

Rewarded extinction increases amygdalar connectivity and stabilizes long-term memory traces in the vmPFC

Nicole E. Keller¹, Augustin C. Hennings¹, Emily K. Leiker², Jarrod A. Lewis-Peacock^{1,3,4,5},
Joseph E. Dunsmoor^{1,3,5}

1. Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA

2. Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA

3. Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX, USA

4. Department of Psychology, University of Texas at Austin, Austin, TX, USA

5. Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX, USA

*Correspondence to joseph.dunsmoor@austin.utexas.edu

27 **Abstract**

28 Neurobiological evidence in rodents indicates that threat extinction incorporates reward
29 neurocircuitry. Consequently, incorporating reward associations with an extinction memory may
30 be an effective strategy to persistently attenuate threat responses. Moreover, while there is
31 considerable research on the short-term effects of extinction strategies in humans, the long-term
32 effects of extinction are rarely considered. In a within-subjects fMRI study, we compared
33 counterconditioning (a form of rewarded-extinction) to standard extinction, at recent (24 hours)
34 and remote (~1 month) retrieval tests. Relative to standard extinction, counterconditioning
35 diminished 24-hour relapse of arousal and threat expectancy, and reduced activity in brain regions
36 associated with the appraisal and expression of threat (e.g., thalamus, insula, periaqueductal
37 gray). The retrieval of reward-associated extinction memory was accompanied by functional
38 connectivity between the amygdala and the ventral striatum, whereas the retrieval of standard-
39 extinction memories was associated with connectivity between the amygdala and ventromedial
40 prefrontal cortex (vmPFC). One-month later, the retrieval of both standard- and rewarded-
41 extinction was associated with amygdala-vmPFC connectivity. However, only rewarded extinction
42 created a stable memory trace in the vmPFC, identified through overlapping multivariate patterns
43 of fMRI activity from extinction to 24-hour and 1-month retrieval. These findings provide new
44 evidence that reward may generate a more stable and enduring memory trace of attenuated threat
45 in humans.

46 **Significance Statement**

47 Prevalent treatments for pathological fear and anxiety are based on the principles of Pavlovian
48 extinction. Unfortunately, extinction forms weak memories that only temporarily inhibit the retrieval
49 of threat associations. Thus, to increase the translational relevance of extinction research, it is
50 critical to investigate whether extinction can be augmented to form a more enduring memory,
51 especially after long intervals. Here, we used a multi-day fMRI paradigm in humans to compare
52 the short- and long-term neurobehavioral effects of aversive-to-appetitive counterconditioning, a
53 form of augmented extinction. Our results provide novel evidence that including an appetitive
54 stimulus during extinction can reduce short-term threat relapse and stabilize the memory trace of
55 extinction in the vmPFC, for at least one month after learning.

56

57

58 **Introduction**

59 While learning about threats is adaptive, persistent and misattributed fearful responses are
60 characteristic of anxiety disorders. Exposure therapy, based on the principles of Pavlovian
61 extinction, is a widely used treatment for anxiety-related disorders (Abramowitz et al., 2019).
62 Unfortunately, relapse of extinguished behavior is common, and a substantial number of
63 individuals undergoing treatments will drop-out or relapse (Markowitz et al., 2015; Schottenhamer
64 et al., 2008). Notably, even healthy adults tend to show post-extinction recovery of learned
65 defensive behavior in new situations, indicating extinction is a fragile form of inhibitory learning
66 bound to the spatiotemporal context in which extinction memories were formed (Bouton, 2002).
67 Several augmented strategies to standard extinction have shown success in promoting relatively
68 short-term (~24 hours) retention of extinction memories in humans (Craske et al., 2018;
69 Dunsmaur et al., 2015). However, evaluating the long-term success (> 1 week) of extinction
70 protocols in humans is extremely rare, which limits the clinical translational relevance of extinction
71 research, as symptoms frequently return some time after treatment (Vervliet et al., 2013). Here,
72 we compared the neurobehavioral effects of standard extinction and augmented extinction in
73 healthy adults at recent (24 hours) and remote (~1 month) intervals in the same individuals.
74 Whereas standard extinction involved simply omitting an expected aversive electrical shock,
75 augmented extinction involved replacing the shock with a positive outcome, a paradigm known
76 as aversive-to-appetitive counterconditioning (Dickinson & Pearce, 1977; Keller et al., 2020a).

77 In counterconditioning (CC), behavior is modified through a new association with a stimulus of
78 the opposite valence. Research on counterconditioning dates to the earliest studies of
79 conditioning in humans (Jones, 1924), and forms the basis for popular treatments for anxiety
80 disorders such as systematic desensitization (Wolpe, 1954, 1968, 1995). Contemporary
81 behavioral research on CC is sparse (Gatzounis et al., 2021; Keller & Dunsmaur, 2020; Koizumi
82 et al., 2016; van Dis et al., 2019), and there are currently no neuroimaging studies directly
83 comparing CC and extinction in humans. It remains unclear if a reduction of conditioned
84 responses through CC is modulated by similar neural circuitry as standard extinction, and if the
85 resulting threat attenuation is more enduring over time.

86 One possibility is that reduced relapse following CC is mediated by augmented activity in networks
87 involved in the formation of extinction memories, specifically activity within and between the
88 ventromedial prefrontal cortex (vmPFC) and amygdala (Giustino & Maren, 2015; Hartley &
89 Phelps, 2010; Kredlow et al., 2021; Milad & Quirk, 2012). The presence of a positive stimulus
90 could further engage reward-related regions of the mesostriatal dopamine system shown to be

91 involved in threat extinction (Holtzman-Assif et al., 2010; Josselyn & Frankland, 2018; Kalisch et
92 al., 2019; Luo et al., 2018; Raczka et al., 2011; Salinas-Hernández & Duvarci, 2021) . In support
93 of this idea, neurobiological evidence in rats found that rewarded extinction enhanced recruitment
94 of an amygdala-striatal pathway and led to diminished threat relapse at a remote test (Correia et
95 al., 2016). However, other evidence in rodents suggests that counterconditioning is less effective
96 than standard extinction at preventing relapse of the original behavior (Holmes et al., 2016). If this
97 were the case, then replacing shock with reward (rather than omitting it) may somehow interfere
98 with processes underlying extinction memory formation and retrieval.

99 We developed a multi-day fMRI protocol to compare the neurobehavioral effects of threat
100 extinction and aversive-to-appetitive CC on threat attenuation at recent and remote time points.
101 The protocol incorporated a within-subjects Pavlovian conditioning design with renewal tests at
102 24-hours and approximately 1-month later. Based on our prior behavioral findings (Keller &
103 Dunsmoor, 2020), we predicted CC would more effectively attenuate the relapse of conditioned
104 responses. In line with previous research on enhanced extinction (Dunsmoor et al., 2019), we
105 also predicted that CC would more effectively attenuate within-session activity in regions
106 associated with threat appraisal (e.g., the insula, thalamus, dorsal anterior cingulate cortex
107 (dACC), brainstem). Based on prior neurobiological evidence in rats (Correia et al., 2016), we
108 also predicted that amygdala-ventral striatum functional connectivity would be selectively
109 enhanced for stimuli associated with CC versus standard extinction.

110 To examine the fidelity of extinction and CC memory representations over time, we incorporated
111 multivariate representational similarity analysis (Kriegeskorte et al., 2008) of encoding-to-retrieval
112 overlap (Ritchey et al., 2012) between extinction learning and 24-hour and 1-month retrieval. We
113 focused on the vmPFC based on recent fMRI evidence that 24-hour extinction retrieval reactivates
114 similar neural activity patterns associated with extinction formation in this region (Hennings et al.,
115 2020; Hennings et al., 2021). We predicted that neural similarity in the vmPFC would be enhanced
116 and maintained over time for CC in comparison to standard extinction, indicating a more durable
117 memory trace in a region critical for the encoding, storage, and retrieval of safety memories
118 (Giustino & Maren, 2015; Milad & Quirk, 2012; Tovote et al., 2015).

119

120

121

122 **Materials and Methods**

123 **Participants.** Twenty-five participants (15 female; mean age: 23.48 years; SD = 5.51 years, age
124 range 18-36), who reported no neurological or psychiatric disorders, were recruited from the
125 University of Texas at Austin and local Austin community to complete this experiment. Two
126 participants did not return for their third session ~ 1 month away, therefore twenty-five participants
127 completed the first and second session, and twenty-three (14 female; mean age 23.69 year; SD
128 = 5.63 years, age range 18-36) completed all three sessions. We collected state individual
129 difference measures [PTSD checklist for DSM-5 (PCL-5), the Childhood Trauma Questionnaire
130 (CTQ), Beck Anxiety Inventory (BAI)] and trait measures [Intolerance of Uncertainty – Short Form
131 (IUSF), State-Trait Anxiety Inventory (STAI)] of negative affect-related constructs for each
132 participant. All participants provided written informed consent and procedures complied with the
133 Institutional Review Board of UT Austin (IRB # 2017-02-0094).

134 **Task and Procedure.** The design for this study was based on the behavioral experiment by
135 (Keller & Dunsmoor, 2020). This was a within-subjects functional MRI study that included
136 Pavlovian threat acquisition and extinction/counterconditioning on day one, and a renewal test
137 and an episodic memory test 24 hours later and ~ 1 month later (mean length: 26.91 days, SD =
138 10.26 days, day range: 15 to 63 days) depending on the participants' availability (**Fig. 1A**). The
139 episodic memory results are not discussed in this report. Conditioned stimuli (CS) were pictures
140 of animals, tools, and food on a white background. The unconditioned stimulus (US) was a 6 msec
141 electrical shock delivered to the index and middle finger of the participant's left hand from the
142 BIOPAC (Goleta, CA) MP160 System with a STM100C module. The task was presented using
143 E-Prime 2.0 and consisted of a trial-unique category conditioning design, meaning that each trial
144 was a different basic-level exemplar with a unique name. For example, there were not two
145 different pictures of a dog. Pictures of common phobic stimuli (e.g., spiders, snakes, weapons) or
146 highly appealing food items (e.g., pizza), were not used as CSs. For all phases (Pavlovian threat
147 acquisition, extinction, and the renewal tests) each CS was on the screen for 6 seconds, followed
148 by a 7-8 second ITI with a fixation cross on a white background. On each trial, subjects rated their
149 expectancy to receive a shock using a two-alternative forced choice scale (2AFC) (i.e., yes or no).
150 Trial order was pseudo-randomized so that participants did not see pictures from the same
151 category three trials in a row.

152 **Day 1:** Day 1 included two phases: Pavlovian threat acquisition and extinction. These phases
153 were divided into three separate functional imaging runs: 1) the first half of threat acquisition, 2)
154 the second half of threat acquisition followed without a break by the first half of extinction, and 3)

155 the last half of extinction. Each scanner run occurred consecutively with less than ~ 1 min break
156 between runs. Before participants entered the scanner, shock electrodes were attached to the
157 index and middle finger on the left hand. The electrical shock was calibrated to be at a level that
158 was deemed “highly annoying and unpleasant, but not painful”. Skin conductance response
159 (SCR) served as a measure of conditioned autonomic arousal and was collected throughout the
160 experiment on each day. SCR electrodes were placed on participants’ left palm and connected to
161 a BIOPAC MP160 System (Goleta, CA). SCR sampling rate was set to 200Hz (see:
162 Psychophysiology Analysis). Day 1 included a total of 144 trials across acquisition and extinction.
163 During acquisition, CS stimuli from two categories (CS+, animals and tools, 24 stimuli per
164 category) co-terminated with a shock 66% of the time. Items from the food category (CS-, 24
165 stimuli) were never paired to a shock, and always served as a within-subjects unpaired control
166 category. Extinction included a total of 24 CS+CC, 24 CS+EXT and 24 CS- trials, all unpaired
167 with shock. During extinction, stimuli from one CS+ category (CS+CC, animals or tools,
168 counterbalanced across participants), were not followed by a shock and were paired with a unique
169 image of a positive valenced picture, depicting a serene scene or accomplishment. The positive
170 pictures were presented for a duration of 1 second and were pilot rated by a separate group of 19
171 participants to confirm high valence and low arousal. Stimuli from the other CS+ category (CS+
172 EXT, either tools or animals, respectively), were simply not followed by a shock.

