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HIGHLIGHTS 

 Anterior cingulate and insular cortices are activated by extinction and reappraisal.  

 Activation in sensory and emotion processing regions is observed in fear extinction. 

 Cognitive reappraisal recruits the dorsal fronto-parietal network. 

 Reappraisal differences with extinction partially depend on the regulation strategy. 

 

ABSTRACT 

 

Cognitive reappraisal and fear extinction learning represent two different approaches to 

emotion regulation. While their respective neural correlates have been widely studied with 

functional magnetic resonance imaging (fMRI), few direct comparisons between these 

processes have been conducted. We conducted a meta-analysis of fMRI studies of 

reappraisal and fear extinction, with the aim of examining both commonalities and 

differences in their neural correlates. We also conducted independent analyses that focused 

on specific reappraisal strategies (reinterpretation, distancing). Overall, we observed that 

the dorsal anterior cingulate cortex (dACC) and the bilateral anterior insular cortex (AIC) 

were similarly consistently engaged by reappraisal and extinction. Extinction was more 

consistently linked to activation of sensory and emotion processing regions, whereas 

reappraisal was more consistently associated with activation of a dorsal fronto-parietal 

network. Interestingly, the amygdala was preferentially deactivated by distancing. These 

results suggest that the dACC and the AIC are involved in domain-general regulatory 
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networks. Differences between extinction and reappraisal could be explained by their 

relative processing demands on visual perceptual versus higher cognitive neural systems. 

 

 

Keywords: emotion regulation; fear extinction; cognitive reappraisal; reinterpretation; 

distancing; fMRI; meta-analysis 
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1. INTRODUCTION 

Emotions are a fundamental part of our life. They sharpen our perception, enhance our 

memory, and facilitate action, allowing us to adapt to changing environments (Phelps and 

LeDoux, 2005). It comes as no surprise that the capacity to regulate our emotions 

(“emotion regulation”) plays a key role in our physical and psychological well-being 

(Cutuli, 2014; Gross, 1998, 2014; Gross & John, 2003; Webb, Miles, & Sheeran, 2012). 

Indeed, deficits in emotion regulation seem to have a key role in the development, 

maintenance and treatment of most mental disorders (Aldao, Nolen-Hoeksema, & 

Schweizer, 2010; Hu et al., 2014; MacDonald, Trottier, & Olmsted, 2017; Picó-Pérez, 

Radua, Steward, Menchón, & Soriano-Mas, 2017; Reinecke, Thilo, Filippini, Croft, & 

Harmer, 2014; Zilverstand, Parvaz, & Goldstein, 2016).  

Emotion regulation strategies may be divided into automatic (or implicit), such as fear 

extinction learning, and intentionally deployed (or explicit), such as cognitive reappraisal 

(Gross, 2014; Gyurak & Etkin, 2014). Fear extinction learning1 (henceforth, “fear 

extinction”) is the process through which learned responses are no longer expressed after 

repeated presentations of a conditioned fear stimulus (Pavlov, 1927). Fear extinction has 

been investigated across species and it is hypothesized that abnormal fear extinction 

characterizes some mental disorders, especially anxiety disorders (Duits et al., 2015). 

Indeed, effective psychological treatment techniques for these disorders, such as exposure 

therapy, are largely based on the principles of fear extinction (Myers and Davis, 2002). 

Cognitive reappraisal, by contrast, refers to the modification of the initial appraisal of a 

                                                           
1Although fear extinction learning experiments in humans do not typically involve explicit instructions, this does not 

necessarily mean that the extinction process "is" implicit. Our use of the terms "implicit" and "automatic" is based on a 

recent framework for emotion regulation strategies proposed by Braunstein et al. (2017). 
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situation to change its emotional significance and has been examined almost exclusively in 

humans. Reappraisal appears early in the emotion-generative process, regulating emotional 

responses before they have been completely generated (Gross, 1998, 2014). The 

predominant strategies of cognitive reappraisal that have received the most attention are 

“reinterpretation” and “distancing”. Reinterpretation refers to changing the meaning of an 

emotional stimulus in a way that it involves more optimistic future scenarios. Distancing 

refers to thinking of the emotional stimulus as non-realistic or imaging oneself as a third-

person observing (but not involved in) the emotional scenario. 

The neural systems involved in fear extinction and cognitive reappraisal have been 

thoroughly investigated. Rodent studies, in particular, have emphasized a primary role of 

the ventromedial prefrontal cortex (vmPFC) in downregulating fear/threat-related neural 

activity in the amygdala and its extended circuitry during fear extinction (Milad et al., 

2006; Quirk et al., 2006, 2003). These results have been partly corroborated in human 

neuroimaging studies (Dejean et al., 2015; Hartley and Phelps, 2010; Linnman et al., 2012; 

Milad and Quirk, 2012; Sehlmeyer et al., 2011). However, a recent meta-analysis of 

functional magnetic resonance imaging (fMRI) studies of human fear extinction did not 

find evidence of consistent vmPFC or amygdala involvement across studies. Instead, these 

studies appear to mainly capture a neural signature that overlaps with studies of fear/threat 

conditioning, including activations in the dorsal anterior cingulate, and the dorsomedial and 

dorsolateral prefrontal cortices (dACC, dmPFC and dlPFC, respectively), as well as the 

anterior insular cortex (AIC), suggesting an enduring activation of the neural systems 

implicated in fear/threat response generation (Fullana et al., 2018).  
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Regarding cognitive reappraisal, several meta-analyses of fMRI studies have shown that, 

overall, it is characterized by consistent activations of a distributed frontoparietal network, 

involving extended vmPFC, dmPFC, dACC and dlPFC areas, as well as the ventrolateral 

prefrontal cortex (vlPFC) and the inferior parietal lobule (Buhle et al., 2013; Diekhof et al., 

2011; Kohn et al., 2014). There is also meta-analytical evidence of consistent differences in 

the neural systems supporting reinterpretation vs. distancing reappraisal strategies. Thus, 

the left vlPFC seems to be preferentially activated during reinterpretation, while activations 

in the vmPFC and the inferior parietal lobule have been preferentially reported during 

distancing (Dörfel et al., 2014; Picó-Pérez et al., 2017).  

An important question generated from these parallel lines of inquiry, which has received 

little attention, is the extent to which fear extinction and cognitive reappraisal share 

common neural substrates in the human brain. The studies mentioned above suggest that 

there may be overlap in the areas underpinning the deployment of implicit vs. explicit 

emotion regulation strategies, but this has never been overtly tested. Extant results are 

markedly heterogeneous and this overlap could be observed in functionally distinct regions 

such as the dACC, the dmPFC, the dlPFC or the vmPFC. A clearer definition of the areas 

contributing to both fear extinction and cognitive reappraisal should result in a better 

characterization of the emotion regulation networks and a deeper understanding of the 

different emotion regulation strategies.  

Here, we take advantage of the large body of previous fMRI research into fear extinction 

and cognitive reappraisal to investigate through meta-analysis the common and distinct 

neural correlates supporting these two processes in humans. We compared the neural 

correlates of fear extinction with cognitive reappraisal overall, as well as with each of the 
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two cognitive reappraisal strategies most commonly assessed in experimental research (i.e., 

reinterpretation and distancing). With respect to previous fMRI meta-analyses of cognitive 

reappraisal and fear extinction (Buhle et al., 2013; Fullana et al., 2018; Kohn et al., 2014), 

we hypothesized that the neural correlates of fear extinction and cognitive reappraisal 

would mainly converge in the dACC, the dmPFC and the dlPFC, whereas differences 

would mainly be observed in the vlPFC (especially for the comparison with 

reinterpretation) and inferior parietal areas (especially for the comparison with distancing), 

since these regions have almost exclusively been reported in cognitive reappraisal studies. 

