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I. Introduction

Flight time plays an important role in developing guidance and navigation planners for aircraft. It is

one of the key factors affecting the direct operating costs and passenger experience. As a consequence, the

airline industry aims to find better ways to generate minimum-time1 and minimum-fuel2,3 flight routes. In

the latter case, fuel-optimal navigation can be performed by optimizing vertical profiles for climb, cruise and

descent operations using a higher-dimensional model that includes gravitational effects,3 while in the former

case, minimum-time trajectories can be generated for a horizontal (constant altitude) profile where only a

kinematic model is used.1 While other methods can be employed to minimize both fuel and time,4,5 this

Note focuses only on a kinematic model for generating time-optimal routes.

The minimum-time trajectories of the aircraft navigation problem exploit the effect of wind in order

to maximize ground speed. The problem of finding such trajectories can be formulated as a two-point

boundary value problem,6 for which many numerical solution techniques exist7 and are already utilized

by several navigation planners. These techniques can be classified as either direct or indirect methods for

trajectory optimization.8 On the one hand, direct methods are based on transcribing the optimal control

problem into a nonlinear optimization problem whose solution is often subjected to numerical difficulties. On

the other hand, indirect methods employ multiple shooting or collocation techniques, which typically require

good initial approximations for the optimal trajectory.7 Other navigation planners use algorithms that rely

on the concept of the minimum-time function which provides the means to finding feasible and optimal

trajectories. The computation of this function is usually performed with standard graph-search techniques,

such as Dijkstra’s algorithm or the A-star (A*) algorithm, with sampling-based search techniques such as
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RRTs (rapidly-exploring random trees), or with wavefront expansion techniques that interpolate solutions

to linearized equations of motion or simple ordinary differential equations.9 The reader may refer to articles

by Eichhorn,10 Lolla et al.,11 Soulignac,12 Chakrabarty and Langelaan,13 Elston and Frew,14 for examples

and implementation of such methods in navigation applications.

The navigation problem can be formulated as a minimum-time problem for aircraft motion under the

effects of a wind field. The goal of this problem is to analyze the wind effects on flight time for long distance

routes. As such, the aircraft dynamics are not included in the analysis and only a kinematic model is used

to describe the motion of the aircraft. This approach, which has been used previously in the literature,1,15

is motivated by the large scale of time and distance required for medium and long-haul flights. The first one

to consider and solve this problem for motion on a two-dimensional plane was Ernst Zermelo. The original

solution can be found in Ref. [16] and its extension in the case when the vehicle moves on a sphere that

is embedded in a three-dimensional space, was first presented by Jardin and Bryson.1 In particular, the

authors of Ref. [1] gave the necessary conditions for optimality, which allowed them to subsequently find

nearly optimal solutions around a nominal path.

Both solutions from Refs. [1] and [16], can be used to generate optimal trajectories from one destination

to another. However, by parameterizing these solutions throughout the state space of the problem, one is

able to characterize the optimal synthesis and obtain a more general study of the effects of wind fields on

flight time. In other words, one may look for minimum-time regions or surfaces rather than minimum-time

trajectories in order to develop better planning strategies. The idea of computing the minimum-time function

of the Zermelo navigation problem through propagation of the extremal (or candidate minimum-time) front

for a planar surface was proposed by Bakolas17,18 and Rhoads et al.19 This extremal front expansion can be

computed easily by exploiting the structure of the optimal control in order to parameterize the state space.

In this Note, a numerical technique is presented for the computation of the minimum-time function and

for the generation of globally optimal trajectories. The technique uses the solution of the Zermelo navigation

problem on a sphere in a wind field. While this solution alone assumes a candidate optimal trajectory, it

does not guarantee global optimality. One of the challenges in generating globally optimal trajectories is the

complex behavior of the wind fields, which may lead, in some cases, to the existence of multiple candidate

optimal trajectories for the same target destination. The proposed algorithm guarantees globally optimal

solutions by virtue of a simple, yet efficient and systematic method of recording the temporal and spatial

evolution of the extremal front. Moreover, after computing the minimum-time function, minimum-time

trajectories can be generated for any destination inside the reachable region with minimum computational

effort. Previous works by Bijlsma15 and Rhoads et al19 deal with a similar problem on a planar surface.

Specifically, Bijlsma presents a method to determine families of minimum-time routes. This method, however,
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cannot handle satisfactorily cases in which discontinuities of the minimum-time function or singularities of

the optimal synthesis appear. Rhoads et al provide a numerical study of the problem on the plane and

an adaptive sampling and re-meshing procedure to deal with suboptimal solutions. While this algorithm

achieves its goals for a planar surface, this Note presents an algorithm that is simpler to implement and that

provides optimal solutions for a spherical surface, where the equations of motion are more complex.

The rest of this Note is organized as follows. In Section II the problem description and the solution of the

Zermelo navigation problem on the sphere are presented. Section III describes the numerical algorithm for

the computation of the minimum-time function. Numerical simulations for realistic wind fields are presented

in Section IV, along with an investigation for the accuracy of these solutions. Section V concludes the Note

with a summary of remarks.

