
Interpreting Patterns of Brain Activation in Human Fear Conditioning With
an Attentional–Associative Learning Model

Joseph Dunsmoor and Nestor Schmajuk
Duke University

J. E. Dunsmoor, P. A. Bandettini, and D. C. Knight (2007) conducted a neuroimaging study of human
fear conditioning and analyzed brain activity under various pairing rates between a conditioned and an
unconditioned stimulus. Computer simulations with an attentional-associative model introduced by N. A.
Schmajuk, Y. W. Lam, and J. A. Gray (1996) show that activity in the amygdala and anterior cingulate
cortex is well described by a variable representing the prediction of the unconditioned stimulus, whereas
activity in the dorsolateral prefrontal cortex and insula is well captured by a variable coding the
attentional-modulated representation of conditioned stimuli. In addition, the model explains how those
variables control behavior and provides a clear framework in which those variables play important roles
in the description of numerous classical conditioning paradigms. Also, the model offers a number of
predictions related to stimulus novelty for future neuroimaging studies of associative learning.
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In a recent functional magnetic resonance imaging (fMRI) study
by Dunsmoor, Bandettini, and Knight (2007), brain activity was
examined during fear learning in humans to three distinct condi-
tioned stimuli (CSs) that coterminated with an aversive uncondi-
tioned stimulus (US) on 100%, 50%, or 0% of the trials. A linear
pattern of brain activity that increased with the CS–US pairing rate
was observed in regions supporting the acquisition and expression
of learned fear, such as the amygdala and anterior cingulate cortex.
A separate pattern of activity was observed within the dorsolateral
prefrontal cortex (dlPFC) and insula; the CS that was intermit-
tently paired with the US evoked the greatest response in these
brain regions. Dunsmoor et al. suggested that these separate pat-
terns of neural activity reflected distinct processes involved in
Pavlovian fear conditioning. For instance, although the amygdala
and anterior cingulate appeared to code for the strength of the
CS–US association, the dlPFC and insula responded to the uncer-
tainty for receiving the US.

In this article, we show that variables representing neural activ-
ity in a model of classical conditioning presented by Schmajuk,
Lam, and Gray (1996) are consistent with the patterns of brain
activity reported by Dunsmoor et al. (2007). Computer simulations
with the Schmajuk–Lam–Gray (SLG) model demonstrate that ac-
tivity in the amygdala and anterior cingulate cortex is well de-
scribed by a variable representing the prediction of the US,
whereas activity in the dlPFC and insula can be characterized by a
variable coding the attentional-modulated representation of the CS.
The results suggest that using a model that incorporates cognitive

mechanisms involved in classical conditioning may help illumi-
nate the neural substrates of human associative learning.

The SLG Model

Schmajuk et al. (1996; Schmajuk & Larrauri, 2006; Larrauri &
Schmajuk, 2008) introduced a neural network theory of classical
conditioning that describes many features that characterize classi-
cal conditioning. Figure 1 shows a simplified diagram of the model
that illustrates the different stages, or nodes, involved in the
generation of a conditioned response (CR) when a given CS is
presented.

The output of Node 1 is proportional to �CS � BCS, where �CS

is a short-term memory trace of the CS and BCS is the prediction
of the CS by other stimuli (the context [CX], other CSs, or the CS
itself) active at a given time.

The triangle connecting Node 1 to Node 2 represents a synaptic
weight proportional to the positive value of attention, zCS. The value
of zCS is computed as the association between the output of Node 1
with the value of Novelty�. That is, changes in zCS given by

dzCS � (�CS � BCS) [Novelty� (1 � zCS) � (1 � zCS)], (1)

where Novelty� is proportional to the sum of the novelties of all
stimuli present or predicted at a given time. The novelty of a CS,
CX, or US is given by the absolute value of the difference between
the average observed value of the CS, CX, or US and the average
of their corresponding predictions. By Equation 1, zCS increases to
1 when Novelty� is relatively large and decreases to �1 otherwise.

The output of Node 2 is the attention-modulated representation
of the CS, XCS.

