical Foundations

William Fuchs, Satoshi Fukuda, and Daniel Neuhann

2024 Duke/UNC Asset Pricing Conference

Koijen Yogo (2019) propose an influential new methodology for asset pricing.

- 1. Estimate demand systems for assets, as IO does for consumption goods.
- Investors allowed to have tastes over assets (rather than just cash flows).
 For example, identity of issuer, dogmatic beliefs about payoffs, exogenous constraints.
- 3. Identify demand parameters from portfolio data; conduct counterfactuals.

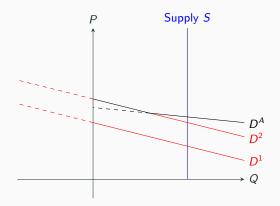
We are interested in the applicability and interpretation of this approach.

1. Under which conditions are <u>structural</u> demand parameters identified? Tastes are critical, yet identifying assumptions remain stringent.

- Under which conditions are <u>structural</u> demand parameters identified? Tastes are critical, yet identifying assumptions remain stringent.
- What are the theoretical implications of allowing for tastes?
 Tastes invalidate no arbitrage, with empirical and conceptual consequences.

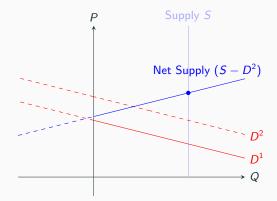
- Under which conditions are <u>structural</u> demand parameters identified? Tastes are critical, yet identifying assumptions remain stringent.
- What are the theoretical implications of allowing for tastes?
 Tastes invalidate no arbitrage, with empirical and conceptual consequences.
- Counterfactuals and estimation from general equilibrium play.
 Elasticities depend on security menu, tastes vs. constraints, outside goods.

The Identification Challenge



• Exogenous supply shocks can serve to identify demand. Not many of those...

A Potential Solution: Orthogonal Demand Shocks



Identification requires taste shocks that do not affect 1's demand:
(i) tastes over characteristics, (ii) dogmatic beliefs, (iii) constraints.

1. Tastes: non-pecuniary preferences over assets and/or dogmatic beliefs.

2. Adding in constraints.

Tastes: Modeling and Implications

- 1. **Payoff-augmenting:** Investor *i* evaluates asset *j*'s payoff $y_j(z)$ as $\theta_i y_j(z)$.
 - Portfolio choice based on taste adjusted units of "effective consumption:"

$$ilde{c}_1^i(z)\equiv\sum_j heta_j^i y_j(z)a_j^i.$$

- 2. Utility-augmenting: Utility from portfolio **a** is $U(c(\mathbf{a})) + G(\mathbf{a})$.
 - Taste function G captures an asset's "warm glow" or "convenience yield."
 - Can impose regularity conditions. E.g. differentiable, $G(-\mathbf{a}) = -G(\mathbf{a})$.

Models of portfolio choice with expected utility require cardinal utility.

• Unlike most IO settings in which ordinal utility is sufficient.

Given a trade-off between risk-return and tastes, portfolio choices are sensitive to even simple **rank-preserving transformation of tastes**.

Implications for measurement:

- 1. Must identify intensity of tastes, not just ordinal rankings.
- 2. Aggregation (e.g., into ESG buckets) must be marginal utility-weighted.

The defining organizing principle of neoclassical finance is no arbitrage:

• Prices should preclude investments that offer "something for nothing."

The defining organizing principle of neoclassical finance is no arbitrage:

• Prices should preclude investments that offer "something for nothing."

The *point* of tastes is that investors disagree about "something."

"Theorem." For sufficiently rich security menus and heterogeneous tastes, there do not exist price systems that preclude arbitrage for all investors.

➡ Formal

There is a green asset and a red asset with prices p_g and p_r .

- Redundant cash flows: both deliver a unit payoff with certainty.
- Type 1 tastes are $\theta_g^1 > \theta_r^1$; Type 2 tastes are $\theta_g^2 < \theta_r^2$.

Now construct a long-short portfolio selling green and buying red.

- The cost of this portfolio is $p^* \equiv p_r p_g$.
- Type *i*'s taste-augmented payoff is $\theta_r^i \theta_g^i$.

