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SUMMARY
Neurobiological research in rodents has revealed that competing experiences of fear and extinction are
stored as distinct memory traces in the brain. This divided organization is adaptive for mitigating overgener-
alization of fear to related stimuli that are learned to be safe while also maintaining threat associations for un-
safe stimuli. The mechanisms involved in organizing these competing memories in the human brain remain
unclear. Here, we used a hybrid form of Pavlovian conditioning with an episodic memory component to iden-
tify overlapping multivariate patterns of fMRI activity associated with the formation and retrieval of fear
versus extinction. In healthy adults, distinct regions of the medial prefrontal cortex (PFC) and hippocampus
showed selective reactivation of fear versus extinction memories based on the temporal context in which
these memories were encoded. This dissociation was absent in participants with posttraumatic stress disor-
der (PTSD) symptoms. The divided neural organization of fear and extinction may support flexible retrieval of
context-appropriate emotional memories, while their disorganization may promote overgeneralization and
increased fear relapse in affective disorders.
INTRODUCTION

Maintaining separate and competing memories of threat and

safety is key to adaptive behavior. The inability to maintain mem-

ories of safety to overcome threat associations characterizes

affective disorders, such as posttraumatic stress disorder

(PTSD).1,2 Neurobiological research using Pavlovian condition-

ing shows neural ensembles within and between dissociable re-

gions organize the encoding, storage, and retrieval of fear

(threat) and extinction (safety) memory.3–6 This research con-

firms early theories—dating back to the time of Pavlov—that

extinction is an active learning process that generates a second-

ary memory of safety for a particular stimulus that is stored in

parallel to the memory of fear for that stimulus. In the rodent

brain, these memory traces are separated into discrete neural

ensembles with distinct pathways between regions of the medial

temporal lobe (MTL) and subdivisions of the medial prefrontal

cortex (mPFC).7–11 A similar neural organization has been identi-

fied in humans using functional magnetic resonance imaging

(fMRI),12–15 although the mechanisms by which fear and extinc-

tion memories are segregated into separate regions in the hu-

man brain remain unclear. Here, we use multivariate pattern

analysis (MVPA) of fMRI data to isolate spatially distributed pat-

terns of overlapping activity unique to the encoding and retrieval

of fear versus extinction memories. We compare these neural
signatures between healthy adults and individuals with PTSD

symptoms, for which the ability to organize separable fear and

extinction memories is presumably dysregulated.16–18

Identifying quantifiable memory traces in the brain can be

challenging; memories are widely distributed within and across

discrete brain regions, memories change over time, and not all

experiences induce a persistent neural change. Fear condition-

ing is an ideal model to investigate the neural representations

of memory, as it rapidly induces stable and persistent associa-

tive memory with objective behavioral correlates. One of the

most important discoveries in the neuroscience of associative

learning was the localization of neural circuits selective for the

formation and retrieval of fear versus extinction. In the MTL,

sparse coding allows for fear and extinction to exist simulta-

neously in the same structures,19,20 with a more stark division

in the mPFC. The prelimbic cortex (PL), homologous to the hu-

man dorsal anterior cingulate cortex (dACC), is activated during

learning and retrieval of fear associations,21–23 whereas the infra-

limbic cortex (IL), homologous to the human ventromedial PFC

(vmPFC), is a critical site of extinction memory formation and

retrieval.24–26 These areas interact dynamically with the amyg-

dala and hippocampus (HC) to either express or suppress

conditioned fear.10,27

Human neuroimaging has successfully translated evidence

from rodents that the dACC is among the most consistently
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active regions during fear conditioning.13,28 However, it is far less

clear in humans whether this region is also the site of long-term

storage and retrieval of acquired fear memories. Moreover, neu-

roimaging evidence of vmPFC involvement in extinction is sur-

prisingly scant. While some studies have been able to show a

role for the vmPFC,12,14,29,30 a robust meta-analysis has re-

vealed that the vmPFC is not among a collection of regions

that are consistently active during extinction learning.31 This

inconsistency between animal neurophysiology and human neu-

roimaging has been a puzzle and limits the translational utility of

advances in extinction research in rodents.

Amajor hurdle to translating animal neurophysiology to human

neuroimaging is a methodology to ‘‘label’’ brain activity uniquely

associated with memories of either fear or extinction. In rodents,

state-of-the-art advances in activity-dependent labeling sepa-

rate these memory traces by measuring the overlap in activity

during acquisition and retrieval in collections of neurons, termed

engrams.19,32 An analogous analytic approach in human neuro-

imaging involves correlating overlapping multivariate patterns of

activity during memory encoding and retrieval. The match be-

tween activity patterns in distributed voxels during encoding

and retrieval provides an index of memory fidelity, albeit not at

the cellular level. This neuroimaging technique has been widely

applied to the study of human episodic memory.33–37 Whether

this technique can be leveraged to isolate associative memory

traces of fear and extinction in the human brain, based on mem-

ory encoding context, has not been tested.

We use a 2-day hybrid conditioning and episodic memory

design that incorporates trial-unique (i.e., non-repeating) se-

mantic exemplars as conditioned stimuli (CS) during fear

conditioning and extinction on day 1.38 On day 2, participants

undergo a surprise memory test for the unique CS exemplars

encoded during conditioning and extinction. This hybrid design

overcomes inherent obstacles to typical conditioning protocols.

That is, typically the same CS (e.g., a colored shape) is

repeated across all experimental phases. Consequently, it is

only possible to measure retrieval of either the putative fear

or extinction memory at test, but not both. In our hybrid design,

we simultaneously isolate specific episodes associated with

fear and extinction (comparable to activity-dependent labeling

in murine studies) and quantify the overlap in patterns of activ-

ity for each CS as a function of the temporal context in which

the CS was encoded. In this way, we quantify whether and

how these competing memories distinctly organize into sepa-

rable patterns of activity in each participant and in a single

experiment. This design innovation allows us to leverage tech-

nical advances in multivariate analyses of neuroimaging data

for human episodic memory within the conceptual framework

of functional labeling from rodent neurophysiology.

We hypothesized that the healthy adult brain organizes and

maintains separable mnemonic representations of fear and

extinction, and we sought to distinguish these memories based

on the temporal context in which the memory was originally

formed. We hypothesized that fear memories would be repre-

sented similarly in healthy adults and individuals with posttrau-

matic stress symptoms (PTSSs). However, based on extensive

evidence of maladaptive processing and return of fear in

PTSD,39–41 we hypothesized that neural organization of extinc-

tion memories would differ between groups.
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RESULTS

Figure 1 provides an overview of analytic approach. Participants

encoded trial-unique pictures of animals and tools before, dur-

ing, and after fear conditioning. One semantic category (animals

or tools, counterbalanced) served as CS+ and co-terminated

with an electrical shock during fear conditioning (50% reinforce-

ment), while the other category never paired with shock (CS�).