To avoid confounding effects of development and psychopathology, we focused on fMRI 

studies with healthy adults. Fortunately, neuroimaging research that includes healthy adults 

constituted a remarkably large number of studies. Moreover, original whole-brain statistical 

maps were available for more than 60% of the studies included in the meta-analysis, 

increasing our sensitivity to identify the most robust brain effects across studies (Radua et 

al., 2012). 

 

2. METHODS 

2.1. Literature search and study selection 

A comprehensive literature search using PubMed, Web of Knowledge and Scopus was 

conducted for English-language peer-reviewed fMRI studies on conditioned fear extinction 

learning (‘extinction’) and cognitive reappraisal (‘reappraisal’) in human healthy adults 

(age ≥18 years) (see Supplementary Material for details). After duplicate removal, 261 

articles for extinction and 341 for reappraisal were identified (Fig. 1).  
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Insert Figure 1 here 

For extinction, we included studies that assessed fear extinction using delay differential 

cue-conditioning paradigms (i.e., where two conditioned stimuli are presented and one 

(CS+) precedes an aversive stimulus and another (CS-) does not) and that reported direct 

comparisons between a CS+ and CS- during extinction. In certain studies, all CSs trials 

during extinction were included in the analysis, whereas in others, ‘early’ and ‘late’ 

extinction phases were modelled separately. When more than one contrast was available 

from a given study, we sought to include the contrast involving all trials. If this contrast 

was not available, we focused on late extinction (Milad et al., 2007) (Table 1).  

For reappraisal, we included studies in which participants were presented with negative 

visual stimuli (either from the International Affective Picture System – IAPS (Lang et al., 

2005), or from other databases) and instructed to reappraise the images by means of 

reinterpretation, distancing, or both. Typically, this task intercalates blocks in which 

participants are instructed to maintain the negative emotion elicited by the image, and 

blocks in which participants are instructed to reappraise. Our contrast of interest was the 

comparison of these two conditions (Reappraise vs. Maintain) (Table 2).  

We excluded studies from which, after contact with the authors, peak information or 

statistical maps could not be retrieved, or that did not report whole-brain statistical results, 

and/or in which statistical thresholds varied across the assessment of different brain regions 

(Fig. 1). We were able to retrieve the original brain activation maps of the contrast of 

interest for 57 (i.e., 61.29%) datasets, 20 (64.51%) from extinction and 37 (59.67%) from 

reappraisal studies. For the remaining studies, peak coordinates and effect sizes were 
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extracted and coded from the original publication or from supplementary data provided by 

corresponding authors.  

The literature search, decisions on inclusion and data extraction were all performed 

independently by two investigators. For each dataset, several sociodemographic variables 

were extracted (Table 1 and Table 2).  

2.2. Meta-analytic approach 

fMRI results were meta-analyzed using Anisotropic Effect-Size Signed Differential 

Mapping (AES-SDM) software, version 5.141 (www.sdmproject.com; Radua et al., 2014, 

2012). AES-SDM is a well-validated neuroimaging meta-analytic method, which conducts 

voxel-wise random-effects meta-analyses (weighing the studies for sample size, intra-study 

variance and between-study heterogeneity), and is capable of combining tabulated brain 

activation results (i.e., regional peak statistic and coordinate information) with actual 

empirical voxel-wise activation maps (Radua et al., 2012; Radua et al., 2014; Radua, van 

den Heuvel, Surguladze, & Mataix-Cols, 2010; Radua & Mataix-Cols, 2009) (see 

Supplementary Material for details regarding preprocessing steps).  

To assess the regions of common activation during extinction and reappraisal, we 

performed a conjunction analysis by means of the multimodal meta-analysis in AES-SDM. 

This analysis is conceptually the same than conducting the simple overlap of the meta-

analytical maps from individual meta-analyses (i.e., to find the regions that activate during 

both extinction and reappraisal), but it takes error in the p-values into account (Radua et al., 

2013). The same analysis was used to evaluate the regions of common activation during 

extinction and reinterpretation, and during extinction and distancing.    
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To assess the regions of differential activation during extinction and reappraisal, we 

compared the meta-analytical maps obtained from the CS+ > CS- and Reappraisal > 

Maintain contrasts, which yielded results for Extinction>Reappraisal and 

Reappraisal>Extinction. The same approach was used to compare reinterpretation and 

distancing vs. extinction. 

We assessed the robustness of our findings by examining the I2 index and Egger's test to 

assess for heterogeneity of effect sizes and publication bias, respectively. Statistical 

significance was determined at the whole-brain level with a p<0.05 False Discovery Rate 

(FDR) corrected. In addition, a minimum cluster extent of 100 voxels was used. Results are 

reported in Montreal Neurological Institute (MNI) space. 

 

3. RESULTS 

3.1. Included studies and sample characteristics 

We included 31 independent datasets for extinction, with a total of 1074 participants 

(43.66% females, mean age of 25.17 years, s.d.=4.49) (see Table 1 and Fullana et al., 2018 

for details), and 62 independent datasets for reappraisal, including a total of 1869 

participants (61.26% females, mean age of 29.74 years, s.d.=6.87) (see Table 2). For the 

sub-analyses of the different reappraisal strategies vs. extinction, we classified reappraisal 

studies into those using reinterpretation (n=20) and those using distancing (n=20) (see 

Table S1 for details regarding the specific instructions given on each study). We excluded 

22 reappraisal studies that let the subject choose which strategy to use or did not give 

specific instructions. 
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As mentioned in the introduction, the neural correlates of fear extinction have been the 

focus of a previous meta-analysis (see Fullana et al., 2018). The results for the meta-

analysis of cognitive reappraisal studies are presented in the Supplementary Material 

(Tables S2, S3 and S4).  

3.2. Regions of common activation across extinction and reappraisal 

Regions that were commonly activated during extinction and during reappraisal included 

the dACC (MNI coordinates = 8, 36, 18, cluster extent = 110 voxels) and the bilateral AIC 

(right: MNI coordinates = 32, 22, -14, cluster extent = 67 voxels; left: MNI coordinates = -

54, 12 -4, cluster extent = 60 voxels; Fig. 2).   

Insert Figure 2 here 

Similar results were obtained in our sub-analyses focusing on specific reappraisal 

strategies, i.e., regions of consistent common activation during extinction and during 

reinterpretation included the dACC (MNI coordinates = -2, 40, 22, cluster extent = 78 

voxels) and the bilateral AIC (right: MNI coordinates = 40, 22, -12, cluster extent = 12 

voxels; left: MNI coordinates = -54, 12, 0, cluster extent = 47 voxels). Analogous regions 

were observed to be commonly activated during extinction (dACC: MNI coordinates = 8, 

36, 18, cluster extent = 110; right AIC: MNI coordinates = 32, 22, -14, cluster extent = 67 

voxels; left AIC: MNI coordinates = -54, 12, -4, cluster extent = 60 voxels), and during 

distancing, although in this analysis no significant findings were observed in the left AIC 

(dACC: MNI coordinates = -4, 32, 32, cluster extent = 15; right AIC: MNI coordinates = 

40, 22, -10, cluster extent = 22 voxels).  