Absence of arbitrage requires $p^* < 0$ for Type 2, but $p^* > 0$ for Type 1.

NB: Do short positions inherit tastes?

- 1. Nonlinear (or risky) tastes. Decreasing tastes \Rightarrow agreement on margin.
 - Empirical challenge: must identify the taste *functional* (or distribution).

- 1. Nonlinear (or risky) tastes. Decreasing tastes \Rightarrow agreement on margin.
 - Empirical challenge: must identify the taste *functional* (or distribution).

- 2. Trading restrictions, as commonly used in heterogeneous belief models.
 - Sensitivity to the precise form of (unobserved) security menu and constraints.
 - Speculative considerations complicate inference of demand parameters.

Harrison Kreps (1978) is a close cousin of demand-based models:

- Dogmatic valuation differences and short-sales constraints.
- Only difference: dynamic rather than one-shot trading.

Result: demand has speculative component that depends on others' valuations.

Trading Restrictions II: Instruments

KY rely on portfolio restrictions to aid to construct *asset-level* price shocks.

Fix K constraints $F_k^i(\mathbf{a}^i, \mathbf{p}) \leq 0$ with Lagrange multipliers λ_k^i . The Lagrangian is

$$\mathcal{L} = \sum_{z \in \mathbb{Z}} \pi_z u_i(\tilde{c}_1^i(z)) + \sum_{k} \lambda_k^i F_k^i(\mathbf{a}^i, \mathbf{p})$$
Preferences

Trading Restrictions II: Instruments

KY rely on portfolio restrictions to aid to construct asset-level price shocks.

Fix K constraints $F_k^i(\mathbf{a}^i, \mathbf{p}) \leq 0$ with Lagrange multipliers λ_k^i . The Lagrangian is

$$\mathcal{L} = \underbrace{\sum_{z \in \mathcal{Z}} \pi_z u_i(\tilde{c}_1^i(z))}_{\text{Preferences}} + \underbrace{\sum_k \lambda_k^i F_k^i(\mathbf{a}^i, \mathbf{p})}_{\text{Constraints.}}$$

Price-level instruments are sufficient only absent demand complementarities.

- 1. No cross-asset linkages in preferences.
- 2. No cross-asset substitution in constraints.

Trading Restrictions II: Instruments

KY rely on portfolio restrictions to aid to construct asset-level price shocks.

Fix K constraints $F_k^i(\mathbf{a}^i, \mathbf{p}) \leq 0$ with Lagrange multipliers λ_k^i . The Lagrangian is



Price-level instruments are sufficient only absent demand complementarities.

- 1. No cross-asset linkages in preferences.
- 2. No cross-asset substitution in constraints.

These restrictions do not cover important settings:

• Standard diversification concerns; indexing with tracking error; ...

Identification and Counterfactuals in GE

We explore a synthesis between neoclassical and demand-system asset pricing.

In particular, enrich Lucas '78 with payoff-augmenting tastes and mandates.

- Allows us to distinguish between assets and state-contingent payoffs.
- Delivers clear implications for portfolio determination in general equilibrium.
- Can directly mimic and evaluate current approaches.

Framework

- One shot, full information. Two equally likely aggregate states, z = 1, 2.
- For each z, one divisible tree that pays 1 in state z and 0 otherwise.

Framework

- One shot, full information. Two equally likely aggregate states, z = 1, 2.
- For each z, one divisible tree that pays 1 in state z and 0 otherwise.

- Split Tree 1 into two smaller trees of size 1/2: green and red.
 - Green trees pays $y_g \in \{1 + \epsilon, 1 \epsilon\}$; red tree pays $y_r \in \{1 \epsilon, 1 + \epsilon\}$
 - The red tree pays more fruits with probability ρ ; and vice versa w.p. 1ρ .
- Colors let us define tastes conditional on payoffs, ϵ measures substitutability.

Framework

- One shot, full information. Two equally likely aggregate states, z = 1, 2.
- For each z, one divisible tree that pays 1 in state z and 0 otherwise.