Extinction learning immediately followed conditioning, during

which no shocks were delivered. Participants returned 24 h later

for a surprise recognition memory test composed of all the CSs

plus novel lures.

Behavioral results
Explicit and implicit measures of learning

As we previously reported,42 the success of fear conditioning

and extinction learning was assessed by skin conductance re-

sponses (SCRs) and trial-by-trial shock expectancy (yes or no

2-alternative forced choice [AFC]). Analyses focused on differen-

tial responding (i.e., CS+ > CS� differences; Figure 2A; see Fig-

ure S1 for full behavioral results). During conditioning, groups ex-

hibited significant CS+ > CS� responses for both SCR (healthy:

t(23) = 4.22, p = 3.25e�4; PTSS: t(23) = 3.17, p = 4.31e�3) and

shock expectancy (healthy: t(23) = 14.3, p = 6.16e�13; PTSS:

t(23) = 7.62, p = 9.89e�8). The success of extinction learning

was assessed by comparing differential responses from condi-

tioning to the second half of extinction (‘‘late extinction’’).

Both groups displayed significant reductions in differential

SCR (healthy: t(21) = �2.6, p = 0.017; PTSS: t(21) = �2.86,

p = 9.34e�3) and shock expectancy (healthy: t(23) = �4.33,

p = 2.46e�4; PTSS: t(23) = �3.66, p = 1.29e�3). Importantly,

there were no significant differences in behavioral responses

between groups during either conditioning (SCR: t(46) = 0.63,

p = 0.53; expectancy: t(46) = 1.23, p = 0.22) or late extinction

(SCR: t(42) = 0.49, p = 0.63; expectancy: t(46) = 0.69, p = 0.50).

Together, these results demonstrate successful and equivalent

fear conditioning and within-session extinction in both groups.

Recognition memory

Overall, performance on the recognition memory test replicated

previous behavioral findings,43–45 in that memory was better for

CS+ items compared to CS� from all phases and overall higher

for conditioning compared to other phases. Here, we report an

analysis of high-confidence hit rates to test for differences in

episodic memory between groups. A mixed-effects ANOVA of

high-confidence hit rates revealed no significant main effect of

group (F1, 46 = 1.37; p = 0.25), no significant two-way interactions

between group and either CS type or encoding context, and no

significant three-way interaction (all p R 0.44). These results

indicate that explicit recognition memory for the CS items was

not different between groups.

Emotional memory reinstatement in the mPFC
The analyses here focus on the overlap of multi-voxel fMRI activ-

ity patterns of items from encoding to retrieval (i.e., encoding-

retrieval similarity), irrespective of memory performance. The

voxelwise patterns of activity elicited by each CS item during

the recognition memory test were correlated with the patterns

of activity elicited by those same CS items when they were

initially encoded during either the pre-conditioning, fear



Figure 1. Divided organization of fear and extinction memories in the human brain

(A) Schematic overview. People maintain competing representations of threat and safety for closely related stimuli and often retrieve the appropriate association

given the context. Disorganization between competing memories leads to maladaptive responses in harmless situations.

(B) Simplified circuits diagrams of fear and extinction memory retrieval, highlighting the interactions between the MTL and mPFC. Parentheses indicate human

homologs of rodent neural structures.

(C) Associative learning (day 1). Semantic categories served as the CS+ and CS�; each trial was a unique, non-repeating, category exemplar.

(D) Encoding-retrieval similarity analysis. 24 h after learning, participants completed a surprise recognition memory test during fMRI. Neural reinstatement was

measured by correlating encoding and retrieval patterns in a given ROI.

aHC, anterior hippocampus; BLA, basolateral amygdala; CeM, central nucleus of the amygdala; ITC, intercalated cells; vHC, ventral hippocampus.

ll

Please cite this article in press as: Hennings et al., Neural reinstatement reveals divided organization of fear and extinction memories in the human
brain, Current Biology (2021), https://doi.org/10.1016/j.cub.2021.11.004

Article
conditioning, or extinction phase. To control for item-level rein-

statement effects, these correlations were Fisher Z transformed

and then the average correlation of CS� trials was subtracted

from the average correlation of the CS+ trials from the same en-

coding context. This analysis focused on distinct mPFC subre-

gions motivated by rodent work:22,24 the dACC and vmPFC,

which were defined a priori.

In healthy adults, the dACC exhibited greater reinstatement for

CS+ items (compared to CS� items) that were encoded during

fear conditioning (Figure 2B, top; difference = 0.22; 95% confi-

dence interval [CI] = [0.16, 0.28]; pFDR = 4.62e�12). This finding

accords with rodent models that show the PL is involved in both

the learning and retrieval of long-term fear memories. Reinstate-

ment in the dACC was stronger for fear memories (CS+ � CS�
from conditioning) than for extinction memories (CS+ � CS�
from extinction; 0.21; [0.12, 0.29]; pFDR = 6.26e�6). Moreover,

this region did not show any preferential CS+ reinstatement of

extinction memories (0.014; [�0.046, 0.075]; pFDR = 0.64) or pre-

conditioning memories (0.006; [�0.054, 0.066]; pFDR = 0.84). In

sum, the dACC appears highly specialized for the reinstatement

of fear memories in the healthy adult brain. In the vmPFC, there

was reinstatement of both fear memories (0.074; [0.013, 0.134];

pFDR = 0.033) and extinction memories (0.113; [0.053, 0.173];

pFDR = 9.20e�4). There was no preferential CS+ reinstatement

of pre-conditioning memories (�0.020; [�0.081, 0.040]; pFDR =

0.50). Notably, there was a significant double dissociation in the

selective reinstatement of fear and extinction memories between

these two regions (significant CS type 3 encoding context 3 re-

gionof interest [ROI] interaction;X2
(1) = 16.2; p = 5.71e�5). Specif-

ically, there was stronger reinstatement of fear memories in the
Current Biology 32, 1–11, January 24, 2022 3



Figure 2. Dissociable reinstatement of

emotional memories

Error bars indicate the 95% CI of the CS+ � CS�
difference. ***p < 0.001; **p < 0.01; *p < 0.05; false

discovery rate (FDR) corrected.

(A) Behavior. SCR and shock expectancy from

conditioning and extinction (split by half) on day 1

are replicated from Hennings et al.42 24 h delayed

recognition memory hit rates are also shown. Criti-

cally, no group behavioral differences were

observed for day 1 associative learning or 24 h

recognition memory.

(B) Reinstatement in a priori ROIs. Top: healthy

adults exhibited a significant double dissociation of

emotional memory reinstatement in the mPFC.

Bottom: in PTSS, the dACC displayed significant

emotional memory reinstatement for both condi-

tioning and extinction, revealing a misallocation of

extinction memories.

