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HIGHLIGHTS

e Anterior cingulate and insular cortices are activated by extinction and reappraisal.

e Activation in sensory and emotion processing regions is observed in fear extinction.

e Cognitive reappraisal recruits the dorsal fronto-parietal network.

e Reappraisal differences with extinction partially depend on the regulation strategy.

ABSTRACT

Cognitive reappraisal and fear extinction learning represent two different approaches to
emotion regulation. While their respective neural correlates have been widely studied with
functional magnetic resonance imaging (fMRI), few direct comparisons between these
processes have been conducted. We conducted a meta-analysis of fMRI studies of
reappraisal and fear extinction, with the aim of examining both commonalities and
differences in their neural correlates. We also conducted independent analyses that focused
on specific reappraisal strategies (reinterpretation, distancing). Overall, we observed that
the dorsal anterior cingulate cortex (dACC) and the bilateral anterior insular cortex (AIC)
were similarly consistently engaged by reappraisal and extinction. Extinction was more
consistently linked to activation of sensory and emotion processing regions, whereas
reappraisal was more consistently associated with activation of a dorsal fronto-parietal
network. Interestingly, the amygdala was preferentially deactivated by distancing. These

results suggest that the dACC and the AIC are involved in domain-general regulatory



networks. Differences between extinction and reappraisal could be explained by their

relative processing demands on visual perceptual versus higher cognitive neural systems.

Keywords: emotion regulation; fear extinction; cognitive reappraisal; reinterpretation;

distancing; fMRI; meta-analysis



1. INTRODUCTION

Emotions are a fundamental part of our life. They sharpen our perception, enhance our
memory, and facilitate action, allowing us to adapt to changing environments (Phelps and
LeDoux, 2005). It comes as no surprise that the capacity to regulate our emotions
(“emotion regulation”) plays a key role in our physical and psychological well-being
(Cutuli, 2014; Gross, 1998, 2014; Gross & John, 2003; Webb, Miles, & Sheeran, 2012).
Indeed, deficits in emotion regulation seem to have a key role in the development,
maintenance and treatment of most mental disorders (Aldao, Nolen-Hoeksema, &
Schweizer, 2010; Hu et al., 2014; MacDonald, Trottier, & Olmsted, 2017; Pico-Pérez,
Radua, Steward, Menchon, & Soriano-Mas, 2017; Reinecke, Thilo, Filippini, Croft, &

Harmer, 2014; Zilverstand, Parvaz, & Goldstein, 2016).

Emotion regulation strategies may be divided into automatic (or implicit), such as fear
extinction learning, and intentionally deployed (or explicit), such as cognitive reappraisal
(Gross, 2014; Gyurak & Etkin, 2014). Fear extinction learning® (henceforth, “fear
extinction”) is the process through which learned responses are no longer expressed after
repeated presentations of a conditioned fear stimulus (Pavlov, 1927). Fear extinction has
been investigated across species and it is hypothesized that abnormal fear extinction
characterizes some mental disorders, especially anxiety disorders (Duits et al., 2015).
Indeed, effective psychological treatment techniques for these disorders, such as exposure
therapy, are largely based on the principles of fear extinction (Myers and Davis, 2002).

Cognitive reappraisal, by contrast, refers to the modification of the initial appraisal of a

I Although fear extinction learning experiments in humans do not typically involve explicit instructions, this does not
necessarily mean that the extinction process "is" implicit. Our use of the terms "implicit" and "automatic” is based on a
recent framework for emotion regulation strategies proposed by Braunstein et al. (2017).



situation to change its emotional significance and has been examined almost exclusively in
humans. Reappraisal appears early in the emotion-generative process, regulating emotional
responses before they have been completely generated (Gross, 1998, 2014). The
predominant strategies of cognitive reappraisal that have received the most attention are
“reinterpretation” and “distancing”. Reinterpretation refers to changing the meaning of an
emotional stimulus in a way that it involves more optimistic future scenarios. Distancing
refers to thinking of the emotional stimulus as non-realistic or imaging oneself as a third-

person observing (but not involved in) the emotional scenario.

The neural systems involved in fear extinction and cognitive reappraisal have been
thoroughly investigated. Rodent studies, in particular, have emphasized a primary role of
the ventromedial prefrontal cortex (vmPFC) in downregulating fear/threat-related neural
activity in the amygdala and its extended circuitry during fear extinction (Milad et al.,
2006; Quirk et al., 2006, 2003). These results have been partly corroborated in human
neuroimaging studies (Dejean et al., 2015; Hartley and Phelps, 2010; Linnman et al., 2012;
Milad and Quirk, 2012; Sehlmeyer et al., 2011). However, a recent meta-analysis of
functional magnetic resonance imaging (fMRI) studies of human fear extinction did not
find evidence of consistent vmPFC or amygdala involvement across studies. Instead, these
studies appear to mainly capture a neural signature that overlaps with studies of fear/threat
conditioning, including activations in the dorsal anterior cingulate, and the dorsomedial and
dorsolateral prefrontal cortices (AACC, dmPFC and dIPFC, respectively), as well as the
anterior insular cortex (AIC), suggesting an enduring activation of the neural systems

implicated in fear/threat response generation (Fullana et al., 2018).



Regarding cognitive reappraisal, several meta-analyses of fMRI studies have shown that,
overall, it is characterized by consistent activations of a distributed frontoparietal network,
involving extended vmPFC, dmPFC, dACC and dIPFC areas, as well as the ventrolateral
prefrontal cortex (VIPFC) and the inferior parietal lobule (Buhle et al., 2013; Diekhof et al.,
2011; Kohn et al., 2014). There is also meta-analytical evidence of consistent differences in
the neural systems supporting reinterpretation vs. distancing reappraisal strategies. Thus,
the left vVIPFC seems to be preferentially activated during reinterpretation, while activations
in the vmPFC and the inferior parietal lobule have been preferentially reported during

distancing (Dorfel et al., 2014; Pic6-Pérez et al., 2017).

An important question generated from these parallel lines of inquiry, which has received
little attention, is the extent to which fear extinction and cognitive reappraisal share
common neural substrates in the human brain. The studies mentioned above suggest that
there may be overlap in the areas underpinning the deployment of implicit vs. explicit
emotion regulation strategies, but this has never been overtly tested. Extant results are
markedly heterogeneous and this overlap could be observed in functionally distinct regions
such as the dACC, the dmPFC, the dIPFC or the vmPFC. A clearer definition of the areas
contributing to both fear extinction and cognitive reappraisal should result in a better
characterization of the emotion regulation networks and a deeper understanding of the

different emotion regulation strategies.