173 **Day 2:** Participants returned the next day (~24 hours) and underwent a test of threat renewal.
174 The renewal test was followed by a recognition memory test for half the items encoded the
175 previous day including the positive pictures paired with CS+CC during counterconditioning
176 (details on the memory test and memory results not reported here). Before participants entered
177 the scanner, shock and SCR electrodes were re-attached. Participants did not receive any new
178 instructions from the day before and were instructed to continue to rate expectancy for receiving
179 shocks on each trial. The renewal test included 8 trials each of animals, tools, and food. The CSs
180 were novel category exemplars not shown the previous day. There were no shocks or positive
181 pictures presented during the renewal test on Day 2. The first trial on the renewal test was always
182 a discarded CS- trial that was used to capture the initial orienting response. Behavioral and neural
183 analyses for the renewal test focused *a priori* on the first 4 trials (early renewal test) per CS type.
184 Focusing on the first four trials is in line with previous human neuroimaging research on extinction
185 recall (Kroes et al., 2016; Milad et al., 2009; Schiller et al., 2010), as these early trials capture the
186 instance when the possibility for threat is most ambiguous. In the absence of a shock, later trials
187 during the renewal test phase most likely reflect further extinction learning.

188 **One month later:** Participants returned for their third and final session ~1 month later. This
189 session followed the same format as Day 2, and included four functional imaging runs: a final
190 threat renewal test, a recognition memory test for the rest of the CS exemplars from Day 1, and
191 two runs of a perceptual category localizer. Before participants entered the scanner, shock and
192 SCR electrodes were re-attached and the shock was re-calibrated.

193 **Psychophysiology Analysis.** SCRs were calculated using prior criteria (Keller & Dunsmoor,
194 2020). SCRs were considered valid to the CS trial if the trough-to-peak deflection of electrodermal
195 activity occurred between 0.5 to 6 seconds following CS onset and were not greater than 0.2 uS.
196 Trials that did not meet these criteria were scored as zero. SCRs were scored by an automated
197 analysis script implemented in Matlab (Green et al., 2014), and were later visually inspected by
198 research assistants blind to the experimental conditions. SCR data were square-root transformed
199 prior to statistical analysis to normalize the distributions. Participants were not excluded from the
200 analysis based on any response criteria for SCRs, based on recommendations from the field of
201 human threat conditioning (Lonsdorf et al., 2017). Two-AFC shock expectancy was coded as
202 1=expect to receive a shock, 0= do not expect.

203 **Imaging parameters.** Brain images were recorded on a 3T Siemens Vida with 64-channel head
204 coil at the University of Texas at Austin Biomedical Imaging Center. Functional task and localizer
205 data were acquired using T2*-weighted EPI sequences (TR = 1000ms, TE = 86ms, FOV = 86 x
206 86mm, 2.5mm isotropic voxels), with slices oriented parallel to the hippocampal long axis and
207 positioned to provide whole-brain coverage. High-resolution T1-weighted anatomical images
208 were obtained using 3D MPRAGE sequences (TR = 2400ms, TE = 1000ms, FOV = 208 x 300mm,
209 0.8mm isotropic voxels) before the EPIs in each session, to aid in co-registration and
210 normalization. Diffusion-weighted images were also acquired but were not examined.

211 **fMRI Data Preprocessing.** MRI data were preprocessed using fMRIprep 1.5.9 (Esteban et al.,
212 2019) and FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl) FEAT 6.00 (FMRI Expert
213 Analysis Tool). Processing in fMRIprep followed the default steps, with additional options for
214 multiple T1-weighted (T1w) images per participant (*--longitudinal* flag) and a framewise
215 displacement threshold of 0.3mm. T1w images were corrected for intensity nonuniformity and
216 skull-stripped using *N4BiasFieldCorrection* (Tustison et al., 2010) and *BrainExtraction* (both from
217 ANTs 2.2.0; Avants et al. 2008). Segmentation of the skull-stripped T1w images into three tissue
218 classes (CSF, WM, GM) was performed using FSL 5.0.9 *fast* (Y. Zhang et al., 2001), followed by
219 surface reconstruction with FreeSurfer 6.0.1 *recon-all* (Dale et al., 1999). The skull-stripped T1w
220 images were registered using FreeSurfer's *mri_robust_template* to generate a single unbiased

221 T1w-reference map per participant for spatial normalization (Reuter et al., 2010). Spatial
222 normalization to MNI space was performed via nonlinear registration (ANTs *Registration*), using
223 skull-stripped versions of both the T1w reference volume and MNI152NLin2009cAsym template
224 (Fonov et al., 2009).

225 Functional data from each BOLD run were corrected for field distortion based on a B0-
226 nonuniformity map estimated via AFNI *3dQwarp* (Cox & Hyde, 1997), then co-registered to the
227 corresponding T1w reference using boundary-based registration (Greve & Fischl, 2009) with 6
228 degrees of freedom (FreeSurfer *bbregister*). Head-motion parameters, including transformation
229 matrices and six rotation and translation parameters, were estimated for each BOLD run prior to
230 any spatiotemporal filtering (FSL *mcflirt*). Framewise displacement and DVARS were calculated
231 for each functional run using Nipype (Power et al., 2014), and frames exceeding 0.3mm FD or
232 1.5 standardized DVARS were annotated as motion outliers. In addition, six principal components
233 of a combined CSF and white matter signal accounting for the most variance were extracted using
234 aCompCor (Behzadi et al., 2007) following highpass filtering (128s cutoff) with discrete cosine
235 filters. The BOLD runs were then slice-time corrected (AFNI *3dTshift*; Cox, 1996), and resampled
236 onto original native space using custom methodology of fMRIPrep that applies all correction
237 transformations in a single interpolation step. Additional details on the fMRIPrep pipeline may be
238 found in the online documentation: <https://fmriprep.org/en/1.5.9/>.

239 Following preprocessing in fMRIPrep, we masked the preprocessed BOLD data for each
240 participant with the intersection of the average T1-reference brain mask with the average BOLD
241 reference mask. In final preparation of the MRI data for analysis with FSL (FMRIB's Software
242 Library, www.fmrib.ox.ac.uk/fsl, Version 6.00), the following pre-statistical processing was
243 performed in FSL's FEAT (FMRI Expert Analysis Tool): registration of the T1w-reference map
244 and co-registration of the BOLD reference data to MNI152 space using *FLIRT* with 12 degrees of
245 freedom (Jenkinson et al., 2002; Jenkinson & Smith, 2001), spatial smoothing using a Gaussian
246 kernel of FWHM 5mm, and grand-mean intensity normalization of the entire 4D dataset by a single
247 multiplicative factor.

248 Confound regressors consisting of the following MRIPrep-derived factors were prepared for
249 functional denoising of individual BOLD runs: 6 aCompCor components, cosine filters for temporal
250 filtering, 6 rotation and translation parameters and FD and spike regressors to exclude time points
251 with excessive motion ($>0.3\text{mm FD}$ or >1.5 standardized DVARS). MRIQC (Esteban et al., 2019)
252 was used as a preliminary check of data quality. Scan runs were excluded from analysis if more

253 than 20% of TRs exceeded a framewise displacement of 0.3mm. Only a single run (Functional
254 run 2, Day 1) from one participant was excluded with this threshold.

255 **fMRI Analysis.** fMRI analysis of the processed data was carried out using FEAT. Individual-level
256 time-series statistical analyses were carried out using FILM with local autocorrelation correction
257 (Woolrich et al., 2001). Separate regressors were specified for the experimental conditions of
258 primary interest (CS+CC, CS+EXT, CS-) in each learning phase (threat acquisition: CS+s >CS-,
259 CS->CS+s, extinction: CS+CC > CS+EXT, and renewal tests: CS+CC > CS+EXT), by convolving
260 the stimulus function with a double-gamma hemodynamic response function (HRF), and adding
261 a temporal derivative. Additional covariates included the electrical shock (following CS+ trials,
262 during acquisition), positive pictures (following CS+CC trials, during counterconditioning), and
263 confound regressors derived from fMRIprep (described above). The higher-level analysis
264 averaged contrasts estimates in each learning phase (acquisition, extinction/CC and the renewal
265 tests), and was carried out using FLAME (FMRIB's Local Analysis of Mixed Effects) stage 1
266 (Beckmann et al., 2003; Woolrich, 2008; Woolrich et al., 2004). Whole-brain Z (Gaussianised T/F)
267 statistic images were thresholded non-parametrically using clusters determined by Z>3.1 and a
268 (corrected) cluster significance threshold of P=0.05 (Worsley, 2001). A left superficial amygdala
269 mask from the Juelich histological atlas (Amunts et al., 2005; Eickhoff et al., 2005), with a
270 probability threshold of 30%, was used as a pre-thresholding mask for analysis of 24-hour
271 renewal. We then performed a small-volume correction (SVC) within this mask identified at Z>3.1
272 and cluster corrected at p=0.05 (Worsley, 2001). Anatomical labels in the tables of activation were
273 obtained by converting significant cluster coordinates in MNI space to Talairach space using
274 GingerALE 3.0.2 ([www. brainmap.org](http://www.brainmap.org)) (Laird et al., 2010), and subsequently using Talairach
275 Client (Lancaster et al., 2000).

276 **Region of Interest selection.** *A priori* ROIs for parameter estimate analysis included brain
277 regions that are reliably characterized in meta-analyses of Pavlovian threat conditioning and
278 extinction studies, and are involved in threat expression: the insula, dACC, thalamus and
279 brainstem (periaqueductal gray) (Fullana et al., 2016; Fullana et al., 2018). For each of these
280 threat ROIs, a sphere was drawn around peak coordinates reported in these studies, with a radius
281 of 10mm. Parameter estimates for ROIs were extracted using FSL's featquery tool and input to R
282 Studio for further analyses with paired *t*-tests. The vmPFC, an *a priori* ROI for functional
283 connectivity and RSA analyses, was defined functionally from the CS- > CS+s contrast during
284 acquisition. A 10 mm sphere was drawn around the coordinates of a significant cluster (z<3.1,

285 cluster corrected $p < 0.05$) corresponding to the medial frontal gyrus (MNI coordinates, -14, 50, -1)
286 (Table 1).