There were no other regions of whole-brain significant results in any of these analyses. 
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3.3. Regions of differential activation during extinction versus reappraisal 

When comparing extinction to reappraisal, the former was consistently associated with 

greater activation of the bilateral postcentral gyrus, the bilateral rolandic operculum, the 

bilateral posterior insular cortex, the bilateral supramarginal gyrus, the associative visual 

cortices, as well as the right hippocampus, the right pallidum, the bilateral putamen, the 

posterolateral thalamus, the pons, the bilateral cerebellar hemispheres and the cerebellar 

vermic lobules VI and X (see Table 3, Fig. 3).  

Insert Figure 3 here 

When comparing reappraisal to extinction, the former was consistently associated with 

greater activation of the bilateral vlPFC, dlPFC, dmPFC, and SMA, as well as in the 

bilateral angular and supramarginal gyri, the left precentral gyrus, the posterior cingulate 

cortex and the precuneus, the bilateral temporal gyri and the right cerebellum (crus I) 

(Table 3, Fig. 4).  

Insert Figure 4 here 

Findings from these analyses did not show substantial heterogeneity nor evidence of 

potential publication bias (with the exception of the right parieto-occipital cluster), and 

remained significant when including only studies with original statistical maps (see Table 

3). Importantly, Table 3 also informs about whether the above findings resulted from 

significant activations or deactivations (or both) during extinction or reappraisal.  

3.4. Regions of differential activation during Extinction and Reinterpretation 

No consistent differences were observed when comparing Extinction > Reinterpretation. 

Conversely, Reinterpretation > Extinction was associated with consistent activation of the 
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bilateral vlPFC, the left dlPFC, the left dmPFC, the left precentral gyrus, the left angular 

and supramarginal gyri, and the left middle temporal gyrus (Figure S1, Table 4).  

3.5. Regions of differential activation during Extinction and Distancing 

When comparing Extinction > Distancing, consistent activation was observed for the left 

postcentral gyrus and the insula, the associative visual cortices extending to the inferior 

temporal lobe, the bilateral cerebellum, the bilateral pons, the left posterolateral thalamus, 

the right pallidum, the left hippocampus and the bilateral amygdala (Figure S2, Table 4). 

When contrasting Distancing > Extinction, a similar pattern of differences was observed to 

that of Reinterpretation > Extinction, although results obtained for Distancing were more 

broadly observed bilaterally (vlPFC, dlPFC, dmPFC, SMA, angular, supramarginal and 

middle and superior temporal gyri) (Figure S3, Table 4). As in Table 3, Table 4 also 

informs about whether results from these last comparisons stemmed from significant 

activations or deactivations (or both) during extinction or each reappraisal strategy. 

 

4. DISCUSSION 

Humans have a number of strategies to regulate emotional responses that draw on both 

implicit (as in fear extinction) and explicit (as in cognitive reappraisal) processes. We have 

compared, via meta-analysis, the neural correlates of fear extinction and cognitive 

reappraisal, using data from more than 90 fMRI studies of almost 3000 participants. Our 

results indicate that there are significant commonalities as well as significant differences in 

the neural correlates of these two emotion regulation strategies. 
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We found that the dACC and the AIC were the only brain areas involved in both explicit 

and implicit emotion regulation strategies to survive statistical threshold in a formal 

conjunction analysis. These regions have been shown to participate in a variety of cognitive 

and behavioral regulation processes. For example, Diekhof et al. (2011) reported a 

hyperactivation of the dACC and the AIC during cognitive reappraisal and placebo, and 

Morawetz, Bode, Derntl, & Heekeren (2017) found that, together with the left vlPFC, the 

dACC and the AIC were active across attentional, cognitive (e.g., reappraisal) and 

response-focused regulation strategies. Likewise, Langner, Leiberg, Hoffstaedter, & 

Eickhoff (2018) found these regions, in combination with the temporo-parietal junction, to 

engage in both emotion and action regulation, which was interpreted in terms of a general 

control feedback loop implicated in self-regulation across different domains. Far less 

attention has been devoted to the possible role of the dACC or the AIC in implicit emotion 

regulation, although this was observed in our previous meta-analysis (Fullana et al., 2018), 

where these two regions consistently showed activity across human fear extinction learning 

fMRI experiments.  

Another explanation for the robust dACC and AIC activity during extinction and 

reappraisal may be enduring emotional responses to emotional stimuli despite regulation 

attempts. This idea has been previously put forward in the context of increased activation of 

these regions during cognitive reappraisal, where aversive stimuli are still present during 

regulation attempts (Diekhof et al., 2011). More recently, we have suggested that increased 

activation of the dACC and the AIC during fear extinction could be accounted for by the 

fact that fear responses to conditioned stimuli are rarely completely abolished during 

extinction (Fullana et al., 2018). Indeed, co-activation of these two regions is typically 

ACCEPTED M
ANUSCRIP

T



15 
 

observed when processing emotional stimuli, and both  are considered core components of 

the "salience network", whose activity is thought to guide behavior in front of emotionally 

relevant stimuli by regulating attention and cognitive resources allocation (Menon, 2015; 

Menon & Uddin, 2010). Activation of these regions has been consistently related with 

emotional appraisal and autonomic responses, with the AIC encoding the bodily arousal 

states (Craig, 2009; Paulus and Stein, 2006) that contribute to the conscious appraisal of 

threat underpinned by dACC responses (Kalisch and Gerlicher, 2014).  

Although it is difficult to reconcile these two hypotheses from the current analyses alone, 

previous research indicates that the role of these regions in emotional processing is likely to 

be multifaceted and related to both emotional appraisal and regulation across stimuli and 

strategies. Activity in the dACC, for instance, has been correlated with subjective anxiety 

during fear conditioning (Harrison et al., 2015), but also with regulation success during 

cognitive reappraisal (Phan et al., 2005). Likewise, conscious appraisal of emotions via 

activation of the AIC has been suggested to be the necessary first step to successfully 

engage in some emotion regulation strategies, such as expressive suppression (Giuliani et 

al., 2011). In this context, our data may be interpreted as evidence of the importance of 

conscious appraisal of bodily states to trigger emotion regulation processes, cutting-across 

different strategies. In this regard, it is worth highlighting that these regions display a high 

base-rate of activation across all fMRI studies (regardless of the psychological process 

being studied; Poldrack, 2006), making it difficult to ascribe any particular function to 

them, especially from studies where causal inference cannot be inferred. 

Regarding the patterns of differential activation between implicit and explicit strategies, we 

observed several regions that were consistently activated during extinction. Contrasting 
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with what was observed for the AIC, activation of the posterior insula and adjacent cortices, 

involved in somatosensory and interoceptive processing (Craig, 2003), was specific of 

extinction. The primary somatosensory cortex was also active during extinction. These 

results are likely to be related to the previous pairing of the to-be extinguished CS+ with 

nociceptive stimuli, reflecting an enduring anticipatory response (see Fullana et al., 2018). 