Here, we take advantage of the large body of previous fMRI research into fear extinction
and cognitive reappraisal to investigate through meta-analysis the common and distinct
neural correlates supporting these two processes in humans. We compared the neural

correlates of fear extinction with cognitive reappraisal overall, as well as with each of the



two cognitive reappraisal strategies most commonly assessed in experimental research (i.e.,
reinterpretation and distancing). With respect to previous fMRI meta-analyses of cognitive
reappraisal and fear extinction (Buhle et al., 2013; Fullana et al., 2018; Kohn et al., 2014),
we hypothesized that the neural correlates of fear extinction and cognitive reappraisal
would mainly converge in the dACC, the dmPFC and the dIPFC, whereas differences
would mainly be observed in the VIPFC (especially for the comparison with
reinterpretation) and inferior parietal areas (especially for the comparison with distancing),
since these regions have almost exclusively been reported in cognitive reappraisal studies.
To avoid confounding effects of development and psychopathology, we focused on fMRI
studies with healthy adults. Fortunately, neuroimaging research that includes healthy adults
constituted a remarkably large number of studies. Moreover, original whole-brain statistical
maps were available for more than 60% of the studies included in the meta-analysis,
increasing our sensitivity to identify the most robust brain effects across studies (Radua et

al., 2012).

2. METHODS

2.1. Literature search and study selection

A comprehensive literature search using PubMed, Web of Knowledge and Scopus was
conducted for English-language peer-reviewed fMRI studies on conditioned fear extinction
learning (‘extinction’) and cognitive reappraisal (‘reappraisal’) in human healthy adults
(age >18 years) (see Supplementary Material for details). After duplicate removal, 261

articles for extinction and 341 for reappraisal were identified (Fig. 1).



Insert Figure 1 here

For extinction, we included studies that assessed fear extinction using delay differential
cue-conditioning paradigms (i.e., where two conditioned stimuli are presented and one
(CS+) precedes an aversive stimulus and another (CS-) does not) and that reported direct
comparisons between a CS+ and CS- during extinction. In certain studies, all CSs trials
during extinction were included in the analysis, whereas in others, ‘early’ and ‘late’
extinction phases were modelled separately. When more than one contrast was available
from a given study, we sought to include the contrast involving all trials. If this contrast

was not available, we focused on late extinction (Milad et al., 2007) (Table 1).

For reappraisal, we included studies in which participants were presented with negative
visual stimuli (either from the International Affective Picture System — IAPS (Lang et al.,
2005), or from other databases) and instructed to reappraise the images by means of
reinterpretation, distancing, or both. Typically, this task intercalates blocks in which
participants are instructed to maintain the negative emotion elicited by the image, and
blocks in which participants are instructed to reappraise. Our contrast of interest was the

comparison of these two conditions (Reappraise vs. Maintain) (Table 2).

We excluded studies from which, after contact with the authors, peak information or
statistical maps could not be retrieved, or that did not report whole-brain statistical results,
and/or in which statistical thresholds varied across the assessment of different brain regions
(Fig. 1). We were able to retrieve the original brain activation maps of the contrast of
interest for 57 (i.e., 61.29%) datasets, 20 (64.51%) from extinction and 37 (59.67%) from

reappraisal studies. For the remaining studies, peak coordinates and effect sizes were



extracted and coded from the original publication or from supplementary data provided by

corresponding authors.

The literature search, decisions on inclusion and data extraction were all performed
independently by two investigators. For each dataset, several sociodemographic variables

were extracted (Table 1 and Table 2).

2.2. Meta-analytic approach

fMRI results were meta-analyzed using Anisotropic Effect-Size Signed Differential
Mapping (AES-SDM) software, version 5.141 (www.sdmproject.com; Radua et al., 2014,
2012). AES-SDM is a well-validated neuroimaging meta-analytic method, which conducts
voxel-wise random-effects meta-analyses (weighing the studies for sample size, intra-study
variance and between-study heterogeneity), and is capable of combining tabulated brain
activation results (i.e., regional peak statistic and coordinate information) with actual
empirical voxel-wise activation maps (Radua et al., 2012; Radua et al., 2014; Radua, van
den Heuvel, Surguladze, & Mataix-Cols, 2010; Radua & Mataix-Cols, 2009) (see

Supplementary Material for details regarding preprocessing steps).

To assess the regions of common activation during extinction and reappraisal, we
performed a conjunction analysis by means of the multimodal meta-analysis in AES-SDM.
This analysis is conceptually the same than conducting the simple overlap of the meta-
analytical maps from individual meta-analyses (i.e., to find the regions that activate during
both extinction and reappraisal), but it takes error in the p-values into account (Radua et al.,
2013). The same analysis was used to evaluate the regions of common activation during

extinction and reinterpretation, and during extinction and distancing.



To assess the regions of differential activation during extinction and reappraisal, we
compared the meta-analytical maps obtained from the CS+ > CS- and Reappraisal >
Maintain contrasts, which yielded results for Extinction>Reappraisal and
Reappraisal>Extinction. The same approach was used to compare reinterpretation and

distancing vs. extinction.

We assessed the robustness of our findings by examining the I2 index and Egger's test to
assess for heterogeneity of effect sizes and publication bias, respectively. Statistical
significance was determined at the whole-brain level with a p<0.05 False Discovery Rate
(FDR) corrected. In addition, a minimum cluster extent of 100 voxels was used. Results are

reported in Montreal Neurological Institute (MNI) space.

3. RESULTS

3.1. Included studies and sample characteristics

We included 31 independent datasets for extinction, with a total of 1074 participants
(43.66% females, mean age of 25.17 years, s.d.=4.49) (see Table 1 and Fullana et al., 2018
for details), and 62 independent datasets for reappraisal, including a total of 1869
participants (61.26% females, mean age of 29.74 years, 5.d.=6.87) (see Table 2). For the
sub-analyses of the different reappraisal strategies vs. extinction, we classified reappraisal
studies into those using reinterpretation (n=20) and those using distancing (n=20) (see
Table S1 for details regarding the specific instructions given on each study). We excluded
22 reappraisal studies that let the subject choose which strategy to use or did not give

specific instructions.

10



As mentioned in the introduction, the neural correlates of fear extinction have been the
focus of a previous meta-analysis (see Fullana et al., 2018). The results for the meta-
analysis of cognitive reappraisal studies are presented in the Supplementary Material

(Tables S2, S3 and S4).

3.2. Regions of common activation across extinction and reappraisal

Regions that were commonly activated during extinction and during reappraisal included
the dACC (MNI coordinates = 8, 36, 18, cluster extent = 110 voxels) and the bilateral AIC
(right: MNI coordinates = 32, 22, -14, cluster extent = 67 voxels; left: MNI coordinates = -

54, 12 -4, cluster extent = 60 voxels; Fig. 2).

Insert Figure 2 here

Similar results were obtained in our sub-analyses focusing on specific reappraisal
strategies, i.e., regions of consistent common activation during extinction and during
reinterpretation included the dACC (MNI coordinates = -2, 40, 22, cluster extent = 78
voxels) and the bilateral AIC (right: MNI coordinates = 40, 22, -12, cluster extent = 12
voxels; left: MNI coordinates = -54, 12, 0, cluster extent = 47 voxels). Analogous regions
were observed to be commonly activated during extinction (dACC: MNI coordinates = 8,
36, 18, cluster extent = 110; right AIC: MNI coordinates = 32, 22, -14, cluster extent = 67
voxels; left AIC: MNI coordinates = -54, 12, -4, cluster extent = 60 voxels), and during
distancing, although in this analysis no significant findings were observed in the left AIC
(dACC: MNI coordinates = -4, 32, 32, cluster extent = 15; right AIC: MNI coordinates =

40, 22, -10, cluster extent = 22 voxels).