287 **Task-Based Functional Connectivity.** We used generalized psychophysiological interaction
288 (gPPI) to examine functional connectivity at the 24-hour and ~1-month renewal tests, in two *a*
289 *priori* pathways (basolateral amygdala (BLA) → nucleus accumbens (NAc) and vmPFC → central
290 amygdala (CeM)). The timeseries for the seeds (BLA and vmPFC) were extracted using FSL's
291 means command and input as regressors in the model. Interactions between the physiological
292 variable (i.e., the seed's respective timeseries) and each of the psychological variables (i.e.,
293 CS+CC, CS+EXT and CS-) were computed and included in the design matrix as the variables of
294 interest. In accordance with human neuroimaging research on the circuitry of amygdala
295 subregions (Koch et al., 2016; Roy et al., 2009, 2013), standardized amygdala ROIs (BLA and
296 CeM) were defined using the Juelich histological atlas (Amunts et al., 2005; Eickhoff et al., 2005)
297 as implemented in FSL. Following (Koch et al., 2016), voxels were included if they had a 50% or
298 higher probability of belonging to the CeM, but due to signal drop-out in the temporal cortex, we
299 used a more stringent threshold of 70% for the BLA. The anatomically defined NAc seed was
300 derived from the Harvard-Oxford Subcortical Probability Atlas, thresholded at 50%. The vmPFC
301 was defined functionally from the CS- > CS+ contrast during acquisition (see: Region of Interest
302 selection).

303 Mean z-scores of connectivity from target ROIs were extracted using Featquery for each
304 regressor of interest (CS+CC, CS+EXT and CS-), at both the 24-hour and ~1 month renewal
305 tests. These connectivity means were then input into R studio for further statistical analyses.

306 **Representational Similarity Analysis (RSA).** In order to facilitate RSA, LS-S style betaseries
307 were computed for each scanner run (Mumford et al., 2012, 2014). Within each scanner run trial-
308 specific beta images were iteratively computed in FEAT using a design matrix which modeled a
309 single trial of interest and all of trials as regressors of no interest based on trial type (e.g., separate
310 CS+CC, CS+EXT, CS- regressors of no interest). FEAT settings were identical as in our univariate
311 analysis, with the exception that no spatial smoothing was applied in order to respect the
312 boundaries of our *a priori* ROIs in multivariate analyses. In addition to these trial-specific beta
313 estimates, we also generated conventional estimates of average activity for each CS type during
314 each phase (i.e., all CS+CC in one regressor of interest), again without spatial smoothing. For the
315 renewal sessions, separate regressors were used to model the early vs. late trials.

316 RSA was accomplished using custom Python code. The goal of our analyses was to iteratively
317 compare multivoxel patterns of activity in the vmPFC, between memory encoding in the
318 extinction/CC session, recent renewal, and remote renewal. In order to reduce noise across the
319 multivoxel pattern prior to estimating pattern similarity, each LS-S beta image was weighted
320 (multiplied) by the overall univariate activity estimate of the corresponding CS type and time point
321 (Hennings et al., 2020; Hennings et al., 2021; H. Kim et al., 2020) (e.g., all images of CS+CC
322 from early 24-hour renewal were weighted with the average CS+CC pattern from the same time
323 point). For each CS type, all of the LS-S images were entered into a representational similarity
324 matrix, where each cell represents the Pearson's correlation of the multivoxel patterns of activity
325 between two images in the vmPFC. For each CS type, the correlations were fisher-z transformed,
326 and the average similarity was taken for our three comparisons of interest: extinction/CC encoding
327 to recent renewal, extinction/CC encoding to remote renewal, and recent renewal to remote
328 renewal. Average fisher-z similarity values were then exported to R studio for statistical analysis.

329 **Analytic Plan.** All statistical analyses were carried out in the R environment (Team, 2013). Data
330 was analyzed using repeated measures analysis of variance (ANOVA), with the *ez* package
331 (Lawrence, 2016), and included factors for CS Type (CS+CC, CS+EXT, and CS-) and time (e.g.,
332 first and second half of phase, or recent and remote renewal phases) where appropriate.
333 Greenhouse-Geisser (GG) correction was applied when sphericity was violated. Main effects or
334 interactions were followed by *post-hoc* two-tailed paired *t*-tests.

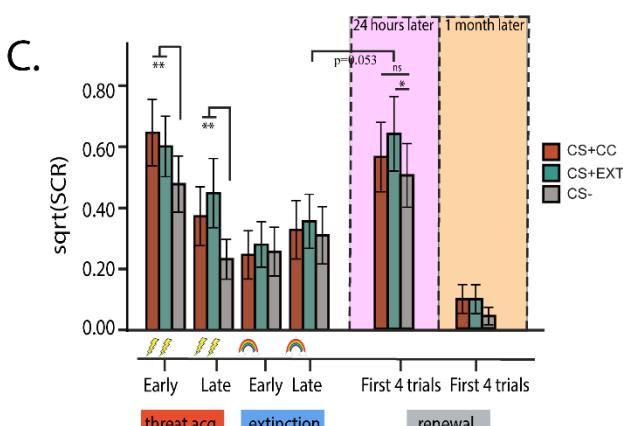
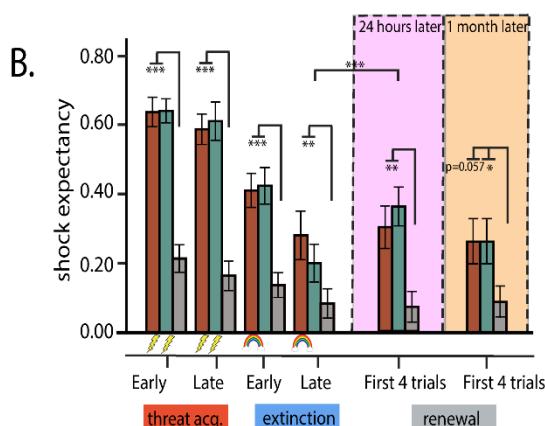
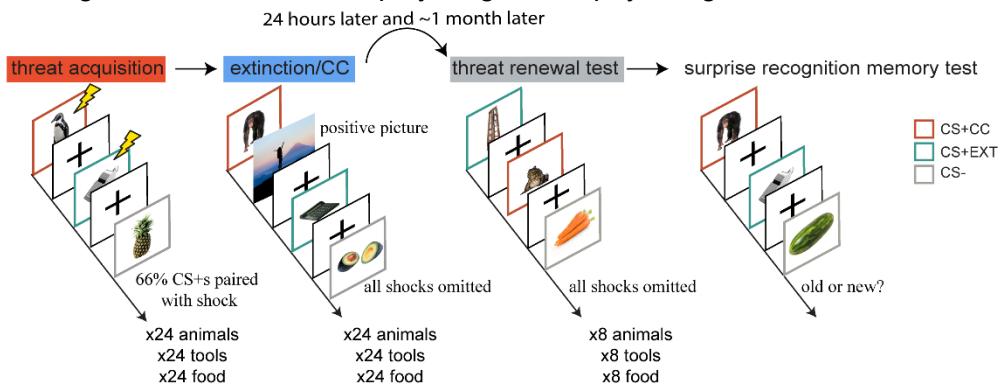
335 **Results**

336 **Behavioral Results**

337 **Threat acquisition and extinction.** Analyses of mean shock expectancy and SCRs during the
338 acquisition and extinction phases on Day 1 were separated into the first and second half of trials
339 (i.e., early/late) (**Fig. 1B, 1C**). Shock expectancy was significantly higher for both CS+s in
340 comparison to CS- during both early and late trials of acquisition (all $p < 0.001$) (**Fig. 1B**). A
341 repeated-measures ANOVA of SCR during acquisition revealed a main effect of CS type ($F_{(1,50,}$
342 $36.04) = 11.462$, $p_{gg} < 0.001$, $\eta^2_G = 0.025$) and a main effect of early/late trials ($F_{(1,24)} = 21.194$, $p <$
343 0.001 , $\eta^2_G = 0.053$), but no interaction ($p_{gg} = 0.071$). *Post-hoc* paired *t*-tests showed successful
344 acquisition towards both CS+s, as SCRs were significantly higher for CS+CC vs CS- and CS+EXT
345 vs CS- (all $p < 0.01$) (**Fig. 1C**). Importantly, shock expectancy and SCR did not differ between
346 CS+s during acquisition. Thus, participants successfully acquired equivalent expectancy
347 responses and conditioned arousal towards both CS+s.

348 A repeated measures ANOVA of shock expectancy during extinction revealed a significant main
349 effect of CS Type ($F_{(1.89, 45.42)} = 12.810, p_{gg} < 0.001, \eta^2_G = 0.143$), early/late trials ($F_{(1, 24)} = 10.440, p = 0.004, \eta^2_G = 0.066$) and an interaction of CS Type by early/late trials ($F_{(1.57, 37.64)} = 5.514, p_{gg} = 0.013, \eta^2_G = 0.018$). While mean shock expectancy ratings were still significantly higher for CS+s in comparison to CS- during the first half (all $p < 0.001$), and second half (all $p \leq 0.01$) of extinction, there was a significant decrease in shock expectancy for CS+EXT stimuli from the first to the last half of extinction ($t_{(24)} = 5.073, p < 0.001, 95\% \text{ CI} [0.133, 0.314]$), but not for CS+CC stimuli ($p = 0.069$) (**Fig. 1B**). A repeated-measures ANOVA of SCR means from extinction showed no effect of CS Type ($p_{gg} = 0.471$), no effect of early/late trials ($p = 0.237$), nor an interaction ($p_{gg} = 0.786$), indicating successful diminishment of conditioned SCRs via the absence of shock (**Fig. 1C**).

358 **24-hour threat renewal test.** Mean shock expectancy during early 24-hour renewal (first 4 trials)
359 was higher for both CS+s in comparison to CS- (all $p < 0.01$), and there were no differences
360 between CS+s ($p = 0.387$) (**Fig. 1B**).




361 Notably, given the limited sensitivity of a 2AFC, we did not expect to see differences between
362 CS+s within sessions. As such, we assessed expectancy during the end of extinction, and
363 compared it to expectancy during the renewal phase. A repeated measures ANOVA with a factor
364 of CS Type and phase (last half of extinction and early renewal), revealed a main effect of CS
365 Type ($F_{(1.73, 41.56)} = 11.26, p_{gg} < 0.001, \eta^2_G = 0.115$), a trend toward a significant main effect of
366 phase ($F_{(1, 24)} = 4.04, p = 0.056, \eta^2_G = 0.010$), but no significant CS Type by phase interaction ($p_{gg} = 0.072$). *Post-hoc* paired *t*-tests revealed that expectancy for CS+EXT significantly increased
368 ($t_{(24)} = 3.894, p < 0.001, 95\% \text{ CI} [0.075, 0.245]$) from late extinction to early renewal, but was not
369 different between phases for neither CS+CC ($p = 0.720$) nor CS- stimuli ($p = 0.818$). Thus, at 24
370 hours, participants exhibited renewal of shock expectancy towards items from the category that
371 underwent standard extinction, but not towards items from the control category, nor the CC
372 category.

373 Repeated-measures ANOVA of SCRs during 24-hour renewal revealed a main effect of CS type
374 ($F_{(1.81, 43.39)} = 3.732, p_{gg} = 0.036, \eta^2_G = 0.010$) (**Fig. 1C**). *Post-hoc* paired *t*-tests revealed greater
375 mean SCRs towards CS+EXT versus CS- ($t_{(24)} = 2.374, p = 0.026, 95\% \text{ CI} [0.018, 0.255]$), but
376 no difference between CS+CC versus CS- ($p = 0.186$), nor CS+CC versus CS+EXT ($p = 0.122$).
377 Thus, while SCRs did not differ between CS+s, participants expressed heightened conditioned
378 arousal to items from the CS+EXT category as compared to items from the CS- category, but this
379 difference was eliminated for CS+CC stimuli.