Likewise, posterior occipital regions were also active during extinction, probably as a result 

of the dampened attention to visual emotional stimuli motivated by reappraisal strategies 

(Wiggins et al., 2016). Of note, our results regarding the right postcentral gyrus and the 

cuneus and precuneus showed some potential publication bias, and therefore should be 

interpreted with caution. A range of subcortical regions also emerged during extinction. In 

close relationship with visual processing cortices, the posterolateral portion of the thalamus 

contributes to visual processing and is sensitive to the emotional value of complex scene 

stimuli, modulating visual attention toward relevant cues (Frank and Sabatinelli, 2014). We 

also observed activation during extinction in the putamen, reported to underlie emotion 

recognition (Fusar-Poli et al., 2009), the hippocampus, part of a network involved in the 

recall of fear extinction (Kalisch et al., 2006; Milad et al., 2007), and different lobes of the 

cerebellum and the cerebellar vermis, described to be associated with both fear 

conditioning and extinction (Fullana et al., 2015; Fullana et al., 2018), as well as with the 

regulation of autonomic and motor responses during emotional processing (Strata, Scelfo, 

& Sacchetti, 2011; Strata, 2015). Overall, although different factors may be contributing to 

the extinction pattern, increased perceptual processing of aversive stimuli seems crucial to 

differentiate between extinction and reappraisal. It is possible that a more active processing 

of emotional stimuli is needed for learning to extinguish a previously conditioned response, 

but not for cognitive reappraisal.  
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Regarding the pattern of regions preferentially associated with reappraisal, a network of 

prefronto-parietal regions emerged, concurring with what has been typically found in meta-

analyses of cognitive reappraisal (Buhle et al., 2013; Kohn et al., 2014). The dlPFC is 

critical for executive functioning (Wager and Smith, 2003), and, in the context of 

reappraisal, it seems to support the active manipulation of information that is needed to 

reappraise emotional stimuli (Ochsner, Silvers, & Buhle, 2012). Relatedly, the vlPFC has a 

preponderant role in response selection and inhibition (Aron et al., 2014), particularly in the 

inhibition of emotional appraisals (Wager et al., 2009). Also, the dmPFC is essential to 

manage conflict and up-hold motivation for specific goals (Gill et al., 2010; Mitchell et al., 

2009; Warden et al., 2012). Finally, the angular and supramarginal gyri are relevant regions 

for the allocation of attentional resources and monitoring emotional experiences (Pessoa et 

al., 2003). The activation of this network of regions seems therefore to reflect the use of 

higher cognitive process characteristic of explicit strategies. 

When contrasting extinction with reinterpretation and distancing, we obtained a similar 

fronto-parietal pattern of regions consistently active during both reappraisal strategies. This 

indicates that reinterpretation and distancing share neurobiological underpinnings and are 

probably similarly demanding in cognitive terms as compared to extinction. By contrast, 

regions consistently active during extinction were exclusively observed in relation to 

distancing. Distancing strategies might therefore be more effective at decreasing activation 

in regions important for perception and processing of emotional stimuli, such as the 

associative visual cortices or the posterolateral thalamus. Notably, in the contrast 

Extinction>Distancing we also observed a significant cluster in the amygdala, although, as 

can be observed in Table 4, this was not due to a significant activation during extinction, 
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but to a significant deactivation during distancing. It is broadly recognized that the 

amygdala contributes to the generation of emotional responses, including defensive 

responses to threats, and its activity is typically reduced via emotion regulation processes 

(Ochsner et al., 2004; Phelps & LeDoux, 2005). Since distancing involves emotionally 

detaching from stimuli, its effects in decreasing negative affect should be considerably 

faster when compared to extinction, which, as discussed, should require maintaining the 

focus of attention toward emotional stimuli in order to facilitate learning. Similarly, 

reinterpretation strategies may also less efficiently regulate amygdala deactivation since 

individuals have to keep the emotional stimuli on-line (i.e., working memory) in order to 

reappraise its representation. In this regard, novel paradigms controlling for time effects 

could probably be informative about the differences across emotion regulation strategies in 

downregulating amygdala activity at the short and the long-term.  

Finally, we were not able to detect consistent vmPFC activation for extinction or 

reappraisal, which is at odds with Diekhof et al. (2011) who stressed the role of the vmPFC 

as a common brain region involved in the general regulation of negative affect. However, in 

contrast to ours, that meta-analysis included both extinction learning and extinction recall 

studies, and vmPFC activation seems to be more characteristic of extinction recall (see 

Fullana et al., 2018). Moreover, activation of the vmPFC has not been consistently reported 

across cognitive reappraisal studies (Buhle et al., 2013; Kohn et al., 2014). Recent work 

also suggests that this region may be preferentially engaged in the valuation stage of 

emotional processing rather than in its regulation (Ochsner & Gross, 2014).  

This study has some limitations. Firstly, we focused on extinction and cognitive reappraisal 

as representing implicit and explicit emotion regulation strategies, although other emotion 
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regulation strategies could have been included (see the meta-analyses by Langner et al. 

(2018) or Morawetz et al. (2017)). Secondly, we only included extinction studies with 

reported evidence of extinction at a behavioral level and this was not a requisite for 

reappraisal studies (because these studies rarely incorporate such a measurement). Lastly, 

we have not been able to compare early and late extinction phases, which, as discussed, 

could have allowed a deeper understanding of the differences between emotion regulation 

processes at the short- and the long-term. In this sense, such distinction between early and 

late phases could also be of interest for cognitive reappraisal studies, although this has been 

rarely studied. Moreover, emotion regulation in general, and extinction and reappraisal in 

particular, are complex constructs that involve a number of different processes (perceptive, 

attentional, affective, regulatory, etc). The goal of our meta-analysis was to offer a broad 

perspective on the neural commonalities/differences between two specific forms of 

emotional regulation. The assessment of potential differences in the neural correlates of the 

specific processes engaged by these strategies awaits future research. Strengths of the 

current study include the use of a very large number of studies with methodologically 

homogenous and comparable protocols as well as the use of a meta-analytic approach 

combining the positive features of standard (i.e., non-neuroimaging) meta-analytic methods 

(i.e., the inclusion of full information from a given study, represented here by the original 

brain maps) with those of neuroimaging coordinate approaches. 

In conclusion, our results indicate that implicit and explicit emotion regulation strategies, 

represented here by extinction learning and cognitive reappraisal, are associated with 

common and differential activations in several brain regions. While they share a common 

core, encompassing the dACC and the AIC, they also involve distinct regions, allegedly 
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supporting the use of different psychological processes. The dACC and the AIC seem to 

play a role in the general control feedback loop involved in self-regulation across different 

domains. By contrast, the brain activation pattern associated with extinction reflects an 

increased need for active perceptual processing of emotional stimuli, whereas the pattern 

associated with reappraisal reflects the increased demand of high order cognitive resources 

posed by these strategies. Finally, reinterpretation and distancing appear to differ as 

compared to extinction not in their cognitive load, but in its effectiveness to decrease 

activity in areas important for processing of emotional stimuli and generation of emotional 

responses, being distancing more effective in this sense. Our results can provide a 

framework for future studies contrasting the use of these strategies in populations (e.g. 

patients with mental disorders) characterized by a maladaptive/inefficient use of emotion 

regulation strategies, or after interventions aimed at improving such strategies. Likewise, 

our findings point to the existence of emotion regulatory hubs, which may be preferentially 

targeted by neuromodulation techniques. 
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FIGURE CAPTIONS 

Figure 1. PRISMA flow diagram of fear extinction (left) and cognitive reappraisal (right) 

studies. Note: PRISMA = Preferred reporting items for systematic reviews and meta-

analyses (http://www.prismastatement.org/). 