There were no other regions of whole-brain significant results in any of these analyses.

11



3.3. Reqions of differential activation during extinction versus reappraisal

When comparing extinction to reappraisal, the former was consistently associated with
greater activation of the bilateral postcentral gyrus, the bilateral rolandic operculum, the
bilateral posterior insular cortex, the bilateral supramarginal gyrus, the associative visual
cortices, as well as the right hippocampus, the right pallidum, the bilateral putamen, the
posterolateral thalamus, the pons, the bilateral cerebellar hemispheres and the cerebellar

vermic lobules VI and X (see Table 3, Fig. 3).

Insert Figure 3 here

When comparing reappraisal to extinction, the former was consistently associated with
greater activation of the bilateral vIPFC, dIPFC, dmPFC, and SMA, as well as in the
bilateral angular and supramarginal gyri, the left precentral gyrus, the posterior cingulate
cortex and the precuneus, the bilateral temporal gyri and the right cerebellum (crus I)

(Table 3, Fig. 4).

Insert Figure 4 here

Findings from these analyses did not show substantial heterogeneity nor evidence of
potential publication bias (with the exception of the right parieto-occipital cluster), and
remained significant when including only studies with original statistical maps (see Table
3). Importantly, Table 3 also informs about whether the above findings resulted from

significant activations or deactivations (or both) during extinction or reappraisal.

3.4. Reqions of differential activation during Extinction and Reinterpretation

No consistent differences were observed when comparing Extinction > Reinterpretation.

Conversely, Reinterpretation > Extinction was associated with consistent activation of the

12



bilateral vIPFC, the left dIPFC, the left dmPFC, the left precentral gyrus, the left angular

and supramarginal gyri, and the left middle temporal gyrus (Figure S1, Table 4).

3.5. Reqions of differential activation during Extinction and Distancing

When comparing Extinction > Distancing, consistent activation was observed for the left
postcentral gyrus and the insula, the associative visual cortices extending to the inferior
temporal lobe, the bilateral cerebellum, the bilateral pons, the left posterolateral thalamus,
the right pallidum, the left hippocampus and the bilateral amygdala (Figure S2, Table 4).
When contrasting Distancing > Extinction, a similar pattern of differences was observed to
that of Reinterpretation > Extinction, although results obtained for Distancing were more
broadly observed bilaterally (VIPFC, dIPFC, dmPFC, SMA, angular, supramarginal and
middle and superior temporal gyri) (Figure S3, Table 4). As in Table 3, Table 4 also
informs about whether results from these last comparisons stemmed from significant

activations or deactivations (or both) during extinction or each reappraisal strategy.

4. DISCUSSION

Humans have a number of strategies to regulate emotional responses that draw on both
implicit (as in fear extinction) and explicit (as in cognitive reappraisal) processes. We have
compared, via meta-analysis, the neural correlates of fear extinction and cognitive
reappraisal, using data from more than 90 fMRI studies of almost 3000 participants. Our
results indicate that there are significant commonalities as well as significant differences in

the neural correlates of these two emotion regulation strategies.
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We found that the dACC and the AIC were the only brain areas involved in both explicit
and implicit emotion regulation strategies to survive statistical threshold in a formal
conjunction analysis. These regions have been shown to participate in a variety of cognitive
and behavioral regulation processes. For example, Diekhof et al. (2011) reported a
hyperactivation of the dACC and the AIC during cognitive reappraisal and placebo, and
Morawetz, Bode, Derntl, & Heekeren (2017) found that, together with the left vIPFC, the
dACC and the AIC were active across attentional, cognitive (e.g., reappraisal) and
response-focused regulation strategies. Likewise, Langner, Leiberg, Hoffstaedter, &
Eickhoff (2018) found these regions, in combination with the temporo-parietal junction, to
engage in both emotion and action regulation, which was interpreted in terms of a general
control feedback loop implicated in self-regulation across different domains. Far less
attention has been devoted to the possible role of the dACC or the AIC in implicit emotion
regulation, although this was observed in our previous meta-analysis (Fullana et al., 2018),
where these two regions consistently showed activity across human fear extinction learning

fMRI experiments.

Another explanation for the robust dACC and AIC activity during extinction and
reappraisal may be enduring emotional responses to emotional stimuli despite regulation
attempts. This idea has been previously put forward in the context of increased activation of
these regions during cognitive reappraisal, where aversive stimuli are still present during
regulation attempts (Diekhof et al., 2011). More recently, we have suggested that increased
activation of the dACC and the AIC during fear extinction could be accounted for by the
fact that fear responses to conditioned stimuli are rarely completely abolished during

extinction (Fullana et al., 2018). Indeed, co-activation of these two regions is typically

14



observed when processing emotional stimuli, and both are considered core components of
the "salience network™, whose activity is thought to guide behavior in front of emotionally
relevant stimuli by regulating attention and cognitive resources allocation (Menon, 2015;
Menon & Uddin, 2010). Activation of these regions has been consistently related with
emotional appraisal and autonomic responses, with the AIC encoding the bodily arousal
states (Craig, 2009; Paulus and Stein, 2006) that contribute to the conscious appraisal of

threat underpinned by dACC responses (Kalisch and Gerlicher, 2014).

Although it is difficult to reconcile these two hypotheses from the current analyses alone,
previous research indicates that the role of these regions in emotional processing is likely to
be multifaceted and related to both emotional appraisal and regulation across stimuli and
strategies. Activity in the dACC, for instance, has been correlated with subjective anxiety
during fear conditioning (Harrison et al., 2015), but also with regulation success during
cognitive reappraisal (Phan et al., 2005). Likewise, conscious appraisal of emotions via
activation of the AIC has been suggested to be the necessary first step to successfully
engage in some emotion regulation strategies, such as expressive suppression (Giuliani et
al., 2011). In this context, our data may be interpreted as evidence of the importance of
conscious appraisal of bodily states to trigger emotion regulation processes, cutting-across
different strategies. In this regard, it is worth highlighting that these regions display a high
base-rate of activation across all fMRI studies (regardless of the psychological process
being studied; Poldrack, 2006), making it difficult to ascribe any particular function to

them, especially from studies where causal inference cannot be inferred.