XCS � zCS (�CS � BCS), (2)

where zCS assumes only positive values. The triangle connecting
Node 2 to Node 3 represents a synaptic weight proportional to the
excitatory or inhibitory association, VCS, US, between XCS and the
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US. Changes in the association between the CS (or the CX) and the
US, VCS, are given by

dVCS � K XCS (�US � BUS) (1 � |VCS|), (3)

where K determines the learning rate, XCS is the internal represen-
tation of the CS, �US is the intensity of the US, BUS is the
aggregate prediction of the US by all Xs active at a given time,
�US � BUS is the error term, and the term 1� |VCS| constrains VCS,
�1 � VCS � 1. Associations of a CS and the CX with the US
increase when the �US � BUS term is positive and decrease when
it is negative. Although not shown in Figure 1, we assume that a
similar error term, �CS � BCS, controls the formation of associa-
tions between XCS and other CSs (between-CS associations).

The output of Node 3 is the aggregate prediction of the US by
all CSs with representations active at a given time, BUS, which is
given by

BUS � 	 XCS 
 VCS, (4)

where VCS is the association of XCS with the US. Figure 1 shows
only one CS activating VCS, US. BUS is used to compute dVCS in
Equation 3 and determines the magnitude of the CR through a
sigmoid function, CR � f(BUS).

More important, because by Equation 3 the rate of change of
every association is directly proportional to XCS, XCS controls
learning of the associations. Because by Equation 4 BUS is pro-
portional to the product XCS 
 VCS,US, XCS also controls the
retrieval of those associations. Because attentional memory zCS

controls the magnitude of the internal representation XCS, attention
controls learning and retrieval of CS–CS and CS–US associations.
Because BUS controls the strength of the CR, attentional memory
zCS also controls performance.

In the simulations that follow, we show that (a) activity in the
amygdala and anterior cingulate is well characterized by the pre-
diction of the US by the CS and the CX, BUS; (b) activity in the
dlPFC and anterior insula is well described by the representation of
the CS, XCS; and (c) the skin conductance response (SCR) is a
nonlinear function of BUS. It is important to notice that the vari-
ables BUS and XCS represent neural activities (see Figure 1) and not
the strength of their related synaptic associations, VCS, US and zCS,
which cannot be appreciated by fMRI methods.

Results

Experimental data. Dunsmoor et al. (2007) demonstrated pat-
terns of learning-related activity within several brain regions in a
fear-conditioning task that varied the CS–US pairing rate. While in
fMRI, participants were presented with three auditory CSs of 10 s
each, which coterminated with a 500-ms 100-dB aversive white
noise on 100% (CS100), 50% (CS50), or 0% (CS�) of trials. The
conditioning session included 40 trials of each CS (120 total). Fear
conditioning was evaluated by the SCR and ratings of expectancy
for receiving the US.

Dunsmoor et al. (2007) reported two distinct patterns of brain
activity to CSs that varied as a function of the CS–US pairing rate.
The magnitude of activity in the amygdala and anterior cingulate
cortex was greatest to a CS that coterminated with the US on 100%
of trials (CS100), whereas activity to a partially paired CS (CS50)
fell at an intermediate level between the CS100 and an unpaired
control stimulus (CS�; see Figure 2, top panel). Activity observed
within these regions was suggested by Dunsmoor et al. as reflect-
ing the strength of the CS–US association. A separate pattern of

Figure 1. Simplified circuit of the Schmajuk, Lam, and Gray (1996)
model. Triangles represent variable connections (associations) between
nodes that modulate the activation of the node; arrows represent inputs that
control the output of the node; and solid circles represent inputs that
modify connections zCS and VCS, US without affecting outputs XCS and CR.
CS � conditioned stimuli; US � unconditioned stimulus; �CS � trace of
CS; BCS � predicted CS; zCS � attention to CS; XCS � internal represen-
tation of the CS; VCS, US � XCS–US association; BUS � predicted US;
CR � conditioned response; Novelty� � detected novelty.