Figure 2. Brain regions showing significant common activation during both fear extinction 

and cognitive reappraisal.  

Figure 3. Brain regions showing consistent activation during extinction in comparison with 

reappraisal. Results are displayed at p < 0.05 FDR corrected at the whole-brain level 

(cluster size ≥ 100 voxels). 

Figure 4. Brain regions showing consistent activation during reappraisal in comparison 

with extinction. Results are displayed at p < 0.05 FDR corrected at the whole-brain level 

(cluster size ≥ 100 voxels). 
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TABLES 

Table 1. Characteristics of the 31 extinction fMRI studies included in the meta-analysis. 

Authors 
N 

(female) 

Age, y, Mean 

(SD) 
CS 

Reinforcement 

rate during 

conditioning 

(%) 

Immediate extinction? 

  Number of 

CS+/CS- 

during 

conditioning 

  Number 

of CS+/CS- 

during 

extinction 

fMRI analysis 

Åhs et al., 2015*  43 (22) 28.7 (10.4) 
Dynamic images 

(VR) 
31 YES 16/16 16/16 Early, late 

Benson et al., 2014* 29 (14) 23.8 (2.6) Geometrical figures 75 YES 16/16 12/12 Early, late 

Diener et al., 2016* 13 (6) 42.46 (13.69) Geometrical figures 50 YES 18/18 18/18 Whole 

Ewald et al., 2014  13 (5) 23.1 (3) Lights (VR) 100 YES 16/16 8/8 Early, late 

Harrison et al., unpublished*  58 (39) 21.8 (NA) Geometrical figures 50 YES 32/ 32 16/16 Whole, early, late 

Hermann et al., 2012*  74 (37) 24.3 (4.14) Geometrical figures 100 YES 20/20 15/15 Whole 

Holt et al., 2012  17 (0) 34.2 (9.9) Photographs 60 YES 16/16 16/16 Early 

Icenhour et al., 2015* 23 (12) 33.7 (NA) Geometrical figures 75 YES 16/16 6/6 Early, late 

Klumpers et al., unpublished*  106 (0) 21.9 (NA) Geometrical figures 33 YES 18/18 18/18 Whole, early, late 

Krause-Utz et al., 2016  26 (26) 28.16 (8.26) Geometrical figures 50 YES 36/36 18/18 Whole 

Kuhn et al., unpublished* 37 (19) 25.13 (NA) Geometrical figures 100 YES 18/18 12/12 Whole 

Lindner et al., 2015*  15 (15) 22.53 (2.7) Geometrical figures 100 YES 8/8 4/4 Whole 

Linnman et al., 2012  18 (10) 25.7 (5) Photographs 62 YES 16/16 16/16 Early, late 

Lonsdorf et al., 2014* 59 (32) 24 (0.4) Angry faces 100 NO 15/15 24/24 Whole 

Lueken et al., 2014* 60 (41) 35.75 (10.27) Geometrical figures 50 YES 32/32 16/16 Whole, early, late 

Merz et al., 2012*  49 (29) 24.33 (NA) Geometrical figures 100 YES 20/20 11/11 Whole 

Merz et al., 2014*  16 (0) 24.88 (4.3) Geometrical figures 62 YES 16/16 16/16 Early, late 

Milad et al., 2007  14 (NA) NA (NA) Photographs 60 YES 16/16 16/16 Late 

Milad et al., 2013  16 (NA) 25.8 (NA) Photographs 62 YES 16/16 16/16 Early vs late 
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Molapour et al., 2015*  20 (10) 22.39 (3.82) Neutral faces 100 YES 9/9 12/12 Whole 

Morriss et al., 2015* 21 (11) 24.03 (2.75) Geometrical figures 100 YES 12/12 16/16 Whole 

Pejic et al., 2013*  49 (22) 23.49 (3.07) Neutral faces 100 YES 17/17 2x(13/13) Whole 

Phelps et al., 2004* 11 (6) NA (NA) Geometrical figures 33 YES 23/15 15/15 Whole 

Rabinak et al., 2014  14 (5) 25.43 (NA) Geometrical figures 35 YES 23-23/15 30/30 Early, late 

Reinhardt et al., 2010   20 (0) 28.8 (6.1) Geometrical figures 50 YES 32/16 16/16 Whole 

Ridder et al., 2012, sample 1  60 (22) 21.25 (3.02) Geometrical figures 50 YES 18/18 18/18 Whole 

Scharfenort et al., unpublished* 77 (41) 24.8 (NA) Geometrical figures 100 NO 14/14 14/14 Whole 

Sehlmeyer et al., 2011  32 (20) 23.6 (4.41) Neutral faces 25 YES 40/30 25/25 Whole 

Soriano-Mas et al., unpublished 18 (8) 35.6 (NA) Photographs 62 YES 16/16 16/16 Whole 

Spoormaker et al., unpublished* 48 (6) 24.9 (NA) Geometrical figures 50 COMBINED 30/15 15/15 Whole  

Wicking et al., 2016* 18 (7) 38.6 (12.21) Geometrical figures 100 NO 30/30 30/30 Early, late 

Abbreviations: SD, standard deviation; CS, conditioned stimulus; CS+CS, followed by unconditioned stimulus; CS−S, not followed by unconditioned stimulus; 

fMRI, functional magnetic resonance imaging; NA, Not available; VR, Virtual Reality.  

*Datasets for which statistical parametric maps were available. 
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Table 2. Characteristics of the 62 reappraisal fMRI studies included in the meta-analysis. 

Authors N (female) Age, y, Mean (SD) Cognitive reappraisal strategy Stimuli 

Albein-Urios et al., 2013* 21 (1) 31 (4.6) Reinterpretation and distancing Negative images (IAPS) 

Chen et al., 2017* 47 (47) 21 (1.4) Distancing Negative images (CAPS) 

Denny et al., 2015a 21 (11) 29 (6.71) Distancing Negative images (IAPS) 

Denny et al., 2015b 17 (12) 24.1 (5.16) Distancing Negative images (IAPS) 

Dillon and Pizzagalli, 2013* 24 (12) 34.42 (14.93) Distancing Negative images (IAPS) 

Domes et al., 2010 33 (17) 24.89 (1.75) Distancing Negative images (IAPS) 

Dörfel et al., 2014* 17 (17) 24 (3.22) Distancing Negative images (IAPS) 

Dörfel et al., 2014* 19 (19) 22.53 (2.86) Reinterpretation Negative images (IAPS) 

Eippert et al., 2007 24 (24) 23.3 (NA) Distancing Negative images (IAPS) 

Erk et al., 2010 17 (8) 43.9 (10.1) Distancing Negative images (IAPS) 

Gaebler et al., 2014* 23 (18) 30 (7.99) Distancing Negative images (IAPS) 

Gianaros et al., 2014* 157 (80) 42.7 (7.3) Reinterpretation Negative images (IAPS) 

Goldin et al., 2009 17 (9) 32.1 (9.3) Reinterpretation and distancing Harsh facial expressions  

Golkar et al., 2012 58 (32) 24.02 (2.26) Reinterpretation Negative images (IAPS) 

Gorka et al., 2016* 37 (19) 25.68 (5.29) Reinterpretation and distancing Negative images (IAPS) 

Harenski and Hamann, 2006 10 (10) 23.5 (1) Distancing Moral negative images (IAPS) 

Hayes et al., 2010 25 (11) 21.6 (2.5) Distancing Negative images (IAPS) 