Regarding the patterns of differential activation between implicit and explicit strategies, we

observed several regions that were consistently activated during extinction. Contrasting

15



with what was observed for the AIC, activation of the posterior insula and adjacent cortices,
involved in somatosensory and interoceptive processing (Craig, 2003), was specific of
extinction. The primary somatosensory cortex was also active during extinction. These
results are likely to be related to the previous pairing of the to-be extinguished CS+ with
nociceptive stimuli, reflecting an enduring anticipatory response (see Fullana et al., 2018).
Likewise, posterior occipital regions were also active during extinction, probably as a result
of the dampened attention to visual emotional stimuli motivated by reappraisal strategies
(Wiggins et al., 2016). Of note, our results regarding the right postcentral gyrus and the
cuneus and precuneus showed some potential publication bias, and therefore should be
interpreted with caution. A range of subcortical regions also emerged during extinction. In
close relationship with visual processing cortices, the posterolateral portion of the thalamus
contributes to visual processing and is sensitive to the emotional value of complex scene
stimuli, modulating visual attention toward relevant cues (Frank and Sabatinelli, 2014). We
also observed activation during extinction in the putamen, reported to underlie emotion
recognition (Fusar-Poli et al., 2009), the hippocampus, part of a network involved in the
recall of fear extinction (Kalisch et al., 2006; Milad et al., 2007), and different lobes of the
cerebellum and the cerebellar vermis, described to be associated with both fear
conditioning and extinction (Fullana et al., 2015; Fullana et al., 2018), as well as with the
regulation of autonomic and motor responses during emotional processing (Strata, Scelfo,
& Sacchetti, 2011; Strata, 2015). Overall, although different factors may be contributing to
the extinction pattern, increased perceptual processing of aversive stimuli seems crucial to
differentiate between extinction and reappraisal. It is possible that a more active processing
of emotional stimuli is needed for learning to extinguish a previously conditioned response,

but not for cognitive reappraisal.

16



Regarding the pattern of regions preferentially associated with reappraisal, a network of
prefronto-parietal regions emerged, concurring with what has been typically found in meta-
analyses of cognitive reappraisal (Buhle et al., 2013; Kohn et al., 2014). The dIPFC is
critical for executive functioning (Wager and Smith, 2003), and, in the context of
reappraisal, it seems to support the active manipulation of information that is needed to
reappraise emotional stimuli (Ochsner, Silvers, & Buhle, 2012). Relatedly, the VIPFC has a
preponderant role in response selection and inhibition (Aron et al., 2014), particularly in the
inhibition of emotional appraisals (Wager et al., 2009). Also, the dmPFC is essential to
manage conflict and up-hold motivation for specific goals (Gill et al., 2010; Mitchell et al.,
2009; Warden et al., 2012). Finally, the angular and supramarginal gyri are relevant regions
for the allocation of attentional resources and monitoring emotional experiences (Pessoa et
al., 2003). The activation of this network of regions seems therefore to reflect the use of

higher cognitive process characteristic of explicit strategies.

When contrasting extinction with reinterpretation and distancing, we obtained a similar
fronto-parietal pattern of regions consistently active during both reappraisal strategies. This
indicates that reinterpretation and distancing share neurobiological underpinnings and are
probably similarly demanding in cognitive terms as compared to extinction. By contrast,
regions consistently active during extinction were exclusively observed in relation to
distancing. Distancing strategies might therefore be more effective at decreasing activation
in regions important for perception and processing of emotional stimuli, such as the
associative visual cortices or the posterolateral thalamus. Notably, in the contrast
Extinction>Distancing we also observed a significant cluster in the amygdala, although, as

can be observed in Table 4, this was not due to a significant activation during extinction,
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but to a significant deactivation during distancing. It is broadly recognized that the
amygdala contributes to the generation of emotional responses, including defensive
responses to threats, and its activity is typically reduced via emotion regulation processes
(Ochsner et al., 2004; Phelps & LeDoux, 2005). Since distancing involves emotionally
detaching from stimuli, its effects in decreasing negative affect should be considerably
faster when compared to extinction, which, as discussed, should require maintaining the
focus of attention toward emotional stimuli in order to facilitate learning. Similarly,
reinterpretation strategies may also less efficiently regulate amygdala deactivation since
individuals have to keep the emotional stimuli on-line (i.e., working memory) in order to
reappraise its representation. In this regard, novel paradigms controlling for time effects
could probably be informative about the differences across emotion regulation strategies in

downregulating amygdala activity at the short and the long-term.

Finally, we were not able to detect consistent vmPFC activation for extinction or
reappraisal, which is at odds with Diekhof et al. (2011) who stressed the role of the vmPFC
as a common brain region involved in the general regulation of negative affect. However, in
contrast to ours, that meta-analysis included both extinction learning and extinction recall
studies, and vmPFC activation seems to be more characteristic of extinction recall (see
Fullana et al., 2018). Moreover, activation of the vmPFC has not been consistently reported
across cognitive reappraisal studies (Buhle et al., 2013; Kohn et al., 2014). Recent work
also suggests that this region may be preferentially engaged in the valuation stage of

emotional processing rather than in its regulation (Ochsner & Gross, 2014).

This study has some limitations. Firstly, we focused on extinction and cognitive reappraisal

as representing implicit and explicit emotion regulation strategies, although other emotion
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regulation strategies could have been included (see the meta-analyses by Langner et al.
(2018) or Morawetz et al. (2017)). Secondly, we only included extinction studies with
reported evidence of extinction at a behavioral level and this was not a requisite for
reappraisal studies (because these studies rarely incorporate such a measurement). Lastly,
we have not been able to compare early and late extinction phases, which, as discussed,
could have allowed a deeper understanding of the differences between emotion regulation
processes at the short- and the long-term. In this sense, such distinction between early and
late phases could also be of interest for cognitive reappraisal studies, although this has been
rarely studied. Moreover, emotion regulation in general, and extinction and reappraisal in
particular, are complex constructs that involve a number of different processes (perceptive,
attentional, affective, regulatory, etc). The goal of our meta-analysis was to offer a broad
perspective on the neural commonalities/differences between two specific forms of
emotional regulation. The assessment of potential differences in the neural correlates of the
specific processes engaged by these strategies awaits future research. Strengths of the
current study include the use of a very large number of studies with methodologically
homogenous and comparable protocols as well as the use of a meta-analytic approach
combining the positive features of standard (i.e., non-neuroimaging) meta-analytic methods
(i.e., the inclusion of full information from a given study, represented here by the original

brain maps) with those of neuroimaging coordinate approaches.

In conclusion, our results indicate that implicit and explicit emotion regulation strategies,
represented here by extinction learning and cognitive reappraisal, are associated with
common and differential activations in several brain regions. While they share a common

core, encompassing the dACC and the AIC, they also involve distinct regions, allegedly
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supporting the use of different psychological processes. The dACC and the AIC seem to
play a role in the general control feedback loop involved in self-regulation across different
domains. By contrast, the brain activation pattern associated with extinction reflects an
increased need for active perceptual processing of emotional stimuli, whereas the pattern
associated with reappraisal reflects the increased demand of high order cognitive resources
posed by these strategies. Finally, reinterpretation and distancing appear to differ as
compared to extinction not in their cognitive load, but in its effectiveness to decrease
activity in areas important for processing of emotional stimuli and generation of emotional
responses, being distancing more effective in this sense. Our results can provide a
framework for future studies contrasting the use of these strategies in populations (e.g.
patients with mental disorders) characterized by a maladaptive/inefficient use of emotion
regulation strategies, or after interventions aimed at improving such strategies. Likewise,
our findings point to the existence of emotion regulatory hubs, which may be preferentially

targeted by neuromodulation techniques.
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FIGURE CAPTIONS

Figure 1. PRISMA flow diagram of fear extinction (left) and cognitive reappraisal (right)
studies. Note: PRISMA = Preferred reporting items for systematic reviews and meta-

analyses (http://www.prismastatement.org/).