(C) Whole-brain analysis. A whole-brain searchlight

calculated reinstatement around each voxel. Medial

and lateral views of the inflated left hemisphere are

shown; results were qualitatively similar across

hemispheres. Heatmaps show average emotional

reinstatement for conditioning (red) and extinction

(blue), threshold at p < 0.001 one-sided for CS+ >

CS� with a clusterwise threshold of p < 0.05. The

centers of a priori ROIs are marked on the cortical

surface for the dACC (black) and vmPFC (white).
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dACC relative to the vmPFC (0.149; [0.064, 0.234]; pFDR = 0.002)

and stronger reinstatement of extinction memories in the vmPFC

relative to the dACC (0.099; [0.014, 0.184]; pFDR = 0.031). Alto-

gether, in healthy adults, discrete regions of the mPFC exhibited

a double dissociation in the reinstatement of fear and extinction,

as identified by the temporal context in which the memories

were formed (see Figure S2 for a complementary analysis high-

lighting the importance of temporal context).

As with healthy adults, individuals with PTSS also exhibited

greater reinstatement in the dACC for CS+ items encoded during

conditioning (Figure 2B, bottom; 0.171; [0.111, 0.231]; pFDR =

1.53e�7), and reinstatement of fear memories was stronger in

the dACC relative to the vmPFC (0.121; [0.036, 0.206]; pFDR =

0.011). There was also a lack of preferential CS+ reinstatement

in the dACC for pre-conditioning memories (0.032; [�0.028,

0.092]; pFDR = 0.30). This pattern of fear memory reinstatement

is consistent with results in healthy adults and suggests

that individuals with PTSS do not exhibit a fear learning deficit.

Unlike the healthy adult group, however, the PTSS group showed
4 Current Biology 32, 1–11, January 24, 2022
reinstatement for CS+ items encoded

during extinction in the dACC (0.103;

[0.043, 0.164]; pFDR = 0.002). These results

suggest that individuals with PTSS misallo-

cated extinction memories, as information

encoded in the extinction context was rein-

stated in the same region involved in the for-

mation and retrieval of fear memories. In the

vmPFC, surprisingly, there was greater rein-

statement of CS� items (relative to CS+

items) encoded prior to fear conditioning

(�0.079; [�0.139, �0.019]; pFDR = 0.024).
In contrast to the healthy adult group, there was no evidence of

greater reinstatement for CS+ items encoded during either condi-

tioning (0.050; [�0.010, 0.110]; pFDR = 0.10) or extinction (0.041;

[�0.020, 0.101]; pFDR = 0.19) in the vmPFC. The significant double

dissociation of fear and extinction memory reinstatement we

observed in the healthy adults was not present in the PTSS group

(no significant CS type 3 encoding context 3 ROI interaction;

X2
(1) = 0.88; p = 0.35). Thus, while individuals with PTSS exhibit

normal reinstatement of fear memories in the dACC, this group

did not exhibit any reinstatement of extinction memories in the

vmPFC. Instead, reinstatement was observed in the dACC,which

suggests a misallocation of extinction memories to a brain region

that preferentially codes for fear.

These results show that healthy adults and individuals with

PTSS display markedly different patterns of emotional memory

reinstatement across the mPFC, particularly for extinction mem-

ories. Using linear contrasts, we directly tested whether the

observed pattern significantly differed between groups by

comparing restatement in vmPFC versus dACC for each phase.
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The groups did not differ in their expression of fear memory rein-

statement across the mPFC (0.028; [�0.092, 0.148]; pFDR =

0.65); however, as expected, there was a significant difference

between healthy adults and individuals with PTSS in extinction

memory reinstatement across the mPFC (0.161; [0.041, 0.282];

pFDR = 0.017).

Emotional memory reinstatement outside a priori

cortical ROIs
Compared to similar work in rodents, a comparative advantage

of fMRI is the ability to observe the entire brain. To complement

the results from the a priori ROIs, we conducted an exploratory

whole-brain searchlight for emotional memory reinstatement

(Figure 2C). In healthy adults, this analysis revealed additional

brain regions that exhibit reinstatement of fear or extinction

memories (see Table S1 for full list of cluster locations). In addi-

tion to the dACC, fear memories were reinstated in the anterior

insula, a region consistently implicated in human fear memory.28

For the reinstatement of extinction memories, the largest cluster

was found in vmPFC. Other cortical regions, including themedial

frontal gyrus and precuneus, exhibited reinstatement for both

fear and extinction memories. Individuals with PTSS were like

healthy adults—with reinstatement of fear memories in large

clusters corresponding to the dACC, bilateral insula, and other

cortical regions. For extinction memories, we observed signifi-

cant clusters in the cuneus, as well as in bilateral insula. See

Figure S3 for post hoc ROI analyses of emotional memory in

the anterior insula and precuneus.

Emotional memory reinstatement in the medial
temporal lobe
The amygdala andHC are core components of the neurocircuitry

involved in the acquisition and retrieval of both fear and extinc-

tion memories. The HC in particular exerts contextual control

over memory retrieval.17 Emerging neurobiological models in ro-

dents indicate that different subfields along the long axis of the

HC serve discrete functions in the course of conditioning and

extinction.27,46–50 Human neuroimaging also shows functional

specializations for these subfields in memory and affective pro-

cesses.48,51,52 Using subject-specific anatomical segmenta-

tions, we probed emotional memory reinstatement along the

long axis of the HC in three bilateral subfields: head (anterior

HC [aHC]); body; and tail (posterior HC [pHC]). The amygdala

was similarly segmented into two bilateral ROIs known to have

functional specialization in conditioning and extinction pro-

cesses: the basolateral amygdala (BLA) and the central nucleus

of the amygdala (CeM).53

Hippocampus

No preferential reinstatement was observed for CS+ items from

anyencodingcontext inanyhippocampalsubfield ineither healthy

adults or individuals with PTSS (all pFDR R 0.45). However, a

linear-mixed effects model revealed a significant three-way inter-

action: encoding context 3 subfield 3 group (X2
(4) = 12.8; p =

0.012). The significance of this term suggests subfields of the

HC may be sensitive to encoding context in general, but not CS

type. As such, we probed reinstatement by encoding context,

collapsing across CS+ and CS�. In both groups, the pHC rein-

stated CS items from the fear conditioning context. In healthy

adults, reinstatement of fear memories was stronger than
reinstatement of extinction memories (4.36e�2; [1.40e�2,

7.32e�2]; pFDR=0.019),whereas inadultswithPTSS, itwasstron-

ger than both extinctionmemories (4.33e�2; [1.36e�2, 7.29e�2];

pFDR=0.019) andpre-conditioningmemories (4.41e�2; [1.45e�2,

7.37e�2]; pFDR = 0.019). The body of the HC did not show rein-

statement specific to any encoding context (all phase compari-

sons pFDR R 0.11). In contrast to the pHC, the aHC preferentially

reinstated CS items from extinction more than items from condi-

tioning (0.065; [0.035, 0.094]; pFDR = 3.36e�4), although this was

only observed in healthy adults. These results suggest a gradient

of functional specialization along the long axis of the HC.