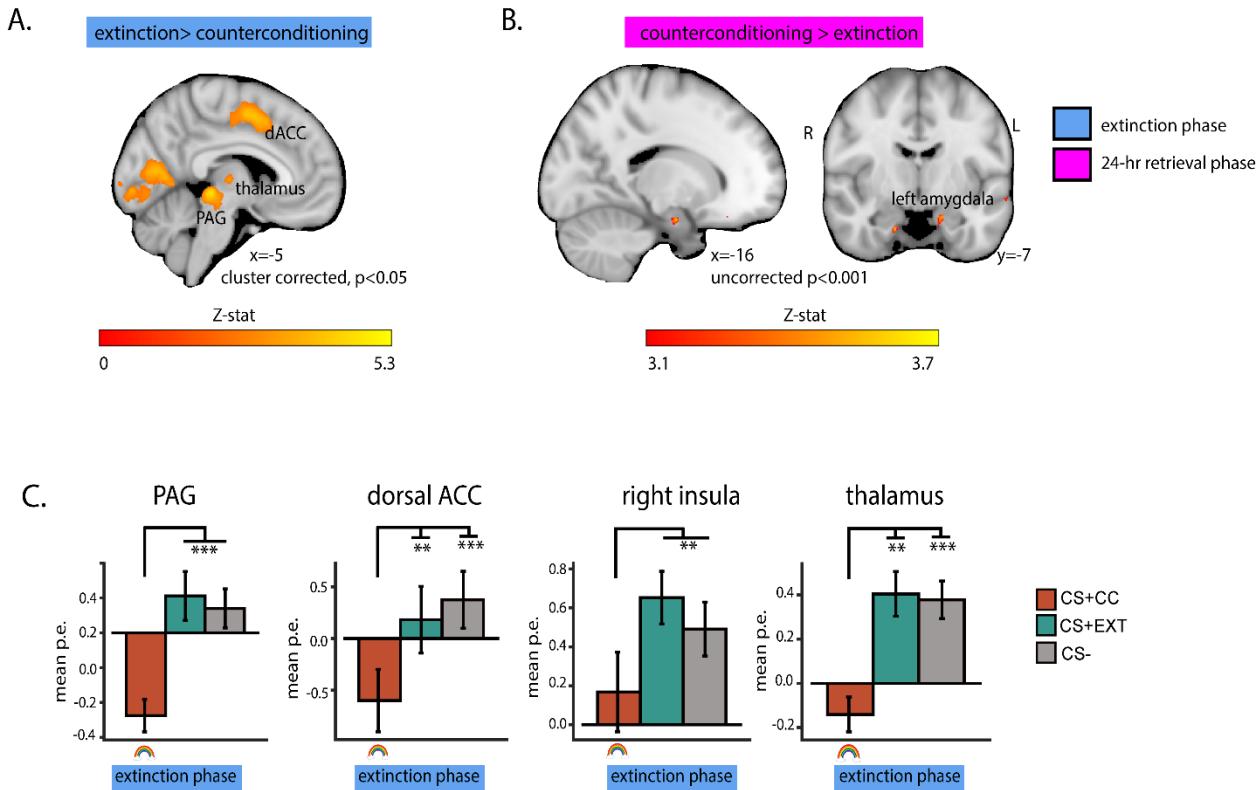
380 An ANOVA comparing physiological arousal at the end of extinction to early renewal revealed a
381 main effect of CS Type ($F_{(1.90,45.54)} = 4.099$, $p_{gg} = 0.025$, $\eta^2_G = 0.005$), no main effect of phase (p
382 = 0.062) and no significant CS Type by phase interaction ($p_{gg} = 0.354$). *Post-hoc* paired *t*-tests
383 revealed that conditioned arousal for CS+EXT stimuli was marginally higher ($t_{(24)} = 2.037$, $p =$
384 0.053, 95% CI [-0.004, 0.5693]) from late extinction to early renewal, but was not different between
385 phases for neither CS+CC ($p = 0.081$) nor CS- ($p = 0.089$) stimuli.

386 **1 month threat renewal test.** Approximately 1 month later, participants did maintain slightly
 387 elevated shock expectancy to each CS+ versus the CS- (**Fig. 1B**). While a repeated measures
 388 ANOVA of mean shock expectancy revealed no significant main effect of CS Type ($p_{gg} = 0.080$),
 389 *post-hoc* paired *t*-tests revealed significantly higher expectancy for CS+EXT in comparison to the
 390 CS- ($t_{(24)} = 2.336$, $p = 0.029$, 95% CI [0.0195, 0.328]), a trend towards significantly higher shock
 391 expectancy for CS+CC in comparison to the CS- ($t_{(24)} = 2.005$, $p = 0.057$, 95% CI [-0.001, 0.354]),
 392 and no differences between CS+s ($p = 1$). Interestingly, autonomic arousal to each CS was
 393 exceptionally low (**Fig. 1C**). A repeated measures ANOVA of mean SCR revealed no main effect
 394 of CS type ($p_{gg} = 0.395$). Thus, 1 month later, participants expressed some retrieval of Day 1 CS+
 395 shock contingencies, but did not display heightened physiological arousal towards CS+ items.

A.

Figure 1. Experimental design and behavioral results. A.) Participants underwent threat acquisition with category exemplars of animals or tools (CS+ts) paired with a shock on a partial reinforcement schedule, and a third category

398 food (CS-), never paired with shock. Conditioning was followed by the extinction phase, in which the shock was omitted
399 following CS+EXT trials (counterbalanced, tools or animals, in this example tools), and CC, in which the shock was
400 replaced by a positive picture at the end of each CS+CC trial (animals or tools, respectively, in this example animals).
401 Subjects returned 24 hours and ~1 month later, and new CSs from the same categories, were presented in the absence
402 of any shocks or positive pictures. B.) Shock expectancy results confirmed successful acquisition and extinction of
403 threat expectancy. 24 hours after day 1, shock expectancy towards the CS+EXT category significantly increased from
404 the end of extinction to early renewal. Shock expectancy towards the CS+s remained even at the ~1 month follow up.
405 C.) Conditioned SCRs replicated prior findings (Keller & Dunsmoor, 2020), there were no differences between CS+s
406 during acquisition or extinction, but 24 hours later, SCRs were higher for the CS+EXT category as compared to the
407 CS- category, and there were no differences between the CS+CC category and the CS- category. 1 month later, there
408 was no renewal of conditioned SCRs towards the CS+s. Colored borders are for illustrative purposes only. The rainbow,
409 which represents the positive pictures, and the lightning bolt, which represents an electrical shock, depict the outcome
410 following a given CS type. For example, following CS+CC trials during extinction, there is a positive picture. Error bars
411 indicate SEM. $P < 0.001$ (**), $P < 0.01$ (**), $P < 0.05$ (*).


412 Neuroimaging Results

413 Univariate analysis

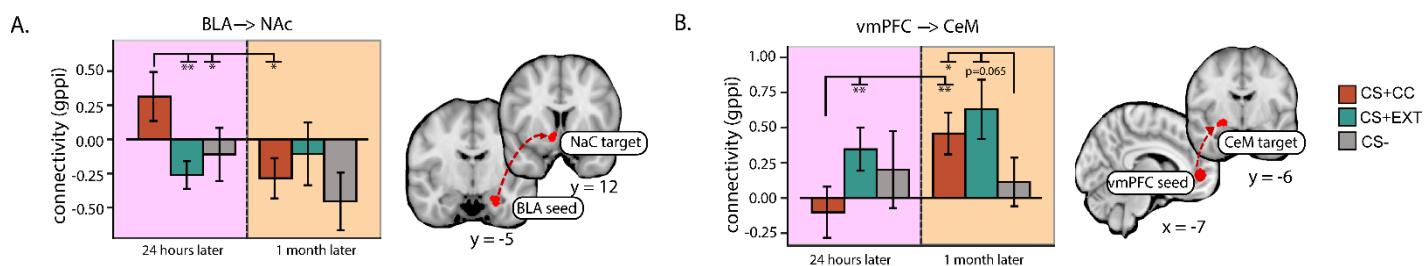
414 **Extinction.** Univariate whole-brain fMRI analysis focused on the extinction and renewal test
415 phases (see Tables 1-4 for full results from each experimental phases). During extinction, a
416 contrast of CS+CC > CS+EXT revealed significant clusters only in the cuneus and precuneus
417 (**Table 2**). The inverse contrast (CS+EXT > CS+CC) revealed significant clusters in brain regions
418 traditionally involved in maintaining and expressing threat (Fullana et al., 2016) (**Table 2, Fig.**
419 **2A**). To further characterize these fMRI results, we extracted activity associated with each
420 stimulus type (CS+CC, CS+EXT and CS-) from *a priori* regions of interest putatively involved in
421 acquisition and extinction of threat (Fullana et al., 2016; Fullana et al., 2018) (i.e., dACC, insula,
422 thalamus and PAG). We focused these ROI analyses on the second half of extinction. This
423 revealed diminished activity to the CS+CC in comparison to the CS+EXT (**Fig. 2C**), indicating that
424 the outcome during counterconditioning attenuated activity in regions involved in maintaining and
425 expressing threat expectations relative to merely omitting the shock.

426 **24-hour threat renewal test.** Univariate fMRI analysis of the CS+EXT > CS+CC and CS+CC >
427 CS+EXT contrasts did not reveal any significant activity that survived whole-brain correction for
428 multiple comparisons. A more liberal exploratory threshold of $p < 0.001$ (uncorrected) for the
429 CS+CC > CS+EXT contrast revealed a cluster in the left amygdala (MNI -16, -7, -21; 27 voxels,
430 $z = 3.49$, $p_{uncorrected} < 0.001$; cluster corrected at $p < 0.05$ with SVC) (**Table 3, Fig. 2B**). No regions
431 emerged at this liberal threshold for the inverse contrast (CS+EXT > CS+CC).

432 **1 month threat renewal test.** No regions emerged at the whole-brain level for the univariate
433 contrasts CS+CC > CS+EXT or CS+EXT > CS+CC at 1 month, even using a liberal threshold (p
434 $< .001$, uncorrected).

435 **Figure 2. CC was associated with reduced activity in threat ROIs during extinction, and enhanced amygdala**
436 **activation during 24-hour renewal.** A.) A whole-brain contrast of CS+EXT > CS+CC during the extinction phase,
437 identified at $Z>3.1$, cluster corrected at $p<0.05$, revealed activity in regions traditionally associated with threat appraisal
438 and expression (e.g., periaqueductal grey, dACC, insula and thalamus). B.) A whole-brain contrast of CS+CC >
439 CS+EXT during the 24-hour renewal phase, identified at $p<0.001$ uncorrected for multiple comparisons, revealed a
440 cluster in the left amygdala. C.) Parameter estimates extracted from a priori regions associated with threat
441 (periaqueductal grey, dACC, insula and thalamus), during the last half of extinction, revealed significantly lower activity
442 for CS+CC stimuli in comparison to both CS+EXT and CS- stimuli. The rainbow, which represents the positive pictures,
443 depict the outcome following CS+CC stimuli. Error bars indicate SEM. $P<0.001$ (***) $, P<0.01$ (**), $P<0.05$ (*).

444 **Functional connectivity**


445 **A BLA \rightarrow NAc circuit for retrieval of rewarded extinction.** To examine the involvement of fMRI
446 derived amygdala projections, we conducted a generalized psychophysiological interaction
447 analysis (gPPI) during recent and remote threat renewal tests (Fig. 3A). This analysis was
448 inspired by neurobiological evidence that a BLA to NAc circuit preferentially supports reduced
449 threat relapse of rewarded extinction (Correia et al., 2016). The seed region was an anatomically
450 defined BLA, and the target region was an anatomically defined NAc.