Figure 2. Brain regions showing significant common activation during both fear extinction

and cognitive reappraisal.

Figure 3. Brain regions showing consistent activation during extinction in comparison with
reappraisal. Results are displayed at p < 0.05 FDR corrected at the whole-brain level

(cluster size > 100 voxels).

Figure 4. Brain regions showing consistent activation during reappraisal in comparison
with extinction. Results are displayed at p < 0.05 FDR corrected at the whole-brain level

(cluster size > 100 voxels).
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TABLES

Table 1. Characteristics of the 31 extinction fMRI studies included in the meta-analysis.

Reinforcement Number of Number

Authors (fen’:IaIe) 'égg) y. Mean CS c:)ar:?ji(:il:)ﬂrn% Immediate extinction? CdSqur/iﬁs- of ((j:usrmgs fMRI analysis
(%) conditioning  extinction

As et al., 2015* 43(22) 287 (10.4) R}’g;‘mic Images 31 YES 16/16 16/16  Early, late
Benson et al., 2014* 29 (14) 23.8(2.6) Geometrical figures 75 YES 16/16 12/12 Early, late
Diener et al., 2016* 13(6) 42.46 (13.69) Geometrical figures 50 YES 18/18 18/18 Whole
Ewald et al., 2014 13(5) 231(3) Lights (VR) 100 YES 16/16 8/8 Early, late
Harrison et al., unpublished* 58 (39) 21.8 (NA) Geometrical figures 50 YES 32/ 32 16/16 Whole, early, late
Hermann et al., 2012* 74 (37) 243 (4.14) Geometrical figures 100 YES 20/20 15/15 Whole
Holt et al., 2012 17(0) 34.2(9.9) Photographs 60 YES 16/16 16/16 Early
Icenhour et al., 2015* 23(12) 33.7(NA) Geometrical figures 75 YES 16/16 6/6 Early, late
Klumpers et al., unpublished* 106 (0) 21.9 (NA) Geometrical figures 33 YES 18/18 18/18 Whole, early, late
Krause-Utz et al., 2016 26 (26) 28.16 (8.26) Geometrical figures 50 YES 36/36 18/18 Whole
Kuhn et al., unpublished* 37 (19) 25.13 (NA) Geometrical figures 100 YES 18/18 12/12 Whole
Lindner et al., 2015* 15 (15) 22.53(2.7) Geometrical figures 100 YES 8/8 4/4 Whole
Linnman et al., 2012 18 (10) 25.7 (5) Photographs 62 YES 16/16 16/16 Early, late
Lonsdorf et al., 2014* 59 (32) 24(0.4) Angry faces 100 NO 15/15 24/24 Whole
Lueken et al., 2014* 60 (41) 35.75(10.27) Geometrical figures 50 YES 32/32 16/16 Whole, early, late
Merz et al., 2012* 49 (29) 24.33(NA) Geometrical figures 100 YES 20/20 11/11 Whole
Merz et al., 2014* 16 (0) 24.88(4.3) Geometrical figures 62 YES 16/16 16/16 Early, late
Milad et al., 2007 14 (NA) NA(NA) Photographs 60 YES 16/16 16/16 Late
Milad et al., 2013 16 (NA) 25.8 (NA) Photographs 62 YES 16/16 16/16 Early vs late
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Molapour et al., 2015*

Morriss et al., 2015*

Pejic et al., 2013*

Phelps et al., 2004*

Rabinak et al., 2014

Reinhardt et al., 2010

Ridder et al., 2012, sample 1
Scharfenort et al., unpublished*
Sehlmeyer et al., 2011
Soriano-Mas et al., unpublished
Spoormaker et al., unpublished*
Wicking et al., 2016*

20 (10)
21 (11)
49 (22)
11 (6)
14 (5)
20 (0)
60 (22)
77 (41)
32 (20)
18 (8)
48 (6)
18 (7)

22.39 (3.82)
24.03 (2.75)
23.49 (3.07)
NA (NA)
25.43 (NA)
28.8 (6.1)
21.25 (3.02)
24.8 (NA)
23.6 (4.41)
35.6 (NA)
24.9 (NA)
38.6 (12.21)

Neutral faces
Geometrical figures
Neutral faces
Geometrical figures
Geometrical figures
Geometrical figures
Geometrical figures
Geometrical figures
Neutral faces
Photographs
Geometrical figures
Geometrical figures

100
100
100
33
35
50
50
100
25
62
50
100

YES
YES
YES
YES
YES
YES
YES

NO
YES
YES

COMBINED
NO

9/9
12/12
17/17
23/15

23-23/15
32/16
18/18
14/14
40/30
16/16
30/15
30/30

12/12
16/16
2x(13/13)
15/15
30/30
16/16
18/18
14/14
25/25
16/16
15/15
30/30

Whole
Whole
Whole
Whole

Early, late

Whole
Whole
Whole
Whole
Whole
Whole

Early, late

Abbreviations: SD, standard deviation; CS, conditioned stimulus; CS+CS, followed by unconditioned stimulus; CS—S, not followed by unconditioned stimulus;

fMRI, functional magnetic resonance imaging; NA, Not available; VR, Virtual Reality.

*Datasets for which statistical parametric maps were available.
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Table 2. Characteristics of the 62 reappraisal fMRI studies included in the meta-analysis.