Figure 2. Hemodynamic response in the amygdala. Top: Percent area
under the hemodynamic response curve (AUC) within the bilateral amyg-
dala. Data from Dunsmoor et al. (2007). Bottom: Computer simulations of
the BUS variable for CS�, CS50, and CS100, with the Schmajuk, Lam, and
Gray (1996) model. BUS � predicted US; CS� � conditioned stimulus
(CS) that coterminated with an aversive unconditioned stimulus (US) on
0% of the trials; CS50 � CS that coterminated with an aversive US on 50%
of the trials; CS100 � CS that coterminated with an aversive US on 100%
of the trials; fMRI � functional MRI.
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activity was observed within the dlPFC and insula. The magnitude
of activity within these regions was greatest to the partially paired
CS50 than to either the CS100 or the CS�. Heightened activity to
the CS50 within the dlPFC and insula was suggested as reflecting
the uncertainty for receiving the US (see Figure 3, top panel).
Finally, Dunsmoor et al. reported that the magnitude of the SCR
was proportional to the probability of reinforcement (see Figure 4,
top panel).

Simulation. Computer simulations with the SLG model con-
sisted of presentations of three different CSs paired with the US on
0% (CS�), 50% (CS50), or 100% of the trials (CS100). The CS
salience was 1, and CSs were 20 time units in duration; the US had
strength 2 and overlapped with the last five time units of the CSs;
the context salience was 0.1. Generalization between CSs was
achieved by including an additional CS, CSg, with salience 0.1,
representing elements common to all CSs. The duration of the
intertrial interval was set to 3,000 time units to ensure that the
traces of the different CSs became associated with their corre-
sponding level of Novelty�, independent of the Novelty� corre-

sponding to other CSs. The model received 64 CS�, 64 CS100,
and 64 CS50 alternated trials. Parameter values used in all the
simulations were identical to those used in previous articles (Lar-
rauri & Schmajuk, 2008; Schmajuk & Larrauri, 2006). As men-
tioned, we hypothesized that (a) activity in the amygdala and
anterior cingulate can be characterized by the prediction of the US
by the CS and the CX, BUS; (b) activity in the dlPFC and insula can
be described by the representation of the CS, XCS; and (c) the SCR
is a nonlinear function of BUS.

Computer simulations using the SLG model show that the
prediction for the US, BUS, increases linearly with the CS–US
pairing rate, such that the continuously paired CS elicits
the strongest association; the partially paired CS, an intermediate
amount of association; and the unpaired control stimulus,
the lowest amount of association (Figure 2, bottom panel). These
results derive from the process of acquisition to CSs of variable
CS–US reinforcement. That is, acquisition to a continuously paired
CS increases in associative strength on each paired trial, whereas
a partially paired CS alternates between gaining and losing asso-
ciative strength over the course of paired and unpaired trials.
Notably, although the CS� received no reinforcement with the
US, BUS is still greater than zero for this stimulus because CSg and

Figure 3. Hemodynamic response in the dorsolateral prefrontal cortex.
Top: Percent area under the hemodynamic response curve (AUC) within
the dorsolateral prefrontal cortex. Data from Dunsmoor et al. (2007).
Bottom: Computer simulations of the XCS variable for CS�, CS50, and
CS100, with the Schmajuk, Lam, and Gray (1996) model. BUS � predicted
US; CS� � conditioned stimulus (CS) that coterminated with an aversive
unconditioned stimulus (US) on 0% of the trials; CS50 � CS that coterminated
with an aversive US on 50% of the trials; CS100 � CS that coterminated with
an aversive US on 100% of the trials; fMRI � functional MRI.

Figure 4. Conditioned skin conductance response (SCR). Top: Data from
Dunsmoor et al. (2007). Bottom: Computer simulations of the conditioned
response for CS�, CS50, and CS100, with the Schmajuk, Lam, and Gray
(1996) model. CS� � conditioned stimulus (CS) that coterminated with an
aversive unconditioned stimulus (US) on 0% of the trials; CS50 � CS that
coterminated with an aversive US on 50% of the trials; CS100 � CS that
coterminated with an aversive US on 100% of the trials.
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the CX provide excitatory associations with the US. Overall, the
pattern of responses revealed by the simulation is in line with those
obtained from the amygdala and anterior cingulate cortex (Dun-
smoor et al., 2007).