We directly tested the dissociation between the aHC and pHC

subfields and found a significant double dissociation in healthy

adults (significant encoding context 3 subfield interaction;

X2
(1) = 23.04; p = 1.59e�6). Specifically, the pHC exhibited

more fear memory reinstatement than the aHC (0.033; [0.003,

0.063]; pFDR = 0.038), and the aHC exhibited more extinction

memory reinstatement than the pHC (0.075; [0.046, 0.105];

pFDR = 2.51e�6; Figure 3). This double dissociation was not

observed in the PTSS group (no significant encoding

context 3 subfield interaction; X2
(1) = 1.80; p = 0.19). In this

group, fear memories were biased toward the pHC (0.034;

[0.004, 0.063]; pFDR = 0.038), but there was no preference be-

tween the aHC and pHC for extinction memories (�0.004;

[�0.034, 0.026]; pFDR = 0.80). The lack of extinction reinstate-

ment in the aHC further supports the idea that the neural organi-

zation of safety memories is dysregulated in PTSS.

As in the mPFC, we directly tested whether the pattern of

emotional memory reinstatement observed along the long axis

of the HC differed between groups; that is, we compared the

reinstatement in aHC versus pHC for each phase between

groups. As in themPFC, the groups did not differ in their patterns

of fear memory reinstatement (�5.84e�4; [�0.043, 0.041];

pFDR = 0.98); however, there was a significant difference be-

tween groups in the reinstatement of extinction memories along

the long axis of the HC (0.079; [0.037, 0.121]; pFDR = 4.37e�4).

Amygdala

We also probed the subfields of the amygdala for preferential

reinstatement of CS+ items. However, none was observed

for any encoding context in any subfield, in either group (all

pFDR R 0.64). In addition, we did not observe any significant

main effects or interactions in a linear mixed-effects model and

thus did not perform other follow-up tests.

MTL activity at retrieval predicts dissociable
reinstatement in the mPFC
Univariate activity

Our a priori analysis in the mPFC showed that healthy adults ex-

hibited a double dissociation of emotional memory reinstate-

ment. What determines in which area of the mPFC a particular

item is reinstated? The HC and amygdala both contain discrete

but spatially intermixed populations of neurons that code for

fear and extinction.10,32,54 Shifts in activity between these popu-

lations balance the behavioral expression of emotional mem-

ories, in part through their differing long-range connections

with the mPFC.10,23,27 Regions that exhibit bidirectional control

over the expression of emotional memories could be crucial for

proper regulation of fear and extinction in humans. Thus, on a

trial-by-trial basis, we assessed whether neural activity in the
Current Biology 32, 1–11, January 24, 2022 5



Figure 3. Reinstatement of emotional memories along the long axis

of the hippocampus

Reinstatement was collapsed across CS+ and CS� by encoding context in

hippocampal subfields. Error bars indicate 95%CI of marginal means. Phase-

specific reinstatement was observed in the pHC and aHC, but not the body of

the hippocampus (data not shown). ***p < 0.001; *p < 0.05 FDR corrected. Top:

healthy adults exhibited a double dissociation of reinstatement. Bottom: in

adults with PTSS, the pHC subfield exhibited more conditioning reinstatement

than the aHC.
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subfields of the HC and amygdala predicted the location of rein-

statement between our two mPFC regions (vmPFC and dACC).

We restricted our analysis to CS items from conditioning and

extinction as our time points of interest.

We found that all subfields were significant predictors of rein-

statement location, such that increases in MTL activity at the

time of memory retrieval predicted more reinstatement in

the dACC (pHC: X2
(1) = 54.7, p = 1.38e�13, slope = �1.8e�3;

HC body: X2
(1) = 68.2, p = 1.48e�16, slope = �2.49e�3; aHC:

X2
(1) = 46.8, p = 8.00e�12, slope = �1.7e�3; BLA: X2

(1) = 26.7,

p = 2.39e�7, slope = �1.45e�3; CeM: X2
(1) = 19.5,
6 Current Biology 32, 1–11, January 24, 2022
p = 1.01e�5, slope = �6.90e�4). Additionally, we observed

several interactions in HC subfields, such that this effect was

stronger for all CS+ items in the pHC compared to CS� (pHC

3 CS type interaction: X2
(1) = 11.2; p = 8.3e�4), and was selec-

tive for conditioning CS+ items in the body of the hippocampus

(significant HC body 3 CS type 3 encoding context interaction:

X2
(1) = 5.46; p = 0.019).

MTL reinstatement

Having established that overall activity in the MTL predicts more

reinstatement in the dACC, we next conducted a similar set of

analyses in which trial-by-trial reinstatement was used to predict

the mPFC difference in reinstatement. The hypothesis for what

MTL reinstatement will predict is not automatically the same as

univariate activity, as the information present in a spatial pattern

of activity differs from themean activity across that pattern. Item-

specific memory reinstatement in three subfields was predictive

of reinstatement in different regions of the mPFC (Figure 4).

Greater reinstatement in the pHC (X2
(1) = 4.64; p = 0.031; slope =

�0.060) and CeM (X2
(1) = 8.49; p = 0.004; slope = �0.065) was

associated with a bias toward reinstatement in the dACC. In

contrast, greater reinstatement in the aHC (X2
(1) = 11.1; p =

8.51e�4; slope = 0.091) was associated with a bias toward rein-

statement in the vmPFC. There were no significant interactions

with encoding context, CS type, or group for any of these sub-

fields. Finally, reinstatement in the body of the hippocampus

and the BLA did not predict mPFC reinstatement location.

Separable influence of the aHC

We found that univariate and multivariate signals from the aHC

predict opposite biases in mPFC reinstatement during memory

retrieval. Greater mean activity in the aHC predicted a bias in

reinstatement to the dACC, while greater reinstatement in the

same region predicted a bias to the vmPFC. Consistent with

the proposition that the aHC exerts bidirectional control over

the expression of fear and extinction, we found that both neural

signatures were independently predictive of cortical reinstate-

ment when combined into a single model (univariate: X2
(1) =

42.5, p = 7.1e�11, slope = �1.65e�3; reinstatement: X2
(1) =

5.56, p = 0.018, slope = 0.067), with no significant interactions

with either predictor.