Authors N (female) Age, y, Mean (SD) Cognitive reappraisal strategy Stimuli

Albein-Urios et al., 2013* 21 (1) 31 (4.6) Reinterpretation and distancing Negative images (IAPS)
Chen et al., 2017* 47 (47) 21 (1.4) Distancing Negative images (CAPS)
Denny et al., 2015a 21 (11) 29 (6.71) Distancing Negative images (IAPS)
Denny et al., 2015b 17 (12) 24.1 (5.16) Distancing Negative images (IAPS)
Dillon and Pizzagalli, 2013* 24 (12) 34.42 (14.93) Distancing Negative images (IAPS)
Domes et al., 2010 33 (17) 24.89 (1.75) Distancing Negative images (IAPS)
Dorfel et al., 2014* 17 (17) 24 (3.22) Distancing Negative images (IAPS)
Dorfel et al., 2014* 19 (19) 22.53 (2.86) Reinterpretation Negative images (IAPS)
Eippert et al., 2007 24 (24) 23.3 (NA) Distancing Negative images (IAPS)
Erk etal., 2010 17 (8) 43.9 (10.1) Distancing Negative images (IAPS)
Gaebler et al., 2014* 23 (18) 30 (7.99) Distancing Negative images (IAPS)
Gianaros et al., 2014* 157 (80) 42.7 (7.3) Reinterpretation Negative images (IAPS)
Goldin et al., 2009 17 (9) 32.1(9.3) Reinterpretation and distancing Harsh facial expressions
Golkar et al., 2012 58 (32) 24.02 (2.26) Reinterpretation Negative images (IAPS)
Gorka et al., 2016* 37 (19) 25.68 (5.29) Reinterpretation and distancing Negative images (IAPS)
Harenski and Hamann, 2006 10 (10) 235(1) Distancing Moral negative images (IAPS)
Hayes et al., 2010 25 (11) 21.6 (2.5) Distancing Negative images (IAPS)
Hermann et al., 2016* 27 (27) 21.59 (2.58) Reinterpretation Negative images (IAPS)
Kanske et al., 2011* 30 (17) 21.8 (2.1) Reinterpretation and distancing Negative images (IAPS)
Kanske et al., 2012* 25 (18) 43.88 (11.21) Reinterpretation and distancing Negative images (IAPS)
Kanske et al., 2015, sample 1* 22 (12) 40.5(11.8) Reinterpretation and distancing Negative images (IAPS)
Kanske et al., 2015, sample 2* 17 (8) 35.94 (15.63) Reinterpretation and distancing Negative images (IAPS)
Koenigsberg et al., 2010 16 (9) 31.8 (7.79) Distancing Social negative images (IAPS)
Krendl et al., 2012 16 (10) 21.87 (3.11) Reinterpretation Negative images (IAPS)
Leiberg et al., 2012 24 (24) 24.1 (NA) Distancing Negative images (IAPS)
McRae et al., 2008 23 (11) 20.48 (NA) Reinterpretation and distancing Negative images (IAPS)




Modinos et al., 2010*

Morawetz et al., 2016a*
Morawetz et al., 2016b*

Morris et al., 2012*

New et al., 2009

Ochsner et al., 2002

Ochsner et al., 2004

Opitz et al., 2012, young sample*
Opitz et al., 2012, old sample*

Paschke et al., 2016*
Payer et al., 2012*
Qu and Telzer, 2017

Rabinak et al., 2014
Radke et al., 2017*
Reinecke et al., 2015*
Schardt et al., 2010*
Schulze et al., 2011*
Shermohammed et al., 2017*
Silvers et al., 2015
Simsek et al., 2017
Sripada et al., 2014*
Stephanou et al., 2016*
Steward et al., 2016*
Uchida et al., 2015

Urry et al., 2006*

Urry et al., 2009*
Vanderhasselt et al., 2013

18 (7)
59 (20)
60 (30)
15 (9)
14 (14)
15 (15)
24 (24)
16 (8)
15 (9)
108 (55)
10 (6)
29 (14)
21 (21)
22 (9)
18 (14)
37 (37)
16 (16)
25 (12)
30 (13)
15 (15)
49 (23)
78 (44)
14 (8)
62 (32)
17 (9)
26 (15)
42 (42)

21.1(2.8)
32.47 (11.25)
30.48 (11.1)
35(2)

31.7 (10.3)
21.9 (NA)
20.6 (NA)
19.25 (1.43)
59.87 (3.14)

26.12 (3.7)
27.6 (8.09)
19.2 (NA)

34.81 (9.54)
32.6 (10.9)
323 (12.1)
226 (2.2)
24,53 (3.84)
20.89 (1.71)
21.97 (NA)
2253 (1.8)
23.63 (1.3)
19.91 (2.78)
21.21 (1.42)
22.3 (1.6)
62.9 (0.4)
64.8 (0.5)
21.26 (2.29)

Reinterpretation and distancing
Reinterpretation and distancing
Reinterpretation and distancing
Distancing

Reinterpretation
Reinterpretation
Reinterpretation and distancing
Reinterpretation
Reinterpretation

Distancing
Reinterpretation and distancing
Reinterpretation

Reinterpretation and distancing
Reinterpretation
Reinterpretation

Distancing

Distancing

Reinterpretation and distancing
Reinterpretation
Reinterpretation
Reinterpretation and distancing
Reinterpretation and distancing
Reinterpretation and distancing
Reinterpretation
Reinterpretation and distancing
Reinterpretation
Reinterpretation

Negative images (IAPS)
Negative images (IAPS)
Angry faces (FACES database)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)

Emotional Picture Set (pictures
with social content)

Negative images (IAPS)
Scenes depicting individuals in an
emotionally negative situation

Negative images (IAPS)
Angry faces (FACES database)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
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Van der Velde et al., 2015a*
Van der Velde et al., 2015b*
Van Reekum et al., 2007*
Vrticka et al., 2011

Wager et al., 2008*

Walter et al., 2009

Winecoff et al., 2011*
Zhang et al., 2013*
Zivetal., 2013

51 (23) 37.1(10.3)
16 (8) 22.1(3.6)

29 (18) 63.66 (2.45)
19 (19) 24.82 (4)

30 (18) 22.3 (NA)
20 (20) 24 (3)

42 (NA) 44.96 (23.53)
13 (12) 20.7 (1.21)
27 (13) 32.6 (9.5)

Reinterpretation and distancing
Reinterpretation and distancing
Reinterpretation and distancing
Distancing

Reinterpretation

Distancing

Distancing

Reinterpretation
Reinterpretation

Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Negative images (IAPS)
Anger and contempt faces

Abbreviations: SD, standard deviation; IAPS, International Affective Picture System; CAPS, Chinese Affective Picture System.
*Datasets for which statistical parametric maps were available.
In the study by Schardt et al. (2010), contrasts from both fear and disgust stimuli were combined.
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Table 3. Results from extinction vs. reappraisal meta-analysis.