In addition, the internal representation of each CS (XCS) is
proportional to the level of Novelty� detected at the time the CS
trace is active (Figure 3, bottom panel). For instance, Novelty� is
minimal when the CS predicts that the US will be present on either
100% of the trials or 0% of the trials, and the US is consistently
either present or absent (the participant is never surprised). In
contrast, Novelty� is maximal when the CS predicts that the US
will be present on 50% of the trials, and the US is alternatively
present or absent (the participant is always surprised). This pattern
of simulated results seems to be consistent with the pattern of brain
activity obtained from the dlPFC and insula (Dunsmoor et al.,
2007).

Finally, Figure 4 (bottom panel) demonstrates a pattern of
simulated CRs in line with the SCRs and US expectancy exhibited
by human participants during fear conditioning. Because the CR in
the present model is a nonlinear function of BUS, CR � f(BUS),
where f represents a sigmoid function, the CRs obtained by the
model show a pattern similar to that of BUS (see Figure 2).

Discussion

We showed that variables in a model of classical conditioning
are capable of describing (a) activity in the amygdala and anterior
cingulate cortex, (b) activity in the dlPFC and insula, and (c) the
SCR during fear conditioning in humans (Dunsmoor et al., 2007).

The amygdala is an important area for conditioned fear learning
and is consistently implicated in (a) forming the CS–US associa-
tion (LeDoux, 2000) and (b) producing the CR (Knight et al.,
2005). The simulations shown in Figure 2 appear to capture both
these functions of the amygdala: (a) predicting the US, BUS, based
on XCS–US associations, VCS, US, and (b) using this prediction to
generate the CR. Likewise, the anterior cingulate has been shown
to respond more to paired CSs than to unpaired CSs in brain
imaging studies of classical fear conditioning (Buchel, Morris,
Dolan, & Friston, 1998). Reciprocal connections between the
amygdala and the anterior cingulate may facilitate heightened
responses to stimuli associated with an aversive outcome (Devin-
sky, Morrell, & Vogt, 1995). However, the overall pattern of
simulated results is not exclusive to the SLG model because most
associative learning models (e.g., Mackintosh, 1975; Pearce &
Hall, 1980; Rescorla & Wagner, 1972; Wagner, 1981) predict that
differential reinforcement schedules affect the associative value of
a CS.

In contrast to the responses in the amygdala and anterior cin-
gulate, Dunsmoor et al. (2007) characterized the pattern of re-
sponses in the dlPFC and insula as reflecting uncertainty for
receiving the US because activity was greater to the partially
paired CS50 than to the CSs with more predictable outcomes
(CS� and CS100). The simulations, shown in Figure 3, support
this suggestion. Specifically, the internal representation, XCS, and
attention, zCS, were greatest for the CS partially paired with the
US. These results are also in line with the Pearce–Hall model
(1980) of associative learning, which predicts that attention is
greater to CSs with more uncertain outcomes.

Uniquely in the SLG model, XCS is proportional to the short-
term memory trace of the CS, �CS, modulated by the magnitude of
attention zCS. Therefore, XCS is an attention-modulated, sustained
activity that is closely related to a working memory process. This
aspect of the model converges with previous findings that the
dlPFC is involved in holding the representation of a stimulus in
working memory (D’Esposito, Postle, & Rypma, 2000; Fuster,
1973).

The simulation shown in Figure 4 appears to capture the phys-
iological SCR data reported by Dunsmoor et al. (2007). Notice that
although the internal representation of the CS, XCS, is reduced for
the 100% reinforced CS (Figure 3, bottom panel), both the BUS

(Figure 2, bottom panel) and the CR (Figure 4, bottom panel) are
strongest to the most predictive CS. According to the SLG model,
as XCS keeps decreasing with an increased number of 100%
reinforced trials, the CR will decrease with extended training. Such
a decreased responding has been reported during classical condi-
tioning in animals (Pavlov, 1927; Sherman & Maier, 1978).

Finally, projections from the ventral tegmental area to the amyg-
dala and the prefrontal cortex would provide Novelty� information
to these areas to control, respectively, the formation of XCS–US
associations and the activation of working memory, XCS. Gray,
Buhusi, and Schmajuk (1997) suggested that the activity of dopa-
minergic cells in the ventral tegmental area represent Novelty� as
defined in the SLG model, an assumption in line with reports that
dopamine codes for novel stimuli (Fiorillo, Tobler, & Schultz,
2003; Horvitz, 2000; Legault & Wise, 2001; Williams, Rolls,
Leonard, & Stern, 1993). This brain circuitry would provide a
substrate for the functional characterization of the amygdala and
anterior cingulate in terms of BUS and of the dlPFC and insula in
terms of XCS.

