

March 2023

DESIGN REVIEW #3

USRC - Simulation / Estimation

Nick Franken Izaac Facundo Jeremy Morrison Neel Pandey Preston Thomas William Wang

OUR PROJECT

- The overall need of this project is to develop drones capable of sensing and avoiding obstacles with a minimized risk of collision or damage to property in GPS-denied environments.
 - Construct a system that is able to take real time inputs from actively flying drones and output a state estimation with 3-D probability ellipsoid visualization using an Extended Kalman Filter (EKF)
 - Avoid collisions with other drones and environmental obstacles
- The application of this system would be for the increase of commercial drone delivery operations

TEAM STRUCTURE

- Meeting Times:
 - Wednesday (Lecture): 11AM-12PM
 - Wednesday (Lab) 3-6PM
 - $\circ~$ More time if needed
- Informal Split of responsibilities
 - Nick is person of contact
 - Expertise distributed among us

GOALS

- Implement an extended Kalman filter (EKF) on drone positions (done)
- Implement flight control software to enable basic flight capabilities (ongoing)
- Visualize drones and drone behavior using simulation software (done)
- Develop drones' ability to successfully avoid obstacles
- Develop architecture for communication between drones
- Design system for software-software and software-hardware integration

PROFESSIONAL RESPONSIBILITY

- Collision Avoidance: Need a nearly guaranteed success rate of avoiding obstacles, inanimate and animate alike, to minimize injury and/or damage to property
- This affects certain aspects of our drone operation:
 - Maximum velocity
 - Altitude
 - Avoidance trajectories
- More factors will be considered in the future
 - \circ Acoustics
 - $\circ~$ Drone end of life

PROJECT UPDATES

اد اد اد

PROJECT UPDATES

- 3D Probability Ellipsoid
 - Adapted Potential Flow Field simulation to drone simulation with physical dynamics/sensor models
- Sensor Investigation
 - Researching sensor integration with simulation
 - Researching implementation of sensors onto physical drone Ο
- PX4/QGroundControl Integration
 - Working with communications to complete flashing of PX4 onto Pixhawk
 - Research integration of PX4 with simulation

OVERALL OPERATING SYSTEM (OS)

 For developmental purposes, we will be using Linux/Ubuntu. This will allow for more freedom and control when developing software. Certain software like the Robot Operating System (ROS) are developed specifically for operation on a Linux OS.

11

SOFTWARE LIST

PX4

- Code Editor (MATLAB, VSCode, Visual Studio, Eclipse, etc.)
- Gazebo/Simulink
- QGroundControl (QGC)
- Robot Operating System (ROS) / MAVLink ("MAVROS")
- Sensor Software (LiDAR, Depth Camera, etc.)

Extended Kalman Filter (EKF)

- A Kalman Filter is a filter that takes a less than perfect dynamic model and noisy measurements to provide very accurate state estimations for a system. This filter only works for linear systems.
- Two covariance matrices: Q and R (process and measurement noise respectively)
- An EKF can be used in non-linear systems but requires more computation. The general concept is the same, and the Q and R covariance matrices are still very important.

Block Parameters: Kalman Filter

Estimate the states of a discrete-time or continuous-time linear system. Time-varying systems are supported.

Filter Settings
Time domain: Discrete-Time
Use the current measurement y[n] to improve xhat[n]
Model Parameters Options
System Model
Model source: Individual A, B, C, D matrices
A: 0.95 E: 1
C: 1 E D: 0
Initial Estimates
Source: Dialog
Initial states x[0]: 0
Noise Characteristics
Use G and H matrices (default G=I and H=0)
Q: 0.05 I Ime-invariant Q
R: 1 I Ime-invariant R
N: 0 Ime-invariant N
OK Cancel Help

Potential Field Dynamics:

- model that a Kalman filter could be applied to.
- The potential field was designed to impart an acceleration in the x direction, the y direction, and the z direction based on the location of the particle in 3D space.
- The accelerations were chosen to be: X Acceleration = -2x+1y-2zY Acceleration = 4x-50y+2zZ_Acceleration= -2x-5y-4z This created a coupled system.
- The Kalman filter outputs the covariance matrix used to plot the error ellipsoid.
- The probability ellipsoid was visualized using the surfl MATLAB plotting tool.