451 Twenty-four hours following extinction, a repeated measures ANOVA revealed a main effect of
452 CS Type ($F_{(1.93, 46.24)} = 5.781$, $p_{gg} = 0.006$, $\eta^2_G = 0.085$). Post-hoc paired t -tests revealed that
453 connectivity between the BLA and the NAc, at this recent timepoint, was enhanced for stimuli
454 from the CS+CC category, in comparison to stimuli from the CS+EXT category ($t_{(24)} = 3.320$, $p =$

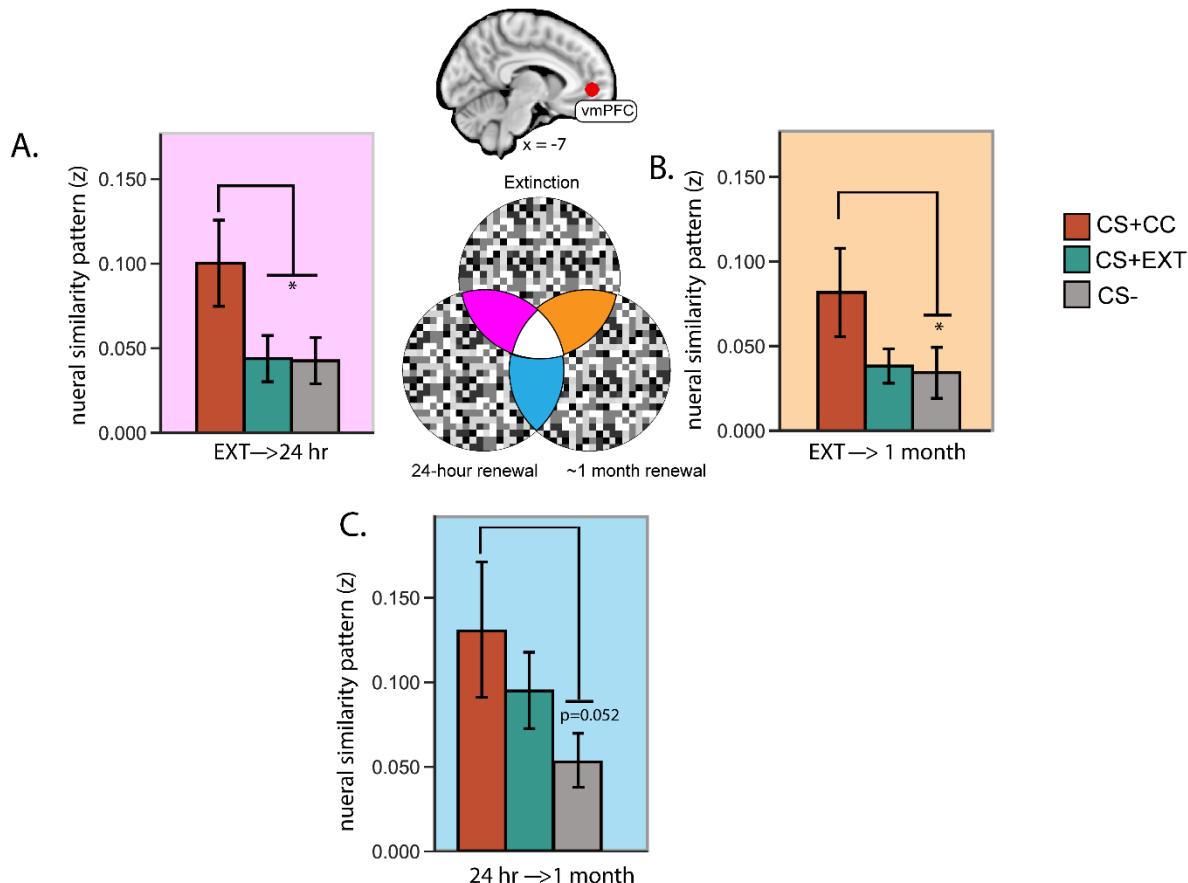
455 0.003, 95% CI [0.217, 0.932]) and the CS- category ($t_{(24)} = 2.631, p = 0.015$, 95% CI [0.091, 456 0.756]). One month after extinction, there were no differences in connectivity between CS types 457 (all $p > 0.3$). But, comparing across renewal test intervals (recent versus remote), *post-hoc* paired 458 *t*-tests revealed that BLA → NAc connectivity significantly diminished for CS+CC stimuli from the 459 24-hour to the ~1-month renewal test ($t_{(22)} = -2.087, p = 0.048$, 95% CI [-0.990, -0.003]).

460 **A vmPFC → CeM circuit is recruited for CS+ stimuli at a remote renewal test.** The medial PFC 461 is considered a critical region that inhibits conditioned defensive responses via projections that 462 inhibit the central nucleus of the amygdala (CeM) (Ghashghaei & Barbas, 2002; McDonald et al., 463 1996). This circuit is considered critical for successful extinction retrieval. We therefore conducted 464 a gPPI during recent and remote threat renewal tests using the vmPFC as the seed region and 465 an anatomically defined region of the CeM as the target region (Fig. 3B). The vmPFC was 466 functionally defined based on a medial frontal gyrus cluster from the CS- > CS+ contrast during 467 acquisition (Table 1), as anatomical labels for the vmPFC are variable across studies of Pavlovian 468 conditioning and extinction.

469 Twenty-four hours following extinction, *post-hoc* paired *t*-tests revealed that connectivity between 470 the vmPFC → CeM was heightened for CS+EXT stimuli versus CS+CC ($t_{(24)} = 2.999, p = 0.006$, 471 95% CI [0.140, 0.755]). One month following extinction, *post-hoc* paired *t*-tests revealed that 472 connectivity between CS+CC and CS+EXT stimuli no longer differed ($p = 0.466$). At this remote 473 timepoint, CS+CC stimuli ($t_{(22)} = 2.250, p = 0.035$, 95% CI [0.027, 0.661]) showed stronger 474 vmPFC → CeM connectivity than the CS- stimuli, but there were no differences between CS+EXT 475 and CS- stimuli ($p = 0.065$). Finally, there was a significant main effect of CS Type ($F_{(1.75, 38.49)} = 476 5.93, p_{gg} = 0.008, \eta^2_G = 0.043$), and renewal test interval ($F_{(1, 22)} = 5.24, p = 0.032, \eta^2_G = 0.047$), 477 but no significant CS Type by renewal interval interaction ($p_{gg} = 0.328$). *Post-hoc* paired *t*-tests 478 revealed that vmPFC → CeM connectivity for CS+CC significantly increased from the 24-hour to 479 the 1-month renewal test ($t_{(22)} = 3.370, p = 0.003$, 95% CI [0.239, 1.005]).

480 **Figure 3. Functional connectivity during recent and remote renewal tests in two a priori pathways.** A.) Functional 481 connectivity using the BLA as a seed region and the NAc as a target region, was enhanced for CS+CC stimuli during 482 24-hour renewal, but was not different between CS types at ~1 month renewal. B.) Functional connectivity using the 483 vmPFC as a seed region and the CeM as a target region, was enhanced for CS+EXT, in comparison to CS+CC stimuli

484 during 24-hour renewal. At ~1 month, connectivity for CS+CC stimuli significantly increased, and was not different than
485 CS+EXT stimuli. At this remote timepoint, both CS+s were associated with a greater functional vmPFC → CeM
486 connection than CS- stimuli. Error bars indicate SEM. $P < 0.001$ (**), $P < 0.01$ (**), $P < 0.05$ (*).


487 **Multivariate representational similarity analysis**

488 **Pattern similarity between extinction/CC memory encoding retrieval.** To assess the fidelity
489 of the extinction and CC memory traces over time, we used RSA (Kriegeskorte et al., 2008) to
490 compare patterns of fMRI activity during extinction/counterconditioning and 24-hour and 1-month
491 renewal tests. We focused this analysis on the vmPFC, as this region is associated with
492 successful extinction recall in humans (Milad et al., 2007; Phelps et al., 2004). Voxel-wise patterns
493 of activity elicited by CS+CC, CS+EXT and CS- stimuli, were correlated with the pattern of activity
494 elicited by novel stimuli from the same categories at the renewal test 24 hours (extinction → 24-
495 hour renewal), ~1 month later (extinction → 1 month renewal), and across renewal sessions (24-
496 hour renewal → 1 month renewal). Notably, one innovation to the category-conditioning design
497 (Dunsmoor et al., 2014; Hennings et al., 2020) is that participants are exposed to new category
498 exemplars composing each CS category. Thus, pattern similarity cannot be driven simply by
499 perceptual overlap of CSs, as different basic level items are presented at each phase.

500 **A CC memory trace is stable in the vmPFC from encoding to recent and remote renewal**
501 **tests.** A repeated measures ANOVA on pattern similarity from encoding to recent renewal
502 (extinction → 24-hour renewal), revealed a main effect of CS Type ($F_{(1.75, 41.88)} = 4.20$, $p_{gg} = 0.026$,
503 $\eta^2_G = 0.081$) (**Fig. 4A**). Post-hoc paired *t*-tests revealed that at 24 hours similarity from encoding
504 to retrieval in the vmPFC was selectively enhanced for CC stimuli in comparison to CS+EXT
505 stimuli ($t_{(24)} = 2.169$, $p = 0.040$, 95% CI [0.003, 0.110]) and CS- stimuli ($t_{(24)} = 2.491$, $p = 0.020$,
506 95% CI [0.001, 0.105]). At ~1 month (extinction → 1 month renewal), neural similarity for CS+CC
507 stimuli was enhanced in comparison to CS- stimuli ($t_{(22)} = 2.147$, $p = 0.043$, 95% CI [0.002, 0.093])
508 (**Fig. 4B**). Notably, memory traces from the extinction phase on Day 1 did not significantly change
509 from recent to remote renewal, as a repeated measures ANOVA with factors of CS Type and
510 renewal phase (extinction → 24 hour renewal and extinction → 1 month renewal) revealed no main
511 effect of phase ($p_{gg} = 0.286$), a significant main effect of CS Type ($F_{(1.61, 35.35)} = 5.73$, $p_{gg} = 0.011$,
512 $\eta^2_G = 0.077$), but no CS Type by phase interaction ($p_{gg} = 0.702$). (**Fig. 4A, 4B**) Thus, both at recent
513 and remote timepoints, the CC memory trace was stable in the vmPFC.