DISCUSSION

Extinction learning can build a memory of safety to countervail

retrieval and expression of the original fear association. How-

ever, an adaptive memory system should preserve the original

fear memory, as an experience of safety does not necessarily

render a stimulus harmless. These opposing associations should

therefore be stored to allow for the appropriate behavior in a

given context.55 Neurobiological research in rodents is begin-

ning to reveal the structure of this organization within and be-

tween discrete brain regions by quantifying overlaps in activity

duringmemory formation and expression.6,56,57 Usingmultivoxel

pattern similarity analysis of overlapping encoding-to-retrieval

activity in human neuroimaging, we were able to identify a

divided organization of fear and extinction memories in the

mPFC and hippocampus. Specifically, extinction memories

were reinstated in the vmPFC and aHC, while fear memories

were reinstated in the dACC and pHC. Individuals with PTSS ex-

hibited a similar pattern of fear memory reinstatement. However,



Figure 4. MTL reinstatement predicts mPFC

reinstatement location

For hippocampal and amygdalar ROIs, reinstate-

ment was used to predict the vmPFC � dACC dif-

ference in reinstatement. Left: stylized representa-

tions of the MTL and mPFC are shown, with arrows

indicating significant predictions. Right: point esti-

mates and 95% CI of slopes are shown. ***p <

0.001; **p < 0.01; *p < 0.05.
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they surprisingly misallocated extinction memories to a region

associated with fear memory reinstatement in healthy partici-

pants. Across both groups, we observed that various neural

signals from the MTL predicted the location of cortical reinstate-

ment of emotional memories in mPFC. These results bridge

increasing evidence from rodent neurophysiology for the divided

organization of opposing associative memories and provide new

insights into how disorganization in these neural representations

may contribute to psychiatric disorder.

Previous findings from rodents show the PL is necessary for

long-term retrieval and expression of conditioned fear.8,58 The

PL receives inputs from sensory cortices, thalamus, and other

PFC regions, in addition to reciprocal connections with the

amygdala and hippocampus.59 These connections allow the

PL to integrate information from the external environment as

well as internal states to flexibly guide behavior in potentially

threatening situations. Here, we found that the dACC reinstates

activity patterns unique to the formation of associative fearmem-

ories, confirming a role for this structure in the organization of

long-term fear memories in the human brain. A whole brain

searchlight analysis also revealed reinstatement of fear mem-

ories in the anterior insula, which together with the dACC are

hubs of the salience network.60 Collectively, fear memory repre-

sentations appear distributed across cortical and subcortical

networks that may code for unique aspects of the fear experi-

ence.19,61 Orchestration between these regions likely deter-

mines retrieval of fear memory over extinction memory.

The rodent IL is necessary for the long-term extinctionmemory

retention24 and is inhibited by the ventral HC (vHC) during fear

renewal.27 Here, we found that the vmPFC reinstates activity

patterns unique to the formation of extinction memories in the

healthy adult brain. Notably, univariate human neuroimaging ev-

idence for the involvement of the vmPFC in extinction learning

and recall has been limited and mixed.31 The present findings

thus help bridge extensive evidence from rodents to humans

on the role of this region in organizing extinction memory to

inhibit retrieval and expression of fear. We also found that indi-

viduals with PTSS displayed dysregulated organization of fear

and extinction reinstatement in the mPFC. Specifically, the

dACC exhibited reinstatement of memories formed during

extinction, with no such reinstatement in the vmPFC. Critically,

behavioral performance of within-session extinction learning

was equivalent between groups, and both groups remembered

an equivalent number of items from extinction. Thus, differences

in neural reinstatement of extinction appears to reflect an
C

underlying distinction in how these mem-

ories are formed and retrieved and do not

merely recapitulate an observable behav-
ioral deficit. This suggests that individuals with a history of

trauma may utilize a different, and ultimately maladaptive, neural

mechanism for fear reduction during within-session extinction

learning that bypasses formation of a long-term extinction mem-

ory in the vmPFC. Interestingly, evidence from rodent studies

shows the IL is not required for within-session extinction, only

for successful extinction retrieval.24 However, stimulation of

the vmPFCduring or after extinction learning improves extinction

retention.24,62–65 The inability to form an extinctionmemory in the

vmPFC during learning may therefore be a critical factor in

extinction retrieval deficits observed in PTSD.1,2 Likewise, the

misallocation of extinction-specific memories to the dACC,

rather than the vmPFC, may bias the retrieval and expression

of fear associations following extinction, contributing to fear

relapse. These provide potential targets to strengthen extinction

memory for clinical purposes.

We also found divided organization of fear and extinction

along the long axis of the hippocampus. Neural reinstatement

in the hippocampus was sensitive to the temporal context of en-

coding (fear versus extinction) rather than the valence of the CS

(CS+ versus CS�). This contextual specificity aligns with the role

of the hippocampus in forming contextual representation in

associative learning66 and exerting contextual control of

extinction retrieval through connections with the mPFC.27,67

The hippocampus maintains competing representations of

fear and extinction memory in distinct neural populations in the

dentate gyrus32 and CA1.68 Whether there is a division in

dorsal and ventral regions in the representation of fear versus

extinction memory is less clear. This organization is likely deter-

mined by dissociable connectivity with subregions of the

mPFC.11,27,46–50,69 Our results suggest that the pHC is involved

in the retrieval of fear memories, as both groups displayed selec-

tive reinstatement in the pHC for items encoded during fear con-

ditioning. Additionally, neural reinstatement in the pHC, as well

as univariate activity, predicted a bias in mPFC reinstatement to-

ward the dACC. The aHC, in contrast, showed selective rein-

statement for items encoded in the extinction context. Further

analysis showed that the aHC serves a dual role in retrieval of

fear and extinction memory. On one hand, neural reinstatement

in the aHC predicted reinstatement in the vmPFC, suggesting a

network for extinction memory organization. On the other hand,

univariate activity in the aHC during memory retrieval predicted

reinstatement in the dACC, consistent with a separate network

that may facilitate retrieval of associative fear memories. The

aHC therefore appears well situated for integrating contextual
urrent Biology 32, 1–11, January 24, 2022 7
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information and gating retrieval of the fear or extinction memory

through connections with the dACC or vmPFC, respectively.

Given considerable evidence of fear engram reactivation in the

rodent BLA,57 it is notable that we did not observe reinstatement

in the human amygdala. One possibility is that participants were

not under threat at retrieval, limiting involvement of the amygdala

for behavioral fear expression. However, there was a lack of

amygdala involvement at encoding as well, consistent with

meta-analyses of fMRI human fear conditioning.28,31,70 The

limited spatial resolution of fMRI is perhaps to blame for the

inability to separate reactivation of sparse neural population

coding for both fear and extinction memories,71 as well as the

CS+ and CS�.72 Although we did not observe preferential CS+

reinstatement in the amygdala, univariate activity in the amyg-

dala, as well as reinstatement in the CeM, predicted reinstate-

ment occurring in the dACC rather than the vmPFC (Figure 4).