- Split Tree 1 into two smaller trees of size 1/2: green and red.
 - Green trees pays $y_g \in \{1 + \epsilon, 1 \epsilon\}$; red tree pays $y_r \in \{1 \epsilon, 1 + \epsilon\}$
 - The red tree pays more fruits with probability ρ ; and vice versa w.p. 1ρ .
- Colors let us define tastes conditional on payoffs, ϵ measures substitutability.

• Type 1 prefers green. Type 2 prefers red. Effective consumption:

$$\tilde{c}^i(1,\iota) = \theta^i_g y_g(\iota) a^i_g + \theta^i_r y_r(\iota) a^i_r$$
 and $\tilde{c}^i(2) = a^i_2$.

Assume short-sales as in standard demand-system papers.

$$\max_{\substack{a_g^i, a_r^i \ge 0 \\ =\bar{c}^i(1,r)}} \pi_1 \left[\rho u \left(\underbrace{\theta_g^i y_g(r) a_g^i + \theta_r^i y_r(r) a_r^i}_{=\bar{c}^i(1,r)} \right) + (1-\rho) u \left(\underbrace{\theta_g^i y_g(g) a_g^i + \theta_r^i y_r(g) a_r^i}_{=\bar{c}^i(1,g)} \right) \right] \\ + \pi_2 u \left(\underbrace{e_2^i + p_g(e_g^i - a_g^i) + p_r(e_r^i - a_r^i)}_{=c_2^i} \right)$$

s.t.
$$w_g^i = \frac{p_g a_g^i}{p_g a_g^i + p_r a_r^i} \in [\underline{w}_g^i, \overline{w}_g^i].$$
 (Mandate)

GE framework illustrates key identification concerns.

- Latent parameters: equilibrium allocations may obscure key parameters.
- Misspecification bias: hard to disentangle tastes and constraints.
- Unobserved substitutability: elasticities depend on (unobserved) security menu.

Guess that each type sorts into preferred color Under log utility, demand is:

$$\frac{\pi_1}{a_g^1} = p_g \frac{1 - \pi_1}{a_2^1} \quad \text{and} \quad \frac{\pi_1}{a_r^2} = p_r \frac{1 - \pi_1}{a_2^2}.$$

and prices are purely determined by green investor's wealth share ω :

$$rac{p_r}{p_g} = rac{1-\omega}{\omega}.$$

Identification concern: taste parameters are latent for all "sorted" types.

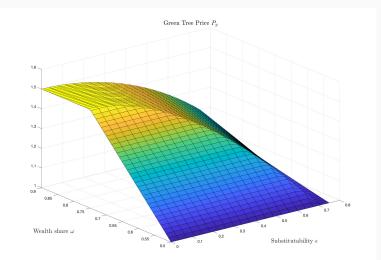
- One could identify ordinal preferences, but not cardinal intensities.
- Yet, intensities can be critical for counterfactuals.

- Sorting is optimal only for some wealth distributions (and some ϵ).
- For $\omega \geq \bar{\omega}$, Type 1 buys red and green trees, Type 2 buys only red trees.
- If assets are perfect substitutes ($\epsilon = 0$), prices are:

$$p_g = \theta_g^1$$
 and $p_r = \theta_r^1$.

These are the parameters that were previously unidentified.

The Pricing Function and Counterfactuals



What happens if money is allocated to ESG? Need to know taste intensity.

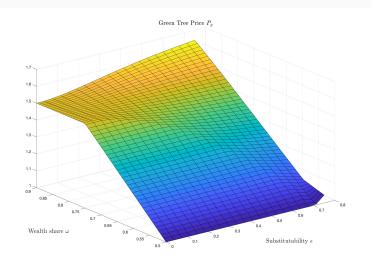
Simple price instruments generally do not distinguish tastes and constraints.

• E.g., share *m* of Type 1 agents have unobserved mandate to buy only green.

Observationally equivalent to tastes under sorting, but counterfactuals differ.

• Tastes are price-sensitive, mandates are not.