514 **Similarity patterns in the vmPFC across recent and remote renewal are enhanced for CC**
515 **stimuli.** A repeated measures ANOVA of pattern similarity from recent to remote renewal (24-
516 hour renewal session → 1 month renewal session) revealed no main effect of CS Type ($p_{gg} =$

517 0.083). Post-hoc paired *t*-tests revealed that across renewal phases, similarity was marginally
518 enhanced for CS+CC in comparison to CS- stimuli ($t_{(22)} = 2.047, p = 0.052$, 95% CI [-0.001,
519 0.155]), but not in comparison to CS+EXT stimuli ($p = 0.887$). (Fig. 4C).
520

522 **Figure 4. Stimuli that underwent CC were associated with a heightened pattern of similarity in the vmPFC. A.)**
523 *Pattern similarity from encoding to recent renewal (extinction → 24 hour retrieval) in the vmPFC was enhanced for the*
524 *CS+CC category in comparison to both the CS+EXT and CS- categories. A.) Pattern similarity from encoding to remote*
525 *renewal (extinction → ~1 month renewal) in the vmPFC was enhanced for the CS+CC category in comparison to the*
526 *CS- category. C.) Pattern similarity from recent to remote renewal (extinction → 24-hour renewal) in the vmPFC was*
527 *marginally enhanced for the CS+CC category in comparison to the CS- category. Error bars indicate SEM. P<0.001*
528 *(***), P<0.01 (**), P<0.05 (*).*

529

530

531

532

533

534 **Table 1.** Single group average (paired t-test) whole-brain contrasts during threat acquisition,
 535 identified at $Z > 3.1$ (cluster-corrected $p < 0.05$)

Contrast	Region	MNI coordinates			Size (voxels)	Cluster P	Cluster Z
		x	y	z			
CS+s > CS-							
	Inferior Occipital Gyrus, BA 19	-46	-75	2	13676	3.50E-19	7.02
	Inferior Temporal Gyrus, BA 37	51	-71	2	11861	2.21E-17	7.96
	Cuneus, BA 18	7	-94	20	3206	7.15E-07	5.32
	Precuneus, BA 7	-8	-70	46	2351	1.90E-05	4.58
	Superior Frontal Gyrus, BA 6	5	8	70	1541	0.000612	4.72
	Posterior Cingulate, BA 23	-1	-27	22	952	0.0114	4.56
	Inferior Frontal Gyrus, BA 47	-33	23	-10	926	0.0132	4.27
CS- > CS+s							
	Postcentral Gyrus, BA 3	-13	-33	74	24383	1.56E-28	6.04
	Clastrum	-35	-9	9	5725	1.99E-10	5.06
	Lingual Gyrus, BA 18	20	-82	-8	4205	2.33E-08	5.38
	Clastrum	38	-4	4	3305	5.36E-07	6.07
	Lingual Gyrus, BA 8	-17	-94	-9	3235	6.56E-07	5.44
	Medial Frontal Gyrus, BA 10	-14	50	-1	2516	9.89E-06	4.4
	Superior Temporal Gyrus, BA 41	58	-17	6	1493	0.000765	4.13
	Lingual Gyrus, BA 18	-20	-58	8	1373	0.00135	5.15
	Parahippocampal Gyrus, Hippocampus	-28	-15	-24	1072	0.00606	4.79
	Posterior Cingulate, BA 30	22	-53	8	1019	0.008	3.92
CS+CC > CS+EXT							
	Postcentral Gyrus, BA 3	-44	-25	55	912	0.0188	3.86
	Middle Temporal Gyrus, BA 37	-59	-60	0	825	0.0297	4.56
CS+EXT>CS+CC	No significant activity	—	—	—	—	—	—

536

537 **Table 2.** Single group average (paired t-test) whole-brain contrasts during extinction identified at
 538 $Z > 3.1$ (cluster-corrected $p < 0.05$)

Contrast	Region	MNI coordinates			Size (voxels)	Cluster P	Cluster Z
		x	y	z			

CS+s>CS-						
Superior Frontal Gyrus, BA 6	-2	25	62	3335	5.36E-07	5.06
Inferior Temporal Gyrus, BA 37	52	-70	0	1682	0.000352	4.77
Precuneus, BA 7	2	-74	50	1216	0.00312	4.87
CS>CS+s						
Declive	19	-76	-10	59754	0	6.99
Medial Frontal Gyrus, BA 6	-4	-5	55	39827	1.75E-39	5.79
Insula, BA 13	36	-26	16	13300	1.20E-18	6.2
Insula, BA 13	-37	-26	15	6292	4.77E-11	5.11
Inferior Occipital Gyrus, BA 17	-13	-94	-7	4245	2.44E-08	5.38
Precentral Gyrus, BA 4	55	-12	37	2726	4.95E-06	4.36
Precentral Gyrus, BA 6	-44	0	30	1786	0.000223	4.62
Middle Temporal Gyrus, BA 19	38	-63	19	1306	0.00201	4.47
Precuneus, BA 7	24	-54	47	1231	0.0029	4.36
Anterior Cingulate, BA 32	8	50	-9	1065	0.00669	4.08
Precentral Gyrus, BA 6	45	3	31	962	0.0115	4.28
Inferior Frontal Gyrus, BA 47	28	31	-11	738	0.0396	4.6
Superior Temporal Gyrus, BA 22	-51	1	-9	714	0.0454	3.74
CS+ CC > CS+EXT						
Precuneus, BA 7	4	-65	59	1949	5.10E-05	6.3
Cuneus, BA 19	3	-85	36	680	0.04	4.56
CS+EXT>CS+CC						
Culmen	18	-37	-13	117657	0	6.68
Postcentral Gyrus, BA 2	-36	-24	45	12787	1.95E-19	5.84
Inferior Frontal Gyrus, BA 9	47	14	26	6756	1.90E-12	4.4
Cingulate Gyrus, BA 24	-6	4	49	6719	2.12E-12	5.34
Clastrum	32	24	-1	2292	1.12E-05	5.68
Precuneus, BA 7	28	-52	45	1722	0.000146	5.19
Superior Temporal Gyrus, BA 22	61	-39	14	1371	0.000814	4.48
Precentral Gyrus, BA 4	46	-15	36	993	0.00617	4.15
Superior Temporal Gyrus, BA 38	50	9	-19	791	0.0201	5.04

539

540 **Table 3.** Single group average (paired t-test) whole-brain contrasts during 24-hour threat
 541 renewal, identified at $Z > 3.1$ (cluster-corrected $p < 0.05$)

MNI coordinates							
Contrast	Region	x	y	z	Size (voxels)	Cluster P	Cluster Z

CS+s > CS-	No significant activity	—	—	—	—	—	—
CS- > CS+s	No significant activity	—	—	—	—	—	—
CS+CC > CS+EXT (SVC of left amygdala, cluster corrected p<0.05)	Left amygdala	-16	-7	-21	27	0.0185	3.49
CS+EXT > CS+CC	No significant activity	—	—	—	—	—	—

542

543 **Table 4.** Single group average (paired t-test) whole-brain contrasts during ~1 month fear
544 retrieval, identified at Z > 3.1 (cluster-corrected p < 0.05)

545

Contrast	Region	x	y	z	Size (voxels)	Cluster P	Cluster Z
CS+s > CS-	No significant activity	—	—	—	—	—	—
CS- > CS+s	Precentral Gyrus, BA 4	48	-12	42	3335	1.90E-08	5.06
	Paracentral Lobule, BA 3	21	-32	58	1682	2.58E-08	4.77
	Declive	18	-81	-13	1216	0.01	4.87
CS+CC > CS+EXT	No significant activity	—	—	—	—	—	—
CS+EXT > CS+CC	No significant activity	—	—	—	—	—	—

546

547

548

549

550

551

552

553

554

555 **Discussion**

556 As extinction is a transient form of inhibitory learning, there is interest in optimized strategies that
557 more effectively inhibit relapse of extinguished threat. Counterconditioning (CC) may be more
558 effective than standard extinction (Keller et al., 2020), but the neurobehavioral mechanisms of CC
559 in humans have remained unclear. Further, to our knowledge, the long-term neurobehavioral
560 effects of threat attenuation strategies (> 1 week) have remained unexamined in humans. Here
561 we found that, in comparison to standard extinction, rewarded extinction using CC attenuated
562 activity in regions associated with threat appraisal and expression and reduced 24-hour
563 conditioned responses. Twenty-four-hour renewal was accompanied by enhanced functional
564 connectivity between the BLA and NAc for stimuli from the CC category, and connectivity between
565 the vmPFC and CeM for stimuli from the standard extinction category. One-month renewal was
566 associated with reduced conditioned responses and accompanied by connectivity between
567 vmPFC and CeM for both extinction strategies. Representational similarity analysis showed that
568 memory traces of CC are stable in the vmPFC across recent and remote time points.

569 An overarching question about CC is whether it should simply be considered another form of
570 extinction or whether it operates through different neural mechanisms (Keller et al., 2020). Here,
571 we found that CC attenuated activity in regions associated with threat appraisal and expression
572 (insula, thalamus, dACC, PAG), suggesting that providing a positive experience during extinction
573 may facilitate safety learning. Notably, this finding is consistent with a recent fMRI study in which
574 a shock was replaced with a neutral outcome (a tone) (Dunsmoor et al., 2019). As previously
575 suggested, replacing shock with a non-aversive stimulus might reduce ambiguity and uncertainty
576 otherwise generated when a shock is merely omitted (Dunsmoor et al., 2015).

577 At 24-hour and 1-month renewal tests, there was a surprising lack of differentiation in whole-brain
578 fMRI activity between the retrieval of CC and standard extinction memories. A more liberal
579 statistical threshold did reveal greater activity for CC in the left amygdala at 24-hour renewal. On
580 one hand this finding may seem counterintuitive, given that the amygdala is critical for threat
581 learning and expression (Phelps and LeDoux, 2005) and conditioned responses were slightly
582 more attenuated by CC. However, the amygdala also responds to rewarding stimuli (Beyeler et
583 al., 2018; Kim et al., 2016; Zhang et al., 2020; Zhang & Li, 2018), and the BLA contains neural
584 populations that code for extinction memory (Herry et al., 2010) and neurons that respond to
585 reward overlap with those involved in extinction (Zhang et al., 2020). Thus, it is possible the
586 amygdala plays an important role in retrieving reward-associations connected with the memory
587 of CC.

588 We used functional connectivity analysis to further assess the neural differences between CC and
589 standard extinction. At 24-hours, functional connectivity between the vmPFC and CeM was
590 enhanced for standard extinction in comparison to CC; in contrast, functional connectivity
591 between the BLA and the NAc was enhanced for CC in comparison to standard extinction. These
592 findings can be interpreted in the well-explored neurocircuitry of threat extinction in rodents. For
593 instance, infralimbic (rodent homolog of vmPFC) projections to the BLA excite GABAergic
594 intercalated cells that inhibit CeM neurons thereby inhibiting conditioned responses (Amano et
595 al., 2010; Pape & Pare, 2010; Strobel et al., 2015). A BLA to NAc circuit has been identified during
596 rewarded-extinction in rats, and is associated with reduced threat relapse (Correia et al., 2016).
597 Further evidence for the role of the BLA-to-NAc circuit comes from recent studies on rescuing
598 behavioral deficits induced by chronic stress (Dieterich et al., 2021; Sun et al., 2021). Collectively,
599 the present results help extend rodent neurobiological findings to humans and indicate that
600 separate patterns of connectivity dissociate CC from standard extinction. Interestingly,
601 connectivity between vmPFC and CeM was observed at 1-month for both CS types, suggesting
602 that over longer periods of time, extinction recruits medial prefrontal inhibition of the amygdala
603 regardless of the particular threat inhibition strategy. It is worth noting that the 24-hour renewal
604 test served as another standard extinction session, as positive outcomes were not included at
605 test. Thus, the memory of CC at the 1-month test comprised a mix of CC (from Day 1) and
606 standard extinction (from Day 2) that may be reflected in the switch in connectivity from BLA→NAc
607 to vmPFC→CeM over time.