• The main motivation in creating a potential field model was to have a three dimensional

Potential Field Block Diagram:

Simulation Model

- Model of drone dynamics based on newtonian physics for system prediction
- Simulated drone nominal trajectory is a circle
- PD controller implemented to follow the given trajectory
- Kalman filter combining model with simulated measurements from onboard instruments to determine position and covariance of position

Simulated Sensors

- Camera using known points in environment; Modeled using a pinhole camera model
- IMU data; Accelerometer and gyroscope
- GPS positioning with two receiving antennas
- Error covariances of sensors based on spec sheets and variance modeled as gaussian

Nice smooth flightpath

Wonky flightpath

Error Elipsoid Generation

PROBABILITY ELLIPSOID

$$(\mathbf{x} - \overline{\mathbf{x}})^T P^{-1}(\mathbf{x} - \overline{\mathbf{x}}) = \ell^2 \qquad (1) \qquad [\tilde{x} \ \tilde{y} \ \tilde{z}] P^{-1}$$

$$U = [\mathbf{u}_1, \, \mathbf{u}_2, \dots, \, \mathbf{u}_n]_{n \times n}$$
 (2)

$$U^{T} P U = \begin{bmatrix} \lambda_{1} \ 0 \ \cdots \ 0 \\ 0 \ \lambda_{2} \cdots \ 0 \\ \vdots & \ddots & \vdots \\ 0 \ 0 \ \cdots \ \lambda_{n} \end{bmatrix} = D \left[\lambda_{1}, \ \lambda_{2}, \dots, \ \lambda_{n} \right] \quad (\mathbf{3}) \qquad \begin{bmatrix} \tilde{x}' \\ \tilde{y}' \\ \tilde{z}' \end{bmatrix} = U^{T}$$

$$P' = U^{T}$$

$$\mathbf{x}' = U^T \mathbf{x} \tag{4}$$

$$\begin{bmatrix} \tilde{x}' \ \tilde{y}' \ \tilde{z}' \end{bmatrix} \begin{bmatrix} 1/\lambda_1 \\ 1/\lambda_2 \\ 1/\lambda_3 \end{bmatrix} \begin{bmatrix} \tilde{x}' \\ \tilde{y}' \\ \tilde{z}' \end{bmatrix} = \ell^2 \quad (11)$$
$$\frac{\tilde{x}'^2}{\lambda_1} + \frac{\tilde{y}'^2}{\lambda_2} + \frac{\tilde{z}'^2}{\lambda_3} = \ell^2 \quad (12)$$

$$P' \equiv E[(\mathbf{x}' - \overline{\mathbf{x}}')(\mathbf{x}' - \overline{\mathbf{x}}')^T]$$

= $U^T E[(\mathbf{x} - \overline{\mathbf{x}})(\mathbf{x} - \overline{\mathbf{x}})^T] U$ (5)
= $U^T P U = D[\lambda_1 \dots \lambda_n].$

$$\Delta \mathbf{x} \equiv \hat{\mathbf{x}} - \mathbf{x} \equiv [\tilde{x} \ \tilde{y} \ \tilde{z}]^T \qquad (6)$$

$$P = E[\Delta \mathbf{x} \Delta \mathbf{x}^T] \tag{7}$$

PU	(10
----	-----

(12)

Probability Ellipsoid Equation $\ell = 3 \rightarrow 3\sigma$ probability ellipsoid with 97.1% confidence

PROBABILITY ELLIPSOID

 $\ell = 3 \rightarrow 3\sigma$ Probability ellipsoid with 97.1% confidence. Assumption: Trivariate normal distribution

$$P(x_1, x_2, x_3) = \frac{e^{-w/[2(\rho_{12}^2 + \rho_{13}^2 + \rho_{23}^2 - 2\rho_{12}\rho_{13}\rho_{23} - 1)]}}{2\sqrt{2} \pi^{3/2} \sqrt{1 - (\rho_{12}^2 + \rho_{13}^2 + \rho_{23}^2) + 2\rho_{12}\rho_{13}\rho_{23}}}$$
(13)