Comparison  Cluster Ke Egger Local peak MNI coordinates  SDM- Voxel P 12 Original
test p (X,Y,2) z maps only

Extinction > 0

Reappraisal® Left central 5788 0.848 Postcentral gyrus (| Reapp) -56, -16, 22 4.987  0.000000119 18.69% No
Rolandic operculum (fExt, 42,-22,22 4927 0000000119  620%  No
{Reapp)
Supramarginal gyrus (1Ext, 50,-34,26 4512 0000000417 153%  No
IReapp)
Posterior insula (1Ext, |Reapp) -36, -2, -10 4116  0.000001431 0% Yes
Putamen (1Ext, |Reapp) -26, -6, -8 4,070  0.000001729 0% No
Precentral gyrus (| Reapp) -28, -20, 56 3.474  0.000032008 0% Yes
Midcingulate gyrus (|Reapp) -16, -34, 44 3.256  0.000079274 0% Yes
Superior temporal gyrus (|Reapp) -64, -14, 10 3.157  0.000120342 0% Yes

Right temporo- 1762 0967  Middle occipital gyrus (TExt, 26,-92,10 3718  0.000009835  29.11%  Yes

occipital |Reapp)

Cuneus (1Ext, [Reapp) 18,-94,0 3562  0.000023127 0% Yes
Inferior occipital gyrus (|Reapp) 42, -76, -2 3.353  0.000052512 27.76% Yes
Superior occipital gyrus (|Reapp) 22,-84,16 3.050  0.000178754 0% Yes
Inferior temporal gyrus (|Reapp) 44, -70, -6 3.015  0.000203669 12.81% Yes
Middle temporal gyrus (Ext, 52, -58, 0 2802 0000462174 592%  Yes
{Reapp)

Right central 1591 0.159 i‘{’g‘;}’)‘)‘: operculum (Ext, 52, -16, 22 4998  0.000000119 0% No
Supramarginal gyrus (1Ext, 66, -20, 26 4618  0.000000179 0% Yes
|Reapp)

Posterior insula (1Ext, |Reapp) 38,2,14 3.559  0.000023127 0% Yes
Postcentral gyrus (|Reapp) 66, -18, 34 3.092  0.000152349 0% No

Left temporo- 945 0737  Middle occipital 26, -88, 2 3317  0.000061214 37.78% N

occipital . iddle occipital gyrus (|Reapp) -26, -88, : . .78% 0
Inferior occipital gyrus ({Reapp) -40, -86, -12 2.867  0.000362396 0% Yes
Middle temporal gyrus (|Reapp) -42,-58,0 2.676  0.000729144 0% Yes
Cuneus (|Reapp) -14, -100, -2 2.610 0.000915408 25.30% Yes
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Right parieto-

occipital 599 0.035 Precuneus (| Reapp) 22,-62, 28 3.326 0.000059426 0% Yes
Postcentral gyrus (|Reapp) 22, -44, 68 2.908  0.000307977 0% Yes
Supramarginal gyrus (|Reapp) 34,-38, 44 2.808  0.000452518 0% Yes
Cuneus (|Reapp) 18, -68, 34 2556 0.001111507 0% No
Right striato-limbic 546 0.556 Hippocampus (1Ext, |Reapp) 24,-8,-10 4.872  0.000000119 0% No
Putamen ({Ext, |Reapp) 30, 4, -2 2,785  0.000490248 0% Yes
Pallidum (1Ext, |Reapp) 16,0, -6 2583  0.001014411 0% Yes
Bilateral cerebellum 588 0.453 'IEEaZZT'Sphe”C lobule VI (TExt, 6,-70,-24 3721  0.000009477 0% Yes
Right hemispheric lobule IV/V 14,-52,20 3302 0000065029 0% Yes
(TExt, |Reapp)
Vermic lobule X (1Ext, |Reapp) 0, -48, -26 2.848  0.000387967 0% Yes
Right hemispheric lobule V1 8,-64,-18 2758 0000541031 0% Yes
([Reapp)
Vermic lobule VI (|Reapp) 6, -62, -24 2,736  0.000588238 0% Yes
Bilateral 0
paracingulate/SMA 479 0.843 Left (1Ext, |Reapp) -8, -4, 44 4.614  0.000000179 0% Yes
Right (|Reapp) 8, -4, 46 3.496  0.000029325 0% Yes
Right subcortical 189 0.258 Pons (1Ext, |Reapp) 12,-22,-2 3.474  0.000032008 0% No
Thalamus (1Ext, |Reapp) 14, -20,10 2.790  0.000483274 0% No
Left subcortical 144 0.644 Thalamus (1Ext, |Reapp) -12,-22,6 3.590  0.000020564 0% No
Pons (1Ext, |Reapp) -12,-22, -4 3.328  0.000059247 0% No
Left lateral occipital 117 0.555 aegt;‘;z‘;”or occipital gyrus -22,-64,24 3233  0.000085354 0% Yes
Reappraisal >  Bilateral fronto- Right superior frontal gyrus N 0
Extinction® temporo-parietal 18518 0.451 (dmPFC) (1Reapp) 16,50, 34 5.004 0 19.96% No
Left middle frontal gyrus (dIPFC) ) N N
(tReapp, |Ext) 36, 16, 32 5.004 0 0% Yes
Left middle frontal gyrus (VIPFC) 42,44, -8 5004 ~0 32.70% Yes
(tReapp, |Ext)
Left supplementary motor area 618, 52 5004 ~0 58.37% Yes
(TReapp)
Left middle temporal gyrus 60, -44, 0 5003 -0 38.54% Yes

(TReapp)

54



Left angular gyrus (tReapp, |Ext) -38, -70, 38 5.000 ~0 35.91% Yes
Left superior frontal gyrus

- ~| 0,
(dmMPEC) (1Reapp) 14, 28, 56 5.000 0 9.86% Yes
Left supramarginal gyrus (tReapp, 62 -54. 22 4990 -0 20.37% Yes
|Ext) o ' :
Right middle frontal gyrus (dIPFC) N 0
(tReapp, |Ext) 34,18, 54 4,981 0 2.73% Yes
Left precentral gyrus (TReapp) -46, 10, 46 4911  0.000000119 39.11% No
Right supplementary motor area 4,14, 66 4331 0000005782  18.70%  Yes
(TReapp) |
Left superior tempora ) i 0
gyrus/temporal pole (1Reapp) 46, 14, -24 4.265  0.000007033 0% Yes
Left inferior temporal gyrus -54,-8,-28 3439  0.000246406 0% Yes
(TReapp, |Ext) " ' '

Right angular 1767 0.090 Angular gyrus (tReapp) 60, -58, 24 4997 ~0 28.74% No
Middle temporal gyrus (1Reapp) 56, -62, 22 4987 ~0 36.88%  Yes
Superior temporal gyrus (tReapp) 56, -56, 22 498 ~0 39.80% Yes

Right vIPFC 1029 0.184 Inferior frontal gyrus (1Reapp) 48, 48, -6 5003 -0 6.37% Yes
Middle frontal gyrus (1Reapp, 38. 42 -10 5003 -0 11.55% Yes
|Ext) e ' '

Right temporal 1017 0.847 Middle temporal gyrus (1Reapp) 64, -24, -16 4.786  0.000000536 8.19% Yes
Ilrger;or temporal gyrus (TReapp, 58,-18,24 3872 0000039816  6.00%  Yes

xt e : : ’

Bilateral precuneus 872 0.333 Left precuneus (TReapp) -4,-62, 42 4.024  0.000019312 0% Yes
Left median -10,-44,36 3735  0.000075161 0% Yes
cingulate/paracingulate (tReapp)

Left posterior cingulate (tReapp) -2,-48, 22 3.378  0.000312924 12.14% Yes
Right precuneus (1Reapp) 6, -58, 38 3.088  0.000906229 20.05% Yes
Right cerebellum 135 0.113 Cerebellum, crus I (tReapp) 40, -70, -36 3.444  0.000241756 0% Yes

Abbreviations: Ke, cluster extent; MNI, Montreal Neurological Institute; SDM, Signed Differential Mapping; P, p-value; 12, percentage of variance attributable
to study heterogeneity.

a. Regions of difference stemming from a larger activation in Extinction are indicated by 1Ext, while regions stemming from a larger deactivation in Reappraisal
are indicated by |Reapp.

b. Regions of difference stemming from a larger activation in Reappraisal are indicated by tReapp, while regions stemming from a larger deactivation in
Extinction are indicated by |Ext.