608 A multivariate RSA was used to further interrogate the fidelity of CC and standard extinction
609 memories. The reactivation of neural activity patterns from extinction were enhanced by CC in
610 the vmPFC both 24-hours and 1-month later. It is notable that the vmPFC showed neural
611 reactivation patterns for CC, as functional connectivity analyses indicated a vmPFC→amygdala
612 connection was selectively enhanced 24-hours following standard extinction but not CC.
613 However, neurobiological evidence shows that activation of the BLA→NAc circuit by rewarded
614 extinction increases activity in the IL to prevent threat relapse (Correia et al., 2016). Thus, CC
615 may likewise enhance involvement of the vmPFC for storing long-term memory traces of safety.
616 The results from the 1-month retrieval test were intriguing for several reasons. First, although
617 shock expectancy returned slightly, autonomic arousal was remarkably low. This might indicate
618 that both threat attenuation strategies were successful over the long term. It is notable that
619 functional connectivity between the vmPFC and the CeM was evident for both CS+ categories at
620 1-month (albeit only at a marginal level for CS+EXT), suggesting this is a mechanism for

621 successfully reducing conditioned responses over long durations in humans. It is also important
622 to note that participants were all reportedly free of psychopathology, and thus memory of
623 laboratory conditioned threat might simply weaken over long durations in the healthy brain. This
624 calls for future studies comparing the return of threat over longer intervals in patients with anxiety
625 disorders, particularly posttraumatic stress disorder (PTSD). Threat conditioning is a popular
626 model for PTSD (Mahan & Ressler, 2012) but immediate dysregulated responses to a CS may
627 better reflect Acute Stress Disorder, which refers to the stress symptoms that arise in the first
628 month after a traumatic event (Bryant, 2019). A key criteria in a PTSD diagnosis is the persistence
629 of symptoms at least 1-month following the trauma (American Psychiatric Association, 2013).
630 Importantly, acute stress disorder can develop when PTSD does not, and vice-versa (Bryant,
631 2010). More research is warranted on the long-term endurance of different extinction strategies
632 in clinical populations who display extinction retrieval deficits.

633 A limitation of the present study concerns the broad definition of “reward” for the outcomes used
634 to replace shocks in counterconditioning. Simply put, *were the pictures actually rewarding?* More
635 generally, by what operational definition should “reward” be applied? It is worth noting that the
636 pictures used in this study were rated highly in positive valence by a separate group of
637 participants. CC paradigms have employed a wide variety of appetitive outcomes (see Table 1:
638 Keller et al., 2020), as well as different methodology for the subject to obtain the reward (e.g.,
639 passively delivered vs. an instrumental behavior, Thomas et al., 2012). From a purely neural
640 perspective, extinction does recruit reward-responsive dopaminergic systems (Kalisch et al.,
641 2019; McNally et al., 2011; Salinas-Hernández and Duvarci, 2021). Further, the mere absence of
642 an expected shock could be construed as a psychological reward (or at least a relief). It is
643 therefore possible that facilitating extinction through any number of strategies simply promotes
644 engagement of a threat-inhibition process that overlaps with reward-responsive neurocircuitry.
645 One way future research could evaluate whether there is a unique effect of “reward”, would be to
646 compare outcomes that vary in reward intensity, such as comparing positive pictures to primary
647 reinforcers, like food or juice, or to compare passive delivery versus instrumental responses
648 (Thomas et al., 2012).

649 Insofar as Pavlovian extinction serves as a theoretical foundation for exposure therapy, and
650 symptoms frequently return following treatment (Vervliet et al., 2013), examining the
651 neurobehavioral endurance of different threat attenuation strategies is important. These results
652 provide new evidence that the presence of a rewarding stimulus during extinction may boost
653 threat attenuation through an amygdala-striatal pathway, and stabilize memory representations

654 in the vmPFC over long time intervals. These results extend neurobiological findings on the
655 overlap between reward and threat extinction from rodents to healthy humans. While
656 neuroimaging research comparing these strategies in clinical populations is warranted, this type
657 of research could serve as a foundation for translational efforts that result in a paradigm shift for
658 exposure therapy.

659 **References**

- 660 Abramowitz, J. S., Deacon, B. J., & Whiteside, S. P. (2019). *Exposure therapy for anxiety: Principles and*
661 *practice*. Guilford Publications.
- 662 Alexandra Kredlow, M., Fenster, R. J., Laurent, E. S., Ressler, K. J., & Phelps, E. A. (2021). Prefrontal
663 cortex, amygdala, and threat processing: Implications for PTSD. *Neuropsychopharmacology*, 1–13.
- 664 Amano, T., Unal, C. T., & Paré, D. (2010). Synaptic correlates of fear extinction in the amygdala. *Nature*
665 *Neuroscience*, 13(4), 489–494.
- 666 American Psychiatric Association, . (2013). *Diagnostic and statistical manual of mental disorders (5th ed.)*
667 (5th ed.).
- 668 Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N., Habel, U., Schneider, F., & Zilles,
669 K. (2005). Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex:
670 Intersubject variability and probability maps. *Anatomy and Embryology*, 210(5–6), 343–352.
- 671 Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2003). General multilevel linear modeling for group
672 analysis in fMRI. *Neuroimage*, 20(2), 1052–1063.
- 673 Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method
674 (CompCor) for BOLD and perfusion based fMRI. *Neuroimage*, 37(1), 90–101.
- 675 Beyeler, A., Chang, C.-J., Silvestre, M., Lévéque, C., Namburi, P., Wildes, C. P., & Tye, K. M. (2018).
676 Organization of valence-encoding and projection-defined neurons in the basolateral amygdala. *Cell*
677 *Reports*, 22(4), 905–918.
- 678 Bouton, M. E. (2002). Context, ambiguity, and unlearning: Sources of relapse after behavioral extinction.
679 *Biological Psychiatry*, 52(10), 976–986.
- 680 Bryant, R. A. (2019). Post-traumatic stress disorder: A state-of-the-art review of evidence and challenges.
681 *World Psychiatry*, 18(3), 259–269.
- 682 Correia, S. S., McGrath, A. G., Lee, A., Graybiel, A. M., & Goosens, K. A. (2016). Amygdala-ventral striatum
683 circuit activation decreases long-term fear. *Elife*, 5, e12669.
- 684 Cox, R. W., & Hyde, J. S. (1997). Software tools for analysis and visualization of fMRI data. *NMR in*
685 *Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance*
686 *In Vivo*, 10(4-5), 171–178.
- 687 Craske, M. G., Hermans, D., & Vervliet, B. (2018). State-of-the-art and future directions for extinction as a
688 translational model for fear and anxiety. *Phil. Trans. R. Soc. B*, 373(1742), 20170025.
- 689 Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface
690 reconstruction. *Neuroimage*, 9(2), 179–194.

- 691 Dickinson, A., & Pearce, J. M. (1977). Inhibitory interactions between appetitive and aversive stimuli.
692 *Psychological Bulletin*, 84(4), 690.
- 693 Dieterich, A., Floeder, J., Stech, K., Lee, J., Srivastava, P., Barker, D. J., & Samuels, B. A. (2021). Activation
694 of Basolateral Amygdala to Nucleus Accumbens Projection Neurons Attenuates Chronic Corticosterone-
695 Induced Behavioral Deficits in Male Mice. *Frontiers in Behavioral Neuroscience*, 15, 17.
- 696 Dunsmaor, J. E., Campese, V. D., Ceceli, A. O., LeDoux, J. E., & Phelps, E. A. (2015). Novelty-facilitated
697 extinction: Providing a novel outcome in place of an expected threat diminishes recovery of defensive
698 responses. *Biological Psychiatry*, 78(3), 203–209.
- 699 Dunsmaor, J. E., Kroes, M. C. W., Li, J., Daw, N. D., Simpson, H. B., & Phelps, E. A. (2019). Role of Human
700 Ventromedial Prefrontal Cortex in Learning and Recall of Enhanced Extinction. *The Journal of
701 Neuroscience*, 39(17), 3264–3276. <https://doi.org/10.1523/JNEUROSCI.2713-18.2019>
- 702 Dunsmaor, J. E., Niv, Y., Daw, N., & Phelps, E. A. (2015). Rethinking extinction. *Neuron*, 88(1), 47–63.
- 703 Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., & Zilles, K. (2005). A
704 new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data.
705 *Neuroimage*, 25(4), 1325–1335.
- 706 Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J. D., Goncalves,
707 M., DuPre, E., & Snyder, M. (2019). fMRIprep: A robust preprocessing pipeline for functional MRI. *Nature
708 Methods*, 16(1), 111–116.
- 709 Fonov, V. S., Evans, A. C., McKinstry, R. C., Almlí, C., & Collins, D. (2009). Unbiased nonlinear average
710 age-appropriate brain templates from birth to adulthood. *NeuroImage*, 47, S102.
- 711 Fullana, M. A., Albajes-Eizagirre, A., Soriano-Mas, C., Vervliet, B., Cardoner, N., Benet, O., Radua, J., &
712 Harrison, B. J. (2018). Fear extinction in the human brain: A meta-analysis of fMRI studies in healthy
713 participants. *Neuroscience & Biobehavioral Reviews*, 88, 16–25.
- 714 Fullana, M., Harrison, B., Soriano-Mas, C., Vervliet, B., Cardoner, N., Àvila-Parcet, A., & Radua, J. (2016).
715 Neural signatures of human fear conditioning: An updated and extended meta-analysis of fMRI studies.
716 *Molecular Psychiatry*, 21(4), 500–508.
- 717 Gatzounis, R., De Bruyn, S., Van de Velde, L., & Meulders, A. (2021). No differences in return of pain-
718 related fear after extinction and counterconditioning. *Emotion*.
- 719 Ghashghaei, H. T., & Barbas, H. (2002). Pathways for emotion: Interactions of prefrontal and anterior
720 temporal pathways in the amygdala of the rhesus monkey. *Neuroscience*, 115(4), 1261–1279.
- 721 Giustino, T. F., & Maren, S. (2015). The role of the medial prefrontal cortex in the conditioning and extinction
722 of fear. *Frontiers in Behavioral Neuroscience*, 9, 298.
- 723 Green, S. R., Kragel, P. A., Fecteau, M. E., & LaBar, K. S. (2014). Development and validation of an
724 unsupervised scoring system (Autonomate) for skin conductance response analysis. *International Journal
725 of Psychophysiology*, 91(3), 186–193.
- 726 Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based
727 registration. *Neuroimage*, 48(1), 63–72.
- 728 Hartley, C. A., & Phelps, E. A. (2010). Changing Fear: The Neurocircuitry of Emotion Regulation.
729 *Neuropsychopharmacology*, 35(1), 136–146. <https://doi.org/10.1038/npp.2009.121>
- 730 Hennings, A. C., Lewis-Peacock, J. A., & Dunsmaor, J. E. (2021). Emotional learning retroactively
731 enhances item memory but distorts source attribution. *Learning & Memory*, 28(6), 178–186.