Hermann et al., 2016* 27 (27) 21.59 (2.58) Reinterpretation Negative images (IAPS) 

Kanske et al., 2011* 30 (17) 21.8 (2.1) Reinterpretation and distancing Negative images (IAPS) 

Kanske et al., 2012* 25 (18) 43.88 (11.21) Reinterpretation and distancing Negative images (IAPS) 

Kanske et al., 2015, sample 1* 22 (12) 40.5 (11.8) Reinterpretation and distancing Negative images (IAPS) 

Kanske et al., 2015, sample 2* 17 (8) 35.94 (15.63) Reinterpretation and distancing Negative images (IAPS) 

Koenigsberg et al., 2010 16 (9) 31.8 (7.79) Distancing Social negative images (IAPS) 

Krendl et al., 2012 16 (10) 21.87 (3.11) Reinterpretation Negative images (IAPS) 

Leiberg et al., 2012 24 (24) 24.1 (NA) Distancing Negative images (IAPS) 

McRae et al., 2008 23 (11) 20.48 (NA) Reinterpretation and distancing Negative images (IAPS) 
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Modinos et al., 2010* 18 (7) 21.1 (2.8) Reinterpretation and distancing Negative images (IAPS) 

Morawetz et al., 2016a* 59 (20) 32.47 (11.25) Reinterpretation and distancing Negative images (IAPS) 

Morawetz et al., 2016b* 60 (30) 30.48 (11.1) Reinterpretation and distancing Angry faces (FACES database) 

Morris et al., 2012* 15 (9) 35 (2) Distancing Negative images (IAPS) 

New et al., 2009 14 (14) 31.7 (10.3) Reinterpretation Negative images (IAPS) 

Ochsner et al., 2002 15 (15) 21.9 (NA) Reinterpretation Negative images (IAPS) 

Ochsner et al., 2004 24 (24) 20.6 (NA) Reinterpretation and distancing Negative images (IAPS) 

Opitz et al., 2012, young sample* 16 (8) 19.25 (1.43) Reinterpretation Negative images (IAPS) 

Opitz et al., 2012, old sample* 15 (9) 59.87 (3.14) Reinterpretation Negative images (IAPS) 

Paschke et al., 2016* 108 (55) 26.12 (3.7) Distancing 
Emotional Picture Set (pictures 

with social content) 

Payer et al., 2012* 10 (6) 27.6 (8.09) Reinterpretation and distancing Negative images (IAPS) 

Qu and Telzer, 2017 29 (14) 19.2 (NA) Reinterpretation 
Scenes depicting individuals in an 

emotionally negative situation 

Rabinak et al., 2014 21 (21) 34.81 (9.54) Reinterpretation and distancing Negative images (IAPS) 

Radke et al., 2017* 22 (9) 32.6 (10.9) Reinterpretation Angry faces (FACES database) 

Reinecke et al., 2015* 18 (14) 32.3 (12.1) Reinterpretation Negative images (IAPS) 

Schardt et al., 2010* 37 (37) 22.6 (2.2) Distancing Negative images (IAPS) 

Schulze et al., 2011* 16 (16) 24.53 (3.84) Distancing Negative images (IAPS) 

Shermohammed et al., 2017* 25 (12) 20.89 (1.71) Reinterpretation and distancing Negative images (IAPS) 

Silvers et al., 2015 30 (13) 21.97 (NA) Reinterpretation Negative images (IAPS) 

Simsek et al., 2017 15 (15) 22.53 (1.8) Reinterpretation Negative images (IAPS) 

Sripada et al., 2014* 49 (23) 23.63 (1.3) Reinterpretation and distancing Negative images (IAPS) 

Stephanou et al., 2016* 78 (44) 19.91 (2.78) Reinterpretation and distancing Negative images (IAPS) 

Steward et al., 2016* 14 (8) 21.21 (1.42) Reinterpretation and distancing Negative images (IAPS) 

Uchida et al., 2015 62 (32) 22.3 (1.6) Reinterpretation Negative images (IAPS) 

Urry et al., 2006* 17 (9) 62.9 (0.4) Reinterpretation and distancing Negative images (IAPS) 

Urry et al., 2009* 26 (15) 64.8 (0.5) Reinterpretation Negative images (IAPS) 

Vanderhasselt et al., 2013 42 (42) 21.26 (2.29) Reinterpretation Negative images (IAPS) 
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Van der Velde et al., 2015a* 51 (23) 37.1 (10.3) Reinterpretation and distancing Negative images (IAPS) 

Van der Velde et al., 2015b* 16 (8) 22.1 (3.6) Reinterpretation and distancing Negative images (IAPS) 

Van Reekum et al., 2007* 29 (18) 63.66 (2.45) Reinterpretation and distancing Negative images (IAPS) 

Vrtička et al., 2011 19 (19) 24.82 (4) Distancing Negative images (IAPS) 

Wager et al., 2008* 30 (18) 22.3 (NA) Reinterpretation Negative images (IAPS) 

Walter et al., 2009 20 (20) 24 (3) Distancing Negative images (IAPS) 

Winecoff et al., 2011* 42 (NA) 44.96 (23.53) Distancing Negative images (IAPS) 

Zhang et al., 2013* 13 (12) 20.7 (1.21) Reinterpretation Negative images (IAPS) 

Ziv et al., 2013 27 (13) 32.6 (9.5) Reinterpretation Anger and contempt faces 

Abbreviations: SD, standard deviation; IAPS, International Affective Picture System; CAPS, Chinese Affective Picture System.  

*Datasets for which statistical parametric maps were available.  

In the study by Schardt et al. (2010), contrasts from both fear and disgust stimuli were combined. 
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Table 3. Results from extinction vs. reappraisal meta-analysis. 

Comparison Cluster Ke 
Egger 

test p 
Local peak 

MNI coordinates 

(x,y,z) 

SDM-

Z 
Voxel P I2 Original 

maps only 

Extinction > 

Reappraisala Left central 5788 0.848 Postcentral gyrus (↓Reapp) -56, -16, 22 4.987 0.000000119 18.69% No 

    
Rolandic operculum (↑Ext, 

↓Reapp) 
-42, -22, 22 4.927 0.000000119 6.20% No 

    
Supramarginal gyrus (↑Ext, 

↓Reapp) 
-50, -34, 26 4.512 0.000000417 1.53% No 

    Posterior insula (↑Ext, ↓Reapp) -36, -2, -10 4.116 0.000001431 0% Yes 

    Putamen (↑Ext, ↓Reapp) -26, -6, -8 4.070 0.000001729 0% No 

    Precentral gyrus (↓Reapp) -28, -20, 56 3.474 0.000032008 0% Yes 

    Midcingulate gyrus (↓Reapp) -16, -34, 44 3.256 0.000079274 0% Yes 

    Superior temporal gyrus (↓Reapp) -64, -14, 10 3.157 0.000120342 0% Yes 

 
Right temporo-

occipital 
1762 0.967 

Middle occipital gyrus (↑Ext, 

↓Reapp) 
26, -92, 10 3.718 0.000009835 29.11% Yes 

    Cuneus (↑Ext, ↓Reapp) 18, -94, 0 3.562 0.000023127 0% Yes 

    Inferior occipital gyrus (↓Reapp) 42, -76, -2 3.353 0.000052512 27.76% Yes 

    Superior occipital gyrus (↓Reapp) 22, -84, 16 3.050 0.000178754 0% Yes 

    Inferior temporal gyrus (↓Reapp) 44, -70, -6 3.015 0.000203669 12.81% Yes 

    
Middle temporal gyrus (↑Ext, 

↓Reapp) 
52, -58, 0 2.802 0.000462174 5.92% Yes 

 Right central 1591 0.159 
Rolandic operculum (↑Ext, 

↓Reapp) 
52, -16, 22 4.998 0.000000119 0% No 

    
Supramarginal gyrus (↑Ext, 

↓Reapp) 
66, -20, 26 4.618 0.000000179 0% Yes 

    Posterior insula (↑Ext, ↓Reapp) 38, 2, 14 3.559 0.000023127 0% Yes 

    Postcentral gyrus (↓Reapp) 66, -18, 34 3.092 0.000152349 0% No 

 
Left temporo-

occipital 
945 0.737 Middle occipital gyrus (↓Reapp) -26, -88, 2 3.317 0.000061214 37.78% No 