This is consistent with the idea that reciprocal connections be-

tween the amygdala and mPFC organize the storage and

retrieval of fear memories.6

Much of the recent progress on the neuroscience of fear and

extinction has utilized activity-dependent functional labeling to

identify the neural organization of opposing memories.6,19 Prior

human neuroimaging using univariate approaches has broadly

confirmed the separation of fear and extinction memories in

the mPFC,12–15 although recent meta-analyses show the vmPFC

is not always strongly activated during extinction learning or

retrieval.31 Using a multivariate approach to compare encod-

ing-retrieval similarity, we provide evidence for dissociable

neural reinstatement of fear and extinction representations in

the human brain based on the context in which these memories

were formed. These results extend a conceptual framework of

engram-like representations and more broadly bolster the use

of multivariate pattern analyses to translate cutting-edge

advances from the neurobiology of fear and extinction to

humans.42,73–75 The hybrid episodic and conditioning design af-

forded us simultaneous access to isolatememories that normally

exert reciprocal inhibition during traditional tests of an extin-

guished memory (e.g., spontaneous recovery). Selective neural

reinstatement of competing memories formed under different

temporal contexts is predicted by the encoding-specificity prin-

ciple76 and neural reinstatement of episodic memory in human

neuroimaging34,35 but has not previously been shown for fear

and extinction memory in humans. This design may be applied

to future work in humans seeking to assess the efficacy of pro-

tocols that enhance extinction77 or modify the underlying fear

memory trace through reconsolidation updating.78 A further pos-

sibility to extend this work is to target engagement of activity pat-

terns unique to formation of an extinction memory in distributed

networks through closed-loop decoded neurofeedback79,80 to

create an enduring memory of safety. In this way, more precise

localization of networks involved in organizing fear and extinction

memory could ultimately lead to better treatments of psychiatric

disorders like PTSD.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
A total of 48 participants from the community volunteered to complete the two-day functional MRI study. Three additional par-

ticipants were recruited but did not complete the experiment. Half of the participants (N = 24; 15 female; Mean age = 21) were

recruited with the criteria that they have no current or past psychiatric or neurological disorders. The remaining participants (N =

24; 17 female; Mean age = 26) were recruited after responding to flyers seeking volunteers with PTSD. These participants un-

derwent phone screening and completed additional in-person questionnaires to confirm Criterion A trauma exposure on the

PTSD checklist for DSM-5 (PCL),81 as well as the absence of other neurological disorders. All PTSD responding participants

reported significant post-trauma symptoms related to a Criterion A trauma, however we refer to this cohort as having post-trau-

matic stress symptoms (PTSS) as we did not implement a structured diagnostic interview. Given high rates of co-morbid sub-

stance use disorder, all PTSS participants were given a urine toxicology screening, and no participants tested positive for illicit

drugs or benzodiazepines. Written informed consent was obtained for all participants, and all experimental procedures were

approved by the University of Texas at Austin IRB (#2017-02-0094). PCL scores, as well as surveys of anxiety and depression

are reported in Hennings et al.42

METHOD DETAILS

Stimuli
Conditioned stimuli were images of animals and tools collected from lifeonwhite.com or other publicly available resources on the

internet. Critical to the design of the task, each stimulus was a unique exemplar from its category. For example, there were not

two different kinds of ‘‘dog’’ used. Typically phobic animals or threatening tools were excluded (e.g., spiders, snakes, knives).

The unconditioned stimulus (US) was a brief (50ms) electric shock delivered to fingers of the left hand. Prior to entering the scanner,

the US was calibrated for each participant to a level described as ‘‘highly annoying and unpleasant, but not painful.’’ A BIOPAC

STMEPM-MRI module was used to deliver the US (Goleta, CA). During the recognition memory test, all 144 ‘‘old’’ stimuli were shown,

in addition to 48 novel lures per category. CSs were presented for 3 s followed by a 4 or 5 s ITI (jittered). Trial order was again pseu-

dorandomized to ensure a balance of CSs from each encoding phase as well as old and new items. Stimulus presentation was

controlled using E-Prime 3.0.
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Task
Associative learning task

Participants completed an associative learning task in two sessions of about an hour each, roughly 24 hours apart. We note that

‘‘fear’’ can be a misnomer of the emotional construct being studied in research involving human participants.82 A better term may

be ‘‘threat conditioning,’’ as it better captures both the actual emotional experience of participants and the acquisition of condi-

tioned responses. Nevertheless, we retain the term ‘‘fear’’ to connect the results the broader field of Pavlovian conditioning across

model organisms. For all phases of the associative learning task, images were displayed for 4.5 ± 0.5 s (jittered), and the ITI be-

tween trials lasted 6 ± 0.5 s (jittered). The trial order of the CSs was pseudorandomized to ensure no more than 3 CS type were

presented in a row. The same pseudorandomized order was used for all subjects, however which phase of the experiment each

stimulus was displayed was randomized across participants. Day 1 consisted of pre-conditioning, fear conditioning, and

extinction. On Day 1, each phase consisted of 48 trials, 24 animals and 24 tools, for a total of 144 items. During pre-conditioning,

participants identified which category each image belonged to (2-alternative forced choice, 2-AFC; animal or tool). During fear con-

ditioning, 50% of the trials from one category (CS+) co-terminated with the US, for a total of 12 CS+US pairings. Images from the

other category were never paired with shock (CS-), and the category of the CS+ was counterbalanced across participants. Extinc-

tion learning followed fear conditioning, during which no shocks were delivered. Relevant to hypotheses explained in Hennings

et al.,42 during extinction learning the normal fixation cross displayed during the ITI was replaced with a stream of natural scene

images displayed for 1 s each (5, 6, or 7 scenes per ITI). During fear conditioning and extinction on Day 1, participants responded

whether or not they expected a shock on each trial (2-AFC; yes or no). Skin-conductance responses were collected during pre-

conditioning, fear condition, and extinction. The following day, participants had the electrodes reattached prior to entering the

scanner for the fear renewal test (reported in Hennings et al.42).

Recognition memory test

After completing the fear renewal test on Day 2, participants completed a surprise recognition memory test for the items they had

seen the previous day. Participants were informed that no shocks would be delivered during the memory test. All 144 old images

were included as well as 96 novel foils. The stimuli seen during the fear renewal test were not shown during the recognition memory

test. Each image was displayed for 3 s with a 4 or 5 s ITI, and participants indicated whether each image was old (they had seen it the

previous day), or new (never seen before). Participants indicated the confidence of their choice by responding the image was defi-

nitely old, maybe old, maybe new, or definitely new. Thememory test was split into three fMRI runs of equal length, and trial order was

again pseudorandomized to ensure a balance of lures and foils of both CS types and encoding phases across thememory runs. Trials

during the recognition memory test were removed from analysis if participants failed to make a response within the 3 s

window (Mean = 2.5 dropped ‘‘old’’ trials per participant). A perceptual localizer followed the recognition memory test to facilitate

MVPA decoding, however this data was not used in the present analyses.