Table 4. Results from extinction vs. reappraisal strategies meta-analysis.

Egger

MNI coordinates

Comparison Cluster Ke test p Local peak (Xy.2) SDM-Z  Voxel P 12
Extinction > i
Reinterpretation
Eggif;g{fgﬁgm” Left PFC 1477 0226  SFG (dmPFC) (1Reint) 16,26,50 5003  ~0 0%
IFG (VIPFC) (1Reint, |Ext) -42, 40, -16 4.897 0.000010192  2.66%
MFG (dIPFC) (1Reint, |Ext) -48, 24, 38 4.859 0.000011981 0.41%
Precentral gyrus (1Reint) -48, 8, 40 3.855 0.000493884 4%
Left parieto-temporal 928 0.300  Angular gyrus (TReint, |Ext) -52, -68, 36 5.000 0.000005960 18.37%
MTG (1Reint) -54, -68, 22 4.988 0.000006199 0%
Supramarginal gyrus (1Reint, |Ext) -64, -54, 22 4.756 0.000018477 0%
Right vIPFC 219 0.124  IFG (1Reint, |Ext) 44,44, -14 4.995 0.000006080 6.70%
Left MTG 215 0.191 MTG (7Reint) -46, -30, -6 5.001 ~0 4.98%
ETQ{Z,?E'.%’;E Eei?eh;etl‘l’g;poro'“c‘pim' 3104 0790  ITG (|Dist) 48,-64, -8 5001  ~0 1.88%
10G (|Dist) 42,-70, -12 5.001 ~0 0%
MOG (1Ext, | Dist) 28,-94, 14 4.978 0.000004411 0%
Fusiform gyrus (| Dist) 36, -76, -12 4.966 0.000004649 0%
Cerebellum, hemispheric lobule VI (| Dist) 18, -56, -20 4,957 0.000004828 10.41%
(Cﬁ;?;‘;"“m' hemispheric lobule IV/V 14,-54,-20 4860  0.000008345 0%
Cerebellum, vermic lobule VII (| Dist) -2,-72,-24 4.776 0.000010729 0%
Cuneus (|Dist) 20,-92, 14 4.466 0.000037670 1.62%
Lingual gyrus (| Dist) 14, -88, -10 4.455 0.000039041 23.96%
Cerebellum, vermic lobule VI (| Dist) 4,-78,-14 4.239 0.000094414 0%
Cerebellum, vermic lobule IX (1Ext) 4, -56, -32 3.920 0.000290632 0%
SOG (|Dist) 24, -100, 8 3.670 0.000661194 0%
Left occipito-cerebellar 1204 0.790 100G (|Dist) -36, -76, -4 4.991 0.000004053 10.32%
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MOG (|Dist) -38,-90, 2 4.879 0.000007927 0%
Cuneus (|Dist) -18,-90, 4 4.622 0.000021756 5.08%
Cerebellum, hemispheric lobule VI (| Dist) -28, -58, -22 4.007 0.000215530 0%
SBJLTSIE'CQIO”S + left 1148 0544  Right pons ({Ext, |Dist) 12, -24, -6 4928  0.000006318 0%
Left pons (1Ext, | Dist) -16, -24, -10 4.801 0.000009835 0%
Left hippocampus (| Dist) -24,-14,-12 4.601 0.000023305 0%
Left thalamus (1Ext, | Dist) -12,-18,6 3.968 0.000245452 0%
Left amygdala (| Dist) -30,0,-18 3.934 0.000274777 0%
Left insula (TExt) -36, -2, -10 3.919 0.000291407 0%
Right subcortical 162 0.544  Amygdala (| Dist) 24,-4,-12 4.843 0.000008464 0%
Globus pallidus (1Ext) 16,0, -10 4.002 0.000218689 0%
Left postcentral gyrus 124 0.670  Postcentral gyrus (|Dist) -46, -22, 24 4.268 0.000085652 0%
E}Lﬁfﬁgﬁ'&?ﬁ Bilateral PFC 3390 0723  Right MFG (dIPFC) (1Dist, | Ext) 30, 20, 44 4996  0.000005364 0%
Right SFG (dmPFC) (1Dist) 20, 8, 56 4.936 0.000006735  0.29%
Left SMA (1Dist) -4,14, 56 4.472 0.000047386 64.67%
Left MFG (dIPFC) (1Dist, |Ext) -30, 26, 40 4.378 0.000068963 0%
Right SMA (1Dist) 6, 12, 66 3.844 0.000428557 13.73%
Left SFG (dmPFC) (1Dist, |Ext) -2, 28, 58 3.267 0.002287567  43.34%
Right parieto-temporal 1807 0.155  Angular gyrus (1Dist) 50, -58, 32 4.997 0.000005364 56.69%
MTG (1Dist) 58, -58, 20 4.995 0.000005364 20.30%
STG (1Dist) 62, -54, 20 4.989 0.000005484 14.51%
Supramarginal gyrus (1Dist) 64, -38, 42 4551 0.000034571 0%
Left parietal 1638 0.338  Supramarginal gyrus (1Dist, |Ext) -60, -54, 24 5.002 ~0 18.40%
Angular gyrus (1Dist, |Ext) -58, -56, 32 4.999 0.000005364 34.81%
Right PFC 1359 0.723 IFG (VIPFC) (1Dist, |Ext) 46, 40, -10 5.000 0.000005364 38.78%
MFG (1Dist) 36, 54, -2 4.579 0.000030994 1.39%
SFG (dmPFC) (1Dist) 20, 60, 12 4.113 0.000173807 0%
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Left MTG 580 0.338  MTG (1Dist) -64, -46, 2 4.814 0.000012100 20.92%
Left vIPFC 500 0.055  IFG (1Dist, |Ext) -50, 34,0 4.721 0.000018060 17.87%

Abbreviations: Ke, cluster extent; MNI, Montreal Neurological Institute; SDM, Signed Differential Mapping; P, p-value; 12, percentage of variance attributable
to study heterogeneity.

a. Regions of difference stemming from a larger activation in Reinterpretation are indicated by TReint, while regions stemming from a larger deactivation in
Extinction are indicated by |Ext.

b. Regions of difference stemming from a larger activation in Extinction are indicated by 1Ext, while regions stemming from a larger deactivation in Distancing
are indicated by | Dist.

c. Regions of difference stemming from a larger activation in Distancing are indicated by 1Dist, while regions stemming from a larger deactivation in Extinction
are indicated by |Ext.
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