    Inferior occipital gyrus (↓Reapp) -40, -86, -12 2.867 0.000362396 0% Yes 

    Middle temporal gyrus (↓Reapp) -42, -58, 0 2.676 0.000729144 0% Yes 

    Cuneus (↓Reapp) -14, -100, -2 2.610 0.000915408 25.30% Yes 
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Right parieto-

occipital 
599 0.035 Precuneus (↓Reapp) 22, -62, 28 3.326 0.000059426 0% Yes 

    Postcentral gyrus (↓Reapp) 22, -44, 68 2.908 0.000307977 0% Yes 

    Supramarginal gyrus (↓Reapp) 34, -38, 44 2.808 0.000452518 0% Yes 

    Cuneus (↓Reapp) 18, -68, 34 2.556 0.001111507 0% No 

 Right striato-limbic 546 0.556 Hippocampus (↑Ext, ↓Reapp) 24, -8, -10 4.872 0.000000119 0% No 

    Putamen (↑Ext, ↓Reapp) 30, 4, -2 2.785 0.000490248 0% Yes 

    Pallidum (↑Ext, ↓Reapp) 16, 0, -6 2.583 0.001014411 0% Yes 

 Bilateral cerebellum 588 0.453 
Left hemispheric lobule VI (↑Ext, 

↓Reapp) 
-6, -70, -24 3.721 0.000009477 0% Yes 

    
Right hemispheric lobule IV/V 

(↑Ext, ↓Reapp) 
14, -52, -20 3.302 0.000065029 0% Yes 

    Vermic lobule X (↑Ext, ↓Reapp) 0, -48, -26 2.848 0.000387967 0% Yes 

    
Right hemispheric lobule VI 

(↓Reapp) 
8, -64, -18 2.758 0.000541031 0% Yes 

    Vermic lobule VI (↓Reapp) 6, -62, -24 2.736 0.000588238 0% Yes 

 
Bilateral 

paracingulate/SMA 
479 0.843 Left (↑Ext, ↓Reapp) -8, -4, 44 4.614 0.000000179 0% Yes 

    Right (↓Reapp) 8, -4, 46 3.496 0.000029325 0% Yes 

 Right subcortical 189 0.258 Pons (↑Ext, ↓Reapp) 12, -22, -2 3.474 0.000032008 0% No 

    Thalamus (↑Ext, ↓Reapp) 14, -20, 10 2.790 0.000483274 0% No 

 Left subcortical 144 0.644 Thalamus (↑Ext, ↓Reapp) -12, -22, 6 3.590 0.000020564 0% No 

    Pons (↑Ext, ↓Reapp) -12, -22, -4 3.328 0.000059247 0% No 

 Left lateral occipital 117 0.555 
Left superior occipital gyrus 

(↓Reapp) 
-22, -64, 24 3.233 0.000085354 0% Yes 

Reappraisal > 

Extinctionb 

Bilateral fronto-

temporo-parietal 
18518 0.451 

Right superior frontal gyrus 

(dmPFC) (↑Reapp) 
16, 50, 34 5.004 ~0 19.96% No 

    
Left middle frontal gyrus (dlPFC) 

(↑Reapp, ↓Ext) 
-36, 16, 32 5.004 ~0 0% Yes 

    
Left middle frontal gyrus (vlPFC) 

(↑Reapp, ↓Ext) 
-42, 44, -8 5.004 ~0 32.70% Yes 

    
Left supplementary motor area 

(↑Reapp) 
-6, 18, 52 5.004 ~0 58.37% Yes 

    
Left middle temporal gyrus 

(↑Reapp) 
-60, -44, 0 5.003 ~0 38.54% Yes 
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    Left angular gyrus (↑Reapp, ↓Ext) -38, -70, 38 5.000 ~0 35.91% Yes 

    
Left superior frontal gyrus 

(dmPFC) (↑Reapp) 
-14, 28, 56 5.000 ~0 9.86% Yes 

    
Left supramarginal gyrus (↑Reapp, 

↓Ext) 
-62, -54, 22 4.990 ~0 20.37% Yes 

    
Right middle frontal gyrus (dlPFC) 

(↑Reapp, ↓Ext) 
34, 18, 54 4.981 ~0 2.73% Yes 

    Left precentral gyrus (↑Reapp) -46, 10, 46 4.911 0.000000119 39.11% No 

    
Right supplementary motor area 

(↑Reapp) 
4, 14, 66 4.331 0.000005782 18.70% Yes 

    
Left superior temporal 

gyrus/temporal pole (↑Reapp) 
-46, 14, -24 4.265 0.000007033 0% Yes 

    
Left inferior temporal gyrus 

(↑Reapp, ↓Ext) 
-54, -8, -28 3.439 0.000246406 0% Yes 

 Right angular 1767 0.090 Angular gyrus (↑Reapp) 60, -58, 24 4.997 ~0 28.74% No 

    Middle temporal gyrus (↑Reapp) 56, -62, 22 4.987 ~0 36.88% Yes 

    Superior temporal gyrus (↑Reapp) 56, -56, 22 4.986 ~0 39.80% Yes 

 Right vlPFC 1029 0.184 Inferior frontal gyrus (↑Reapp) 48, 48, -6 5.003 ~0 6.37% Yes 

    
Middle frontal gyrus (↑Reapp, 

↓Ext) 
38, 42, -10 5.003 ~0 11.55% Yes 

 Right temporal 1017 0.847 Middle temporal gyrus (↑Reapp) 64, -24, -16 4.786 0.000000536 8.19% Yes 

    
Inferior temporal gyrus (↑Reapp, 

↓Ext) 
58, -18, -24 3.872 0.000039816 6.00% Yes 

 Bilateral precuneus 872 0.333 Left precuneus (↑Reapp) -4, -62, 42 4.024 0.000019312 0% Yes 

    
Left median 

cingulate/paracingulate (↑Reapp) 
-10, -44, 36 3.735 0.000075161 0% Yes 

    Left posterior cingulate (↑Reapp) -2, -48, 22 3.378 0.000312924 12.14% Yes 

    Right precuneus (↑Reapp) 6, -58, 38 3.088 0.000906229 20.05% Yes 

 Right cerebellum  135 0.113 Cerebellum, crus I (↑Reapp) 40, -70, -36 3.444 0.000241756 0% Yes 

Abbreviations: Ke, cluster extent; MNI, Montreal Neurological Institute; SDM, Signed Differential Mapping; P, p-value; I2, percentage of variance attributable 

to study heterogeneity. 

a. Regions of difference stemming from a larger activation in Extinction are indicated by ↑Ext, while regions stemming from a larger deactivation in Reappraisal 

are indicated by ↓Reapp. 

b. Regions of difference stemming from a larger activation in Reappraisal are indicated by ↑Reapp, while regions stemming from a larger deactivation in 

Extinction are indicated by ↓Ext. 
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Table 4. Results from extinction vs. reappraisal strategies meta-analysis. 