II. Problem Description

Consider an aircraft flying at constant high altitude in a realistic wind field assuming a spherical model

of the Earth. In order to account for the curvature of the Earth and for the effects of its shape on the motion

of the aircraft, traveling speeds and times need to be comparable to those of medium and long-haul flights.

Also, realistic flow fields are represented by spatially varying winds based on real data. These winds are

only spatially varying since it is assumed that meteorological data is not updated continuously but rather

at various time cycles, such as 1, 3 or 6 hours.20

Let time be denoted by t ∈ R, the heading angle by ψ ∈ [0, 2π], and the position of the aircraft by the

vector q = [φ, θ]T , where φ ∈ [0, 2π] and θ ∈ [0, π] represent the spherical coordinates. Furthermore, consider

u(φ, θ) and v(φ, θ) to be the components of the wind velocity in the corresponding spherical coordinates, at

position q on the sphere. The kinematic model describing the motion of an aircraft on a sphere is represented

by the following equations:

φ̇ =
1

r sin θ
(u(φ, θ) + ū cosψ), θ̇ =

1

r
(v(φ, θ) + ū sinψ), (1)

where ū and ψ are the airspeed and the heading angle of the aircraft, respectively, and r is the Earth’s

radius (3, 959 miles). The control input is represented here by ψ, while the initial and terminal conditions

are represented by the following variables:

φ(0) = φ0, φ(tf ) = φf , θ(0) = θ0, θ(tf ) = θf , (2)

where tf is the (free) final time of arrival.

The problem previously described is set up as a minimum-time control problem, which will be henceforth
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called the Zermelo navigation problem on a sphere (ZNPS). Specifically, the problem can be stated as follows:

Given an aircraft traveling with constant airspeed in a flow field on the surface of a sphere, determine the

time history of all heading angles such that traveling time is minimized. A solution to this problem that

exploits the structure of the optimal control for the kinematic model described by (1) is determined using a

systematic numerical procedure. This allows one to generate the family of globally optimal trajectories and

the minimum-time function.

A. Structure of the Optimal Heading Control

It can be shown by using standard optimal control techniques such as those used in Ref. [1] that the candidate

optimal control that solves the ZNPS satisfies the following equation:

ψ̇ =
1

r

[

∂v

∂φ
csc θ sin2 ψ+csc θ

(

v cos θ+
∂u

∂φ
−
∂v

∂θ
sin θ

)

sinψ cosψ+ ū cot θ cosψ+cos2 ψ
(

u cot θ−
∂u

∂θ

)

]

. (3)

The initial condition for the above equation, ψ(0) = ψ0 ∈ [0, 2π], corresponds to the control input of the

system described by (1) at time t = 0. It is interesting to note that equation (3) reduces to the planar

heading equation obtained by Zermelo,16 if θ is set to π
2 (known as the “navigation formula”). Also, a

syntactically different result was obtained by Jardin and Bryson,1 by considering θ to be measured from the

line of the Equator rather than the South pole. One possible issue worth mentioning here is the existence

of singularities at the spherical poles. These appear at points where equation (3) is undefined. This issue

can be resolved with a coordinate rotation that shifts the position of the poles when solutions are needed in

their proximity. Since the method used for this rotation has already been presented in Ref. [1], it will not

be further investigated here.

B. Formulation of the Extremal Front and the Minimum-Time Function

Next, the fact that the structure of the candidate optimal input ψ satisfies (3) will be used to determine the

extremal trajectories of the optimal control problem. Specifically, the extremal trajectories are computed by

solving simultaneously the control input differential equation (3) and the kinematic differential equations (1)

with initial conditions ψ0 ∈ [0, 2π], t ∈ [0, tf ] and boundary conditions (2). As such, the trajectory starting

from initial position q0 = [φ0, θ0]
T at time t = 0, is generated by the kinematic model with the application of a

control input that solves (3) for a particular value of ψ0 and t ∈ [0, tf ]. This control input is called an extremal

control input and is denoted by ψ⋆(t;ψ0). Next, consider a mapping ϕ(·; q0, ψ(·)) : [0, tf ]→ S := [0, 2π]×[0, π]

that maps the flight time, t ∈ [0, tf ], to a reachable position, q ∈ S, where q = ϕ(t; q0, ψ(·)), for a given time

history of the heading angle ψ(·), and a given initial state q0. Then, the trace of the extremal trajectory

emanating from q0 and generated with the application of the candidate optimal input, ψ⋆(·;ψ0), in the time
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interval [0, tf ] is the set {q ∈ S : q = ϕ(t; q0, ψ
⋆(·;ψ0)), t ∈ [0, tf ]}.