- 732 Hennings, A. C., McClay, M., Drew, M. R., Lewis-Peacock, J. A., & Dunsmoor, J. E. (2021). Neural
733 reinstatement reveals divided organization of fear and extinction memories in the human brain. *Current
734 Biology*.
- 735 Hennings, A. C., McClay, M., Lewis-Peacock, J. A., & Dunsmoor, J. E. (2020). Contextual reinstatement
736 promotes extinction generalization in healthy adults but not PTSD. *Neuropsychologia*, 147, 107573.
- 737 Herry, C., Ferraguti, F., Singewald, N., Letzkus, J. J., Ehrlich, I., & Lüthi, A. (2010). Neuronal circuits of fear
738 extinction. *European Journal of Neuroscience*, 31(4), 599–612.
- 739 Holtzman-Assif, O., Laurent, V., & Westbrook, R. F. (2010). Blockade of dopamine activity in the nucleus
740 accumbens impairs learning extinction of conditioned fear. *Learning & Memory*, 17(2), 71–75.
- 741 Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and
742 accurate linear registration and motion correction of brain images. *Neuroimage*, 17(2), 825–841.
- 743 Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain
744 images. *Medical Image Analysis*, 5(2), 143–156.
- 745 Jones, M. C. (1924). A laboratory study of fear: The case of Peter. *The Journal of Genetic Psychology*, 31,
746 308–315.
- 747 Josselyn, S. A., & Frankland, P. W. (2018). Fear extinction requires reward. *Cell*, 175(3), 639–640.
- 748 Kalisch, R., Gerlicher, A. M., & Duvarci, S. (2019). A dopaminergic basis for fear extinction. *Trends in
749 Cognitive Sciences*, 23(4), 274–277.
- 750 Keller, N. E., & Dunsmoor, J. E. (2020). The effects of aversive-to-appetitive counterconditioning on implicit
751 and explicit fear memory. *Learning & Memory*, 27(1), 12–19.
- 752 Keller, N. E., Hennings, A. C., & Dunsmoor, J. E. (2020a). Behavioral and neural processes in
753 counterconditioning: Past and future directions. *Behaviour Research and Therapy*, 125, 103532.
- 754 Keller, N. E., Hennings, A. C., & Dunsmoor, J. E. (2020b). Behavioral and neural processes in
755 counterconditioning: Past and future directions. *Behaviour Research and Therapy*, 125, 103532.
- 756 Kim, H., Smolker, H. R., Smith, L. L., Banich, M. T., & Lewis-Peacock, J. A. (2020). Changes to information
757 in working memory depend on distinct removal operations. *Nature Communications*, 11(1), 1–14.
- 758 Kim, J., Pignatelli, M., Xu, S., Itohara, S., & Tonegawa, S. (2016). Antagonistic negative and positive
759 neurons of the basolateral amygdala. *Nature Neuroscience*, 19(12), 1636–1646.
- 760 Koch, S. B., van Zuiden, M., Nawijn, L., Frijling, J. L., Veltman, D. J., & Olff, M. (2016). Intranasal oxytocin
761 normalizes amygdala functional connectivity in posttraumatic stress disorder. *Neuropsychopharmacology*,
762 41(8), 2041–2051.
- 763 Koizumi, A., Amano, K., Cortese, A., Shibata, K., Yoshida, W., Seymour, B., Kawato, M., & Lau, H. (2016).
764 Fear reduction without fear through reinforcement of neural activity that bypasses conscious exposure.
765 *Nature Human Behaviour*, 1, 0006.
- 766 Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis—Connecting the
767 branches of systems neuroscience. *Frontiers Systems Neuroscience*, 2, 4.
768 <https://doi.org/10.3389/neuro.06.004.2008>
- 769 Kroes, M. C., Tona, K.-D., den Ouden, H. E., Vogel, S., van Wingen, G. A., & Fernández, G. (2016). How
770 administration of the beta-blocker propranolol before extinction can prevent the return of fear.
771 *Neuropsychopharmacology*, 41(6), 1569–1578.

- 772 Laird, A. R., Robinson, J. L., McMillan, K. M., Tordesillas-Gutiérrez, D., Moran, S. T., Gonzales, S. M., Ray,
773 K. L., Franklin, C., Glahn, D. C., & Fox, P. T. (2010). Comparison of the disparity between Talairach and
774 MNI coordinates in functional neuroimaging data: Validation of the Lancaster transform. *Neuroimage*, 51(2),
775 677–683.
- 776 Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., Kochunov, P. V.,
777 Nickerson, D., Mikiten, S. A., & Fox, P. T. (2000). Automated Talairach atlas labels for functional brain
778 mapping. *Human Brain Mapping*, 10(3), 120–131.
- 779 Lawrence, M. A. (2016). ez: Easy analysis and visualization of factorial experiments. *R Package Version*,
780 4(2).
- 781 Luo, R., Uematsu, A., Weitemier, A., Aquili, L., Koivumaa, J., McHugh, T. J., & Johansen, J. P. (2018). A
782 dopaminergic switch for fear to safety transitions. *Nature Communications*, 9(1), 1–11.
- 783 Mahan, A. L., & Ressler, K. J. (2012). Fear conditioning, synaptic plasticity and the amygdala: Implications
784 for posttraumatic stress disorder. *Trends Neurosci*, 35(1), 24–35. <https://doi.org/10.1016/j.tins.2011.06.007>
- 785 McDonald, A., Mascagni, F., & Guo, L. (1996). Projections of the medial and lateral prefrontal cortices to
786 the amygdala: A Phaseolus vulgaris leucoagglutinin study in the rat. *Neuroscience*, 71(1), 55–75.
- 787 Milad, M. R., Pitman, R. K., Ellis, C. B., Gold, A. L., Shin, L. M., Lasko, N. B., Zeidan, M. A., Handwerger,
788 K., Orr, S. P., & Rauch, S. L. (2009). Neurobiological basis of failure to recall extinction memory in
789 posttraumatic stress disorder. *Biological Psychiatry*, 66(12), 1075–1082.
- 790 Milad, M. R., & Quirk, G. J. (2012). Fear extinction as a model for translational neuroscience: Ten years of
791 progress. *Annual Review of Psychology*, 63, 129–151.
792 <https://doi.org/10.1146/annurev.psych.121208.131631>
- 793 Milad, M. R., Wright, C. I., Orr, S. P., Pitman, R. K., Quirk, G. J., & Rauch, S. L. (2007). Recall of fear
794 extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. *Biological
795 Psychiatry*, 62(5), 446–454.
- 796 Mumford, J. A., Davis, T., & Poldrack, R. A. (2014). The impact of study design on pattern estimation for
797 single-trial multivariate pattern analysis. *NeuroImage*, 103, 130–138.
798 <https://doi.org/10.1016/j.neuroimage.2014.09.026>
- 799 Mumford, J. A., Turner, B. O., Ashby, F. G., & Poldrack, R. A. (2012). Deconvolving BOLD activation in
800 event-related designs for multivoxel pattern classification analyses. *NeuroImage*, 59(3), 2636–2643.
801 <https://doi.org/10.1016/j.neuroimage.2011.08.076>
- 802 Pape, H.-C., & Pare, D. (2010). Plastic synaptic networks of the amygdala for the acquisition, expression,
803 and extinction of conditioned fear. *Physiological Reviews*, 90(2), 419–463.
- 804 Phelps, E. A., Delgado, M. R., Nearing, K. I., & LeDoux, J. E. (2004). Extinction learning in humans: Role
805 of the amygdala and vmPFC. *Neuron*, 43(6), 897–905.
- 806 Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods
807 to detect, characterize, and remove motion artifact in resting state fMRI. *NeuroImage*, 84, 320–341.
- 808 Raczka, K., Mechias, M., Gartmann, N., Reif, A., Deckert, J., Pessiglione, M., & Kalisch, R. (2011).
809 Empirical support for an involvement of the mesostriatal dopamine system in human fear extinction.
810 *Translational Psychiatry*, 1(6), e12–e12.
- 811 Reuter, M., Rosas, H. D., & Fischl, B. (2010). Highly accurate inverse consistent registration: A robust
812 approach. *NeuroImage*, 53(4), 1181–1196.

- 813 Ritchey, M., Wing, E. A., LaBar, K. S., & Cabeza, R. (2012). Neural similarity between encoding and
814 retrieval is related to memory via hippocampal interactions. *Cerebral Cortex*, 23(12), 2818–2828.
- 815 Roy, A. K., Fudge, J. L., Kelly, C., Perry, J. S., Daniele, T., Carlisi, C., Benson, B., Castellanos, F. X.,
816 Milham, M. P., & Pine, D. S. (2013). Intrinsic functional connectivity of amygdala-based networks in
817 adolescent generalized anxiety disorder. *Journal of the American Academy of Child & Adolescent
818 Psychiatry*, 52(3), 290–299.
- 819 Roy, A. K., Shehzad, Z., Margulies, D. S., Kelly, A. C., Uddin, L. Q., Gotimer, K., Biswal, B. B., Castellanos,
820 F. X., & Milham, M. P. (2009). Functional connectivity of the human amygdala using resting state fMRI.
821 *Neuroimage*, 45(2), 614–626.
- 822 Salinas-Hernández, X. I., & Duvarci, S. (2021). Dopamine in Fear Extinction. *Frontiers in Synaptic
823 Neuroscience*, 13, 10.
- 824 Schiller, D., Monfils, M.-H., Raio, C. M., Johnson, D. C., LeDoux, J. E., & Phelps, E. A. (2010). Preventing
825 the return of fear in humans using reconsolidation update mechanisms. *Nature*, 463(7277), 49–53.
- 826 Strobel, C., Marek, R., Gooch, H. M., Sullivan, R. K., & Sah, P. (2015). Prefrontal and auditory input to
827 intercalated neurons of the amygdala. *Cell Reports*, 10(9), 1435–1442.
- 828 Sun, L., You, J., Sun, F., Cui, M., Wang, J., Wang, W., Wang, D., Liu, D., Xu, Z., & Qiu, C. (2021).
829 Reactivating a positive feedback loop VTA-BLA-NAc circuit associated with positive experience ameliorates
830 the attenuated reward sensitivity induced by chronic stress. *Neurobiology of Stress*, 15, 100370.
- 831 Team, R. C. (2013). *R: A language and environment for statistical computing*.
- 832 Thomas, B. L., Cutler, M., & Novak, C. (2012). A modified counterconditioning procedure prevents the
833 renewal of conditioned fear in rats. *Learning and Motivation*, 43(1–2), 24–34.
- 834 Tovote, P., Fadok, J. P., & Lüthi, A. (2015). Neuronal circuits for fear and anxiety. *Nature Reviews
835 Neuroscience*, 16(6), 317–331.
- 836 Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C. (2010).
837 N4ITK: improved N3 bias correction. *IEEE Transactions on Medical Imaging*, 29(6), 1310–1320.
- 838 van Dis, E. A., Hagenaars, M. A., Bockting, C. L., & Engelhard, I. M. (2019). Reducing negative stimulus
839 valence does not attenuate the return of fear: Two counterconditioning experiments. *Behaviour Research
840 and Therapy*, 103416.
- 841 Vervliet, B., Craske, M. G., & Hermans, D. (2013). Fear extinction and relapse: State of the art. *Annual
842 Review of Clinical Psychology*, 9, 215–248.
- 843 Wolpe, J. (1954). Reciprocal inhibition as the main basis of psychotherapeutic effects. *AMA Archives of
844 Neurology & Psychiatry*, 72(2), 205–226.
- 845 Wolpe, J. (1968). Psychotherapy by reciprocal inhibition. *Conditional Reflex: A Pavlovian Journal of
846 Research & Therapy*, 3(4), 234–240.
- 847 Wolpe, J. (1995). *Reciprocal inhibition: Major agent of behavior change*.
- 848 Woolrich, M. (2008). Robust group analysis using outlier inference. *Neuroimage*, 41(2), 286–301.
- 849 Woolrich, M. W., Behrens, T. E., Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2004). Multilevel linear
850 modelling for fMRI group analysis using Bayesian inference. *Neuroimage*, 21(4), 1732–1747.
- 851 Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal autocorrelation in univariate
852 linear modeling of fMRI data. *Neuroimage*, 14(6), 1370–1386.

- 853 Worsley, K. J. (2001). Statistical analysis of activation images. *Functional MRI: An Introduction to Methods*,
854 14(1), 251–270.
- 855 Zhang, X., Kim, J., & Tonegawa, S. (2020). Amygdala reward neurons form and store fear extinction
856 memory. *Neuron*, 105(6), 1077–1093.
- 857 Zhang, X., & Li, B. (2018). Population coding of valence in the basolateral amygdala. *Nature
858 Communications*, 9(1), 1–14.
- 859 Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov
860 random field model and the expectation-maximization algorithm. *IEEE Transactions on Medical Imaging*,
861 20(1), 45–57. <https://doi.org/10.1109/42.906424>
- 862