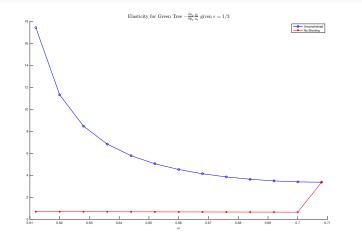
Green Price: High Mandate Share (m = 0.85)



- Common data sources (e.g. 13F) do not cover short or bond positions.
 - Hence, we do not know whether a fund faces short sale constraints.

- This can introduce a bias in the demand for *complementary assets*.
- Example: green investor can short red trees, but you assume they can't.
 - Observed green elasticities much higher than without constraints on red.
 - Extent of bias depends on prices that are determined in GE.

Misspecification Bias: Implied Elasticities



Elasticities and the Security Menu

- Consider our red and green trees, and say cash flows are the same.
- When forming portfolios, individual investors only buy the cheaper color.
- Absent tastes, Law of One Price says $p_r = p_g = p_1 = y$.

- Consider our red and green trees, and say cash flows are the same.
- When forming portfolios, individual investors only buy the cheaper color.
- Absent tastes, Law of One Price says $p_r = p_g = p_1 = y$.
- Asset and consumption elasticities with respect to p_g are not the same:

$$\epsilon_g = -\frac{\partial a_g}{\partial p_g} \frac{p_g}{a_g} = \infty.$$
 (Asset Elasticity)

$$\epsilon_c = -\frac{\partial c_1}{\partial p_g} \frac{p_g}{a_g} = 0.$$
 (Consumption Elasticity)

- Consider our red and green trees, and say cash flows are the same.
- When forming portfolios, individual investors only buy the cheaper color.
- Absent tastes, Law of One Price says $p_r = p_g = p_1 = y$.
- Asset and consumption elasticities with respect to p_g are not the same:

$$\epsilon_g = -\frac{\partial a_g}{\partial p_g} \frac{p_g}{a_g} = \infty.$$
 (Asset Elasticity)

$$\epsilon_c = -\frac{\partial c_1}{\partial \rho_g} \frac{\rho_g}{a_g} = 0.$$
 (Consumption Elasticity)

Interpretation depends on tastes, security menu, and outside goods.

We provide a "neoclassical perspective" on demand-based asset pricing:

- 1. Demand elasticities are structural only under stringent assumptions.
- 2. Tastes may invalidate the organizing principle of no arbitrage.
- 3. These issues are amplified in general equilibrium.
- 4. Meaning of estimated elasticities depends on model structure.

These results imply challenges for identification and counterfactual analyses.

- Y: the $J \times Z$ matrix of cash flows.
- \mathcal{A} : the set of feasible portfolios.
- p_j : the price of asset j.
- Pricing function $P : A \to \mathbf{R}$: $P(a) = \sum_{j \in \mathcal{J}} p_j a_j$.
- A taste function vⁱ : A → R^Z maps a portfolio a into a 1 × Z vector of state-contingent taste-augmented payoffs.
 - In the absence of tastes, all investors care only about cash flows as in standard asset pricing, vⁱ(a) = a ⋅ Y.

Definition (No Arbitrage with Tastes)

- Given a set of assets \mathcal{J} and taste functions v^i for all investors i,
- the pricing function P leaves no arbitrage opportunities if,
- for any investor *i* and any portfolio such that the effective payoff is weakly positive, $v^i(a) \ge 0$, and strictly positive, $v^i(a) > 0$ with strictly positive probability,
- the associated price is positive, P(a) > 0.

No Arbitrage

Theorem (Formal)

Fix a set of assets and taste functions v^i for all investors.

There does not exist pricing function P that leaves no arbitrage opportunities for any investor if and only if:

there exist
$$a, v^i, v^{i'}$$
 such that $v^i(a) > 0$ and $v^{i'}(a) \le 0$. (C)

A sufficient but not necessary condition for (C) is that there exist assets j and j' such that

(i) both assets have identical cash flows

$$y_j(z) = y_{j'}(z)$$
 for all $z \in \mathbb{Z}$;

 (ii) there exist investors i and i' with sufficiently heterogeneous tastes with respect to these assets,

 $v^i_j \geq v^i_{j'}$ and $v^{i'}_j \leq v^{i'}_{j'}$ with at least one inequality strict.