Functional MRI acquisition
Neuroimaging was accomplished using the Siemens Skyra 3T Human MRI scanner located at the Biomedical Imaging Center

at the University of Texas at Austin. Functional data were acquired with a 32-channel head-coil, with 3mm isotropic resolution

(TR = 2000ms; TE = 29ms; FoV = 228; 48 slices). A multi-band factor of 2 was used with automatic AC/PC alignment. As dis-

cussed in Hennings et al.,42 due to a computer malfunction, 2 subjects had slightly different acquisition parameters on Day 1

(TR = 2230ms; 66 slices), which were accounted for during preprocessing and analysis. An T1-weighted 3d MPRAGE scan

(TR = 1900ms; 1mm isotropic resolution) was collected on Day 1 to aid in functional image registration and region of interest

definition.

Image preprocessing
Functional MRI data were processed using fMRIprep (v1.5.4), an open source software suite designed to increase reproducibility and

develop common best practices for image processing. The following boilerplate has been included unchanged, as recommended by

the package maintainers.

Anatomical data preprocessing

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection,83 distributed with ANTs

2.2.0,84 and used as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped with a Nipype implemen-

tation of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of

cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL

5.0.985). Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.186), and the brain mask estimated previously was

refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical

gray-matter of Mindboggle.87 Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym) was per-

formed through nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w reference

and the T1w template. The following template was selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template

version 2009c.88

Functional data preprocessing

For each of the 9 BOLD runs found per subject (across all tasks and sessions), the following preprocessing was performed. First,

a reference volume and its skull-stripped version were generated using a custom methodology of fMRIPrep. Susceptibility
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distortion correction (SDC) was omitted as no field maps were collected. The BOLD reference was then co-registered to the T1w

reference using bbregister (FreeSurfer) which implements boundary-based registration.89 Co-registration was configured with

six degrees of freedom. Head-motion parameters with respect to the BOLD reference (transformation matrices, and six corre-

sponding rotation and translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.990). BOLD

runs were slice-time corrected using 3dTshift from AFNI 20160207.91 The BOLD time-series (including slice-timing correction

when applied) were resampled onto their original, native space by applying the transforms to correct for head-motion. These

resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or just preprocessed BOLD. The

BOLD time-series were resampled into standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space.

First, a reference volume and its skull-stripped version were generated using a custom methodology of fMRIPrep. Several con-

founding time-series were calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS and three region-

wise global signals. FD and DVARS are calculated for each functional run, both using their implementations in Nipype (following

the definitions by Power et al.92). The three global signals are extracted within the CSF, the WM, and the whole-brain masks.

Additionally, a set of physiological regressors were extracted to allow for component-based noise correction (CompCor93). Prin-

cipal components are estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with

128 s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor components are then

calculated from the top 5% variable voxels within a mask covering the subcortical regions. This subcortical mask is obtained by

heavily eroding the brain mask, which ensures it does not include cortical GM regions. For aCompCor, components are calcu-

lated within the intersection of the aforementioned mask and the union of CSF and WM masks calculated in T1w space, after

their projection to the native space of each functional run (using the inverse BOLD-to-T1w transformation). Components are also

calculated separately within the WM and CSF masks. For each CompCor decomposition, the k components with the largest

singular values are retained, such that the retained components’ time series are sufficient to explain 50 percent of variance

across the nuisance mask (CSF, WM, combined, or temporal). The remaining components are dropped from consideration.

The head-motion estimates calculated in the correction step were also placed within the corresponding confounds file. The

confound time series derived from head motion estimates and global signals were expanded with the inclusion of temporal de-

rivatives and quadratic terms for each.94 Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS were an-

notated as motion outliers. All resamplings can be performed with a single interpolation step by composing all the pertinent

transformations (i.e., head-motion transform matrices, susceptibility distortion correction when available, and co-registrations

to anatomical and output spaces). Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs), config-

ured with Lanczos interpolation to minimize the smoothing effects of other kernels.95 Non-gridded (surface) resamplings were

performed using mri_vol2surf (FreeSurfer).

Region of interest selection
The dACC, vmPFC, hippocampus, and amygdala were selected a priori to test for the presence of encoding specificity of fear and

extinction memories. Prefrontal ROIs were based on peak coordinates previously reported in literature. Specifically, dACC coordi-

nates (MNI 1, 21, 27) were taken from Milad et al.13 in which a univariate contrast of CS+ > CS- during fear conditioning was used.

vmPFC coordinates (MNI�4, 34,�6) were taken from an fMRI meta-analysis of extinction recall,31 using a univariate contrast of CS+

extinguished > CS+ unextinguished. For each ROI, a sphere was drawn around the coordinates with a radius of 10mm, and was then

restricted to graymatter using a graymatter probability mask with a threshold of 50%. Themasks were thenwarped to subject space

to achieve native functional resolution (3mm3) for multivariate analyses. Registration was accomplished using flirt using 12 degrees of

freedom and nearest neighbor interpolation for each binary mask (FSL 5.0.996).

The hippocampus and amygdala were masked and segmented into subfields using Freesurfer’s segmentHA_T1 on the prepro-

cessed T1w anatomical images from recon-all (Freesurfer 7.097–99). The hippocampus was segmented into head (anterior), body,

and tail (posterior) subfields along the long axis. The amygdala was segmented into the basolateral (BLA), and central nucleus

(CeM) subfields. The segmentations were first warped from Freesurfer native space to T1w space, and then from T1w space to stan-

dard space using antsApplyTransforms and the transforms calculated by fMRIprep for each subject. Multilabel interpolation was

used to ensure that the segmentations did not overlap, and were then resampled into 3mm3 resolution using ResampleImage

from ANTs. Binary masks were then created for each segmentation using fslmaths.

In addition to these a priori ROIs, we also probed emotional reinstatement in the anterior insula and the precuneus based on the

results from our whole-brain searchlight. The anterior insula was defined bilaterally using coordinates from a meta-analysis of fear

conditioning using a CS+ > CS- univariate contrast (MNI lh: �40, 18, �2; rh: 40, 16, 2).28 The radius for each sphere was set to

8mm to better match the number of voxels selected in our midline ROIs. The precuneus was defined from a recent fMRI meta-anal-

ysis of episodic memory studies using a contrast for retrieval success (i.e., hits > correct rejection) with a radius of 10mm (MNI �9,

�71, 27).100 The anterior insula and precuneus ROIs were then restricted to gray matter voxels and registered to each subject as

above with our mPFC ROIs.