Although the activity in the amygdala and anterior cingulate
cortex can be described by most associative learning models (e.g.,
Mackintosh, 1975; Pearce & Hall, 1980; Rescorla & Wagner,
1972; Wagner, 1981), that is not the case with the activity in the
dlPFC and insula. The Rescorla and Wagner (1972) rule does not
include a variable that can be correlated with the uncertainty of
receiving the US, and the attentional variable in Mackintosh’s
(1975) theory is proportional to the quality of the CS as a predictor
of the US and, therefore, predicts that the activity in the dlPFC and
insula will show a maximum with 100% reinforcement (CS100).
Under the assumption that activity in the dlPFC and insula is
proportional to activity generated by the CS in the A2 state,
Wagner’s (1981) standard operating procedures model expects
similar responses to CS�, CS50, and CS100 because in all cases
priming of the CS is based on identical CX–CS associations. As
mentioned, another model able to describe activity in the dlPFC
and insula is the Pearce–Hall (1980) model. However, the SLG
model offers advantages over this competitor when addressing the
Dunsmoor et al. (2007) data because it relates the temporal course
of XCS to previous findings showing that the dlPFC holds the
representation of a stimulus in working memory.

More important, the SLG model offers numerous advantages
over the Pearce–Hall (1980) model when applied to other data,
such as the disruption of latent inhibition by the presentation of an
unexpected CS or the omission of an expected CS, the restoration
of the orienting response by the omission of an expected CS,
motivational effects on latent inhibition, recovery from latent
inhibition by extinction of the context, recovery from blocking by
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extinction of the blocker CS, backward blocking, spontaneous
recovery from backward blocking, recovery from overshadowing
by extinction of the overshadowing CS, and spontaneous recovery
following extinction (see Schmajuk, 2009, for a review). There-
fore, the SLG model, but not the Pearce–Hall model, predicts that
blood oxygen level–dependent activity in the dlPFC and insula,
proportional to XCS, will increase when Novelty (or uncertainty)
increases. That would be the case, for example, when extinction of
the blocker follows blocking or extinction of the overshadowing
CS follows overshadowing. These predictions are consistent with
the fact that the amplitude of the simulated CR, proportional to
XCS 
 VCS, US, matches the amplitude of the data CR (SCR) well.

In addition, neurophysiological evidence seems to support the
existence of error-correcting mechanisms that together with the
attentional mechanisms mentioned earlier, are incorporated into
the SLG model but not the Pearce–Hall model. Schultz and Dick-
inson (2000) reviewed studies showing how neurons within sev-
eral brain structures appear to code prediction errors in relation to
positive and negative reinforcement, CSs, and responses. Schultz
and Dickinson indicated that sometimes dopamine, norepineph-
rine, and nucleus basalis neurons broadcast these error signals to
different brain structures, but other times these error signals are
coded and broadcast within certain structures (e.g., cerebellum).

Conclusion

In this article, we show that variables representing neural activ-
ity in an attentional–associative model of classical conditioning
presented by Schmajuk et al. (1996) correspond to the blood
oxygen level–dependent activity reported by Dunsmoor et al.
(2007) in different areas of the brain during human fear condition-
ing. Dunsmoor et al. showed that although the amygdala and
anterior cingulate appear to mediate the fear response to CSs that
reliably predict the US, lateral frontal regions as well as the insula
appear to have a greater role in responding to CSs with uncertain
outcomes. This report adds to these findings. The use of a real-time
neural network model allows for an interpretation of the activity in
those brain regions, in terms of attention XCS and associations
VCS, US, and an understanding of how those variables multiplica-
tively combine to control behavior, CR � f(XCS 
 VCS, US). On the
basis of this equation, the model provides a number of predictions
for blood oxygen level–dependent activity in other associative
tasks. Moreover, the model provides a clear framework in which
these variables play important roles in the description of numerous
paradigms.
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