 $w = x_1^2 \left(\rho_{23}^2 - 1 \right) + x_2^2 \left(\rho_{13}^2 - 1 \right) + x_3^2 \left(\rho_{12}^2 - 1 \right) + 2 \left[x_1 x_2 \left(\rho_{12} - \rho_{13} \rho_{23} \right) + x_1 x_3 \left(\rho_{13} - \rho_{12} \rho_{23} \right) + x_2 x_3 \left(\rho_{23} - \rho_{12} \rho_{13} \right) \right]$

$$a = \tilde{x'} = \sqrt{\lambda_1 * \ell^2}$$

GAZEBO

- Develop a 3D model simulation with a time-varying error ellipse to account for the more realistic conditions of variable noise
- Research how to apply the extended kalman filter to a 3D system
- Develop a functional simulation that can estimate the drone state and visualize the probability ellipsoid based on flight and sensor inputs

OPTICAL FLOW

- Method of calculating relative 2D translational motion
 Utilizes time-ordered images from camera to calculate motion between frames
 - Image converted to grayscale \rightarrow Obtain gradient of points \rightarrow assume intensity of each point is unchanging

$$I_x v_{x_{im}} + I_y v_{y_{im}} + I_t = 0$$

OPTICAL EXPANSION*

- Optical flow only works well when non-complex 2D motion occurs
- Optical expansion is a possible technique for obtaining 3D scene flow, which may provide meaningful directions of 3D movement
 - Similar process to optical flow, but analyzes the change in the perceived size of objects to obtain motion in depth
 - Still suffers from scale ambiguity

* If necessary or if time allows

WOOD BIRD SETUP

Allows for systems testing by multiple groups
Integrates all sensors and other electronics to be used on the drone

GANTT CHART

	START	TENTATIVE DUE																
TASK TITLE	ESTIMATION	DATE	COMPLETE (?)	1/9	1/16	1/23	1/30	2/6	2/13	2/20	2/27	3/6	3/20	3/27	4/3	4/10	4/17	4/24
Simulation																		
Dynamic Model	1/9/2023	2/6/2023																
Upload specs to model parameters	1/30/2023	2/6/2023									-							
Kalman Filter for Dynamic Model	1/30/2023	2/20/2023									1							
Sensor Models	2/6/2023	2/20/2023																
Simulink Flight	2/20/2023	3/20/2023																
MATLAB Simulation	3/13/2023	4/24/2023																
Estimation																		
Research Error Ellipsoid Methods	1/9/2023	1/30/2023																
Implement Relevant Error Ellipsoid to Model	2/13/2023	3/6/2023																
Implement Error Ellipsoid in MATLAB	3/27/2023	4/24/2023																
Flight Software																		
Manual Flight PX4 Installation	1/9/2023	2/6/2023																
QGroundControl Setup	1/30/2023	2/20/2023																
Test Computer Vision Software	2/27/2023	3/20/2023																
Research Obstacle Avoidance Algorithms	3/20/2023	4/24/2023																

FUTURE WORK

- Develop a 3D model simulation with a time-varying error ellipse to account for the more realistic conditions of variable noise
- Develop a functional Gazebo simulation that can estimate the drone state and visualize the probability ellipsoid based on flight and sensor inputs
- Implement code onto physical drone
 - Flight Software (PX4)
 - Setup Ground Station Laptop Ο
- Investigate alternate flight control

USRC - Simulation / Estimation

- Izaac Facundo
- Nicholas Franken
- Jeremy Morrison
- Neel Pandey
- Preston Thomas
- William Wang

The University of Texas at Austin Aerospace Engineering and Engineering Mechanics Cockrell School of Engineering

38

References:

[1] "Plot 3D probability ellipsoid," https://kittipatkampa.wordpress.com. https://kittipatkampa.wordpress.com/2011/08/04/plot-3d-ellipsoid/

39