Multivariate pattern analysis
After preprocessing with fMRIprep, we computed a LS-S style betaseries to facilitate the encoding-retrieval similarity analysis.101,102

For each scanner run, trial-specific beta images are computed iteratively using a general linear model (GLM) which models a single

trial of interest and all other trials as regressors of no interest based on trial type (separate CS+/� no interest regressors). In addition to
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the betaseries images, we also generated conventional average activity estimates for CS+ and CS- separately from each phase of

learning on Day 1, (i.e., all CS+ in one regressor of interest). For GLMs of fear conditioning, the US wasmodeled as a 0 duration event

and treated as a regressor of no interest. All GLM estimation was accomplished using FSL FEAT, prewhitening was used, and spatial

smoothing was not applied in order to respect the boundaries of our a priori ROIs. In addition to the preprocessing applied by fMRI-

prep, several signals were included as confounds to be removed during GLM estimation, including the first principle component of

the estimated physiological noise (aCompCor), framewise displacement, 6 standard motion parameters, and the discrete cosine-

basis regressors calculated by fMRIprep for high-pass filtering.

The encoding-retrieval similarity analysis was implemented in custom Python code. The goal of this analysis was to directly

compare multi-voxel patterns observed during encoding and retrieval of a specific stimulus in each ROI on a per-participant basis.

In order to reduce noise prior to estimating pattern similarity, the LS-S beta imageswereweighted (multiplied) by the overall univariate

estimate of the corresponding CS type from encoding42,103 (e.g., all images of extinction CS+s from encoding and retrieval were

weighted by the univariate estimate of extinction CS+ activity during encoding). For each ROI, encoding-retrieval similarity was

then taken as the Pearson’s correlation between the two beta images for a given stimulus, one from encoding and one from retrieval.

Pearson’s r values were Fisher-z transformed and submitted to statistical analysis.

Whole-brain searchlight
The searchlight analysis104,105 was accomplished using the nilearn package in Python using the functional resolution images

(3mm3) registered to MNI space. Images were prepared as described above, and then each pair of beta images from encoding

and retrieval was submitted to a whole-brain searchlight analysis in which a Pearson’s correlation was iteratively computed in every

sphere (radius = 6mm) in the brain. The resulting maps were Fisher-z transformed, and averaged by CS type and encoding context

for each subject. For each encoding context, the difference between the average CS+ ‒ CS- maps was taken and analyzed using

AFNI (v20.2.18).91,106,107 Specifically, 3dttest++ was used to test the CS+ ‒CS- difference against 0 for each encoding context and

for each group. The analysis was restricted to voxels that had R 50% gray matter probability. Family-wise error correction was

achieved using the -Clustsim option, which uses permutation testing to simulate the null distribution of the data in order to deter-

mine the threshold necessary to observe significant clusters. Clusters were extracted using 3dClusterize using a peak threshold of

p < 0.001 (one-tailed CS+ ‒ CS-), and a cluster threshold corresponding to p < 0.05 using full voxel connectivity. The size of the

cluster necessary to reach this threshold ranged from 16-21 across the 4 maps. The coordinates of the peak voxel in each cluster

were submitted to the AFNI function whereami to obtain anatomical labels based on the Talairach-Tournoux Atlas.108 The pysurfer

package in Python was used to resample and slightly smooth (FWHM = 1mm) the cluster maps onto the cortical surface for display

purposes.

QUANTIFICATION AND STATISTICAL ANALYSIS

With the exception of thewhole-brain searchlight analysis (see above), all statistical tests are reported as two-tailed, and all estimates

of error are given as parametric 95%confidence intervals (i.e., 1.96 * standard error of themean). Behavioral data was analyzed using

the pingouin109 package in Python and the ez110 package in R. As discussed in Hennings et al.42 due to technical errors four partic-

ipants (two in each group) are missing SCR data from extinction. SCR was square-root transformed prior to analysis and analyzed

using paired and independent samples t tests (see Hennings et al.42 for description of SCR scoring method). 2-AFC shock expec-

tancy from conditioning and extinction was coded as 1 = expect, and 0 = do not expect, and analyzed using paired and independent

samples t tests. As our neural analysis focused on the reinstatement of previously encoded items, the analysis of recognitionmemory

focused on high-confidence hits (i.e., definitely old responses). Hit rates were submitted to a mixed ANOVA with within subject fac-

tors of encoding context and CS type, and a between-subjects factor of group

All other statistical analyses were accomplished with linear mixed effects models using the afex111 package in R with

maximum likelihood estimation. Encoding-retrieval similarity was analyzed on a trial wise basis, and the model included fixed

effects of CS type, encoding context, subfield, and group, as well as a random intercept of subject (reinstatement �CS type

* encoding context * subfield * group + (1|subject)). The subfield term here represents the vmPFC/dACC when modeling

reinstatement in the mPFC, and the subdivisions of the hippocampus and amygdala for reinstatement in those structures.

Significance of the main effects and interactions of the fixed effects was evaluated using Chi-square tests, comparing the

log-likelihoods of a model with and without the term of interest.112 All possible interactions were modeled, and the highest order

interaction is reported for a given effect when relevant. When testing the double dissociations of reinstatement in the mPFC and

hippocampus, data was restricted to CS items from conditioning and extinction, and a separate model was fit for each group

(without the group term). All planned and post hoc contrasts were accomplished using the emmeans113 package in R. Asymp-

totic degrees of freedom were used, as in general the number of observations in each model was quite large (between �4,000

up to �20,000). Parametric 95% confidence intervals of the differences are reported along with FDR corrected P values using

the p.adjust function in R. FDR correction was applied to each family of tests in each group of ROIs; for example, FDR correction

was applied to the 12 tests of CS+ ‒ CS- reinstatement in the mPFC (2 ROIs, 3 contexts, 2 groups). FDR correction was also

applied at the next level of analysis; for example, the 4 cross-ROI comparisons of CS+ ‒ CS- reinstatement in the mPFC (2 ROIs,

2 groups).
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Linear mixed-effects models were also used to evaluate whether MTL activity predicted the difference in mPFC reinstatement

(vmPFC – dACC reinstatement � predictor * CS type * encoding context * group + (1|subject)). In all cases our analysis focused

only on the main effect and interactions of predictor, which was iteratively univariate activity or local reinstatement from all MTL

ROIs. The same procedure was used to evaluate the separable contributions of univariate activity and reinstatement in the aHC;

both neural signals were entered as predictors in a single model. Significance of main effects and interactions was again determined

using log-likelihood ratio tests and point estimates and parametric 95% confidence intervals of the slopes were obtained using the

emtrends function from emmeans.
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