Comparison Cluster Ke 
Egger 

test p 
Local peak 

MNI coordinates 

(x,y,z) 
SDM-Z Voxel P I2 

Extinction > 

Reinterpretation 
-        

Reinterpretation 

> Extinctiona Left PFC 1477 0.226 SFG (dmPFC) (↑Reint) -16, 26, 50 5.003 ~0 0% 

    IFG (vlPFC) (↑Reint, ↓Ext) -42, 40, -16 4.897 0.000010192 2.66% 

    MFG (dlPFC) (↑Reint, ↓Ext) -48, 24, 38 4.859 0.000011981 0.41% 

    Precentral gyrus (↑Reint) -48, 8, 40 3.855 0.000493884 4% 

 Left parieto-temporal 928 0.300 Angular gyrus (↑Reint, ↓Ext) -52, -68, 36 5.000 0.000005960 18.37% 

    MTG (↑Reint) -54, -68, 22 4.988 0.000006199 0% 

    Supramarginal gyrus (↑Reint, ↓Ext) -64, -54, 22 4.756 0.000018477 0% 

 Right vlPFC 219 0.124 IFG (↑Reint, ↓Ext) 44, 44, -14 4.995 0.000006080 6.70% 

 Left MTG 215 0.191 MTG (↑Reint) -46, -30, -6 5.001 ~0 4.98% 

Extinction > 

Distancingb 

Right temporo-occipito-

cerebellar 
3104 0.790 ITG (↓Dist) 48, -64, -8 5.001 ~0 1.88% 

    IOG (↓Dist) 42, -70, -12 5.001 ~0 0% 

    MOG (↑Ext, ↓Dist) 28, -94, 14 4.978 0.000004411 0% 

    Fusiform gyrus (↓Dist) 36, -76, -12 4.966 0.000004649 0% 

    Cerebellum, hemispheric lobule VI (↓Dist) 18, -56, -20 4.957 0.000004828 10.41% 

    
Cerebellum, hemispheric lobule IV/V 

(↓Dist) 
14, -54, -20 4.860 0.000008345 0% 

    Cerebellum, vermic lobule VII (↓Dist) -2, -72, -24 4.776 0.000010729 0% 

    Cuneus (↓Dist) 20, -92, 14 4.466 0.000037670 1.62% 

    Lingual gyrus (↓Dist) 14, -88, -10 4.455 0.000039041 23.96% 

    Cerebellum, vermic lobule VI (↓Dist) 4, -78, -14 4.239 0.000094414 0% 

    Cerebellum, vermic lobule IX (↑Ext) 4, -56, -32 3.920 0.000290632 0% 

    SOG (↓Dist) 24, -100, 8 3.670 0.000661194 0% 

 Left occipito-cerebellar 1204 0.790 IOG (↓Dist) -36, -76, -4 4.991 0.000004053 10.32% 
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    MOG (↓Dist) -38, -90, 2 4.879 0.000007927 0% 

    Cuneus (↓Dist) -18, -90, 4 4.622 0.000021756 5.08% 

    Cerebellum, hemispheric lobule VI (↓Dist) -28, -58, -22 4.007 0.000215530 0% 

 
Bilateral pons + left 

subcortical 
1148 0.544 Right pons (↑Ext, ↓Dist) 12, -24, -6 4.928 0.000006318 0% 

    Left pons (↑Ext, ↓Dist) -16, -24, -10 4.801 0.000009835 0% 

    Left hippocampus (↓Dist) -24, -14, -12 4.601 0.000023305 0% 

    Left thalamus (↑Ext, ↓Dist) -12, -18, 6 3.968 0.000245452 0% 

    Left amygdala (↓Dist) -30, 0, -18 3.934 0.000274777 0% 

    Left insula (↑Ext) -36, -2, -10 3.919 0.000291407 0% 

 Right subcortical 162 0.544 Amygdala (↓Dist) 24, -4, -12 4.843 0.000008464 0% 

    Globus pallidus (↑Ext) 16, 0, -10 4.002 0.000218689 0% 

 Left postcentral gyrus 124 0.670 Postcentral gyrus (↓Dist) -46, -22, 24 4.268 0.000085652 0% 

Distancing > 

Extinctionc Bilateral PFC 3390 0.723 Right MFG (dlPFC) (↑Dist, ↓Ext) 30, 20, 44 4.996 0.000005364 0% 

    Right SFG (dmPFC) (↑Dist) 20, 8, 56 4.936 0.000006735 0.29% 

    Left SMA (↑Dist) -4, 14, 56 4.472 0.000047386 64.67% 

    Left MFG (dlPFC) (↑Dist, ↓Ext) -30, 26, 40 4.378 0.000068963 0% 

    Right SMA (↑Dist) 6, 12, 66 3.844 0.000428557 13.73% 

    Left SFG (dmPFC) (↑Dist, ↓Ext) -2, 28, 58 3.267 0.002287567 43.34% 

 Right parieto-temporal 1807 0.155 Angular gyrus (↑Dist) 50, -58, 32 4.997 0.000005364 56.69% 

    MTG (↑Dist) 58, -58, 20 4.995 0.000005364 20.30% 

    STG (↑Dist) 62, -54, 20 4.989 0.000005484 14.51% 

    Supramarginal gyrus (↑Dist) 64, -38, 42 4.551 0.000034571 0% 

 Left parietal 1638 0.338 Supramarginal gyrus (↑Dist, ↓Ext) -60, -54, 24 5.002 ~0 18.40% 

    Angular gyrus (↑Dist, ↓Ext) -58, -56, 32 4.999 0.000005364 34.81% 

 Right PFC 1359 0.723 IFG (vlPFC) (↑Dist, ↓Ext) 46, 40, -10 5.000 0.000005364 38.78% 

    MFG (↑Dist) 36, 54, -2 4.579 0.000030994 1.39% 

    SFG (dmPFC) (↑Dist) 20, 60, 12 4.113 0.000173807 0% 

ACCEPTED M
ANUSCRIP

T



58 
 

 Left MTG 580 0.338 MTG (↑Dist) -64, -46, 2 4.814 0.000012100 20.92% 

 Left vlPFC 500 0.055 IFG (↑Dist, ↓Ext) -50, 34, 0 4.721 0.000018060 17.87% 

Abbreviations: Ke, cluster extent; MNI, Montreal Neurological Institute; SDM, Signed Differential Mapping; P, p-value; I2, percentage of variance attributable 

to study heterogeneity. 

a. Regions of difference stemming from a larger activation in Reinterpretation are indicated by ↑Reint, while regions stemming from a larger deactivation in 

Extinction are indicated by ↓Ext. 

b. Regions of difference stemming from a larger activation in Extinction are indicated by ↑Ext, while regions stemming from a larger deactivation in Distancing 

are indicated by ↓Dist. 

c. Regions of difference stemming from a larger activation in Distancing are indicated by ↑Dist, while regions stemming from a larger deactivation in Extinction 

are indicated by ↓Ext. 
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