Remark [Solution Domain] The domain of the ZNPS is S = [0, 2π]× [0, π] which only implies that solutions

are represented by spherical coordinates. Therefore, the boundaries are identified symmetrically. By this, it

is meant that, if q = [φ, θ]T is a position in S, then [0, θ]T ∼ [2π, θ]T for all θ ∈ [0, π], and [φ, 0]T ∼ [φ, π]T

for all φ ∈ [0, 2π]. (The identification operator ∼ has the same effect as the equivalence relation in topology;

in other words, it declares that two points are identical and that the interval defined by them forms a closed

loop.)9

The extremal front can now be defined as the set of points which can be reached in a given time by

extremal trajectories of the ZNPS. As such, the extremal front is generated by the end points of the extremal

trajectories at time t, that originate from the initial condition q0, and is denoted by Ft(q0), where Ft(q0) :=

{q ∈ S : q = ϕ(t; q0, ψ
⋆(·;ψ0)), ψ0 ∈ [0, 2π]}. Thus, as time progresses, this front expands in a ripple-like

behavior, covering regions in space that are reachable by the aircraft.

Next, the minimum-time function of the ZNPS is defined by F : S→ R≥0, where R≥0 denotes the set of

non-negative real numbers (here, representing travel times). In particular, F (q; q0) gives the minimum time

that the aircraft takes to reach destination q ∈ S from a given point of departure q0 ∈ S; that is,

F (q; q0) := min
ψ0∈[0,2π]

{t ≥ 0 : q = ϕ(t; q0, ψ
⋆(·;ψ0))}. (4)

III. Numerical Method for the Computation of the Minimum-Time Function

In this section, a systematic method for the numerical solution of the minimum-time function is presented.

Following this result, (approximated) minimum-time trajectories can be determined. The backbone of this

method is the extremal front expansion. Using the definition given in Section II, the extremal front consists

of an infinite number of states at each time t > t0. Therefore, an approximation with an appropriate finite

set is required for practical reasons. To this end, a finite discretization of the unit circle is introduced.

This uses a partition C of the compact interval [0, 2π − ǫ], where C := {ψ
(1)
0 , ψ

(2)
0 , . . . , ψ

(H)
0 }, such that

ψ
(1)
0 = 0 and ψ

(H)
0 = 2π − ǫ, for 0 < ǫ ≪ 1. This implies that C = {0, ǫ, 2ǫ, . . . ,Hǫ}, where ǫ is the

heading angle step size. Note that the superscript k, where k ∈ {1, 2, . . . , H}, denotes the index of the

discretized initial condition for the control input. Consequently, the extremal front is approximated by the

set Ft(q0; C) := {q ∈ S : q = ϕ(t; q0, ψ
⋆(·;ψ0)), ψ0 ∈ C}, for any t > t0.

It is well known that dynamical systems can exhibit unpredictable behavior far away from initial con-

ditions. As such, the resolution of the heading angle step size may cause large separations between the

end-points of trajectories, which may lead to poor approximations of the extremal front. This implies that

any computational constants, such as ǫ or H, cannot be optimally set a priori. To resolve this issue, an adap-
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tive bisection algorithm is used whenever the distance between the end-points of two trajectories, obtained

from consecutive initial headings, is larger than a predefined upper bound d̄. The distance is measured by

computing the Euclidean norm for the two end-points. In this way, the extremal front takes into account the

sensitivity of extremal trajectories to initial heading angles. A similar method was also used by Bijlsma.15

Next, the expansion of the extremal front is performed by integrating forward the extremal trajectories

over a predefined time step ts, using as initial conditions the values of their current end-points. For com-

putational purposes, this expansion may stop when a specific destination or a time limit is reached. In the

proposed algorithm, the latter condition will be used for the termination of the extremal front expansion

procedure. The time limit is defined by the user and is denoted here by Tmax.

Furthermore, in order to form the minimum-time function, global optimality of the obtained numerical

solutions needs to be ensured. This is challenging because complex behaviors of dynamical systems can lead

to the appearance of anomalies in the extremal front of the minimum-time function, as was noted in Refs.

[15] and [19]. In other words, the dynamical system may generate extremal trajectories which reach the same

position at different times and cause discontinuities in the extremal front. To avoid this issue, a criterion

for “filtering out” sub-optimal points from the extremal front is proposed. Sub-optimality results from the

fact that q ∈ Ft1(q0) does not necessarily imply F (q; q0) = t1. This might happen, as stated above, due

to the existence of another time instant t2 < t1 for which q ∈ Ft2(q0), as well. It is obvious that, in this

case, F (q; q0) ≤ t2. However, if q ∈ Ft1(q0) and q /∈ Ft2(q0), for any t2 < t1, then one can conclude that

F (q; q0) = t1.

Now that a procedure is given for determining which solutions are contained in the minimum-time

function, consider the following method for computing the numerical approximation of the function. First,

consider a uniform spherical mesh grid Σ(lon, lat), where lon and lat represent the number of longitudinal

and latitudinal mesh levels. Mesh points from the spherical grid are denoted by qij , where i and j are the

longitudinal and the latitudinal levels, respectively. Each mesh point is assigned a pair of two variables

specific to its position on the sphere with respect to the extremal front: qij ← (B, τ), where B represents a

boolean variable that determines if the point is reachable within the time interval [0, Tmax], and τ represents

a time variable which is assigned the minimum time required by the aircraft to reach position qij . The pair is

initialized for all mesh points with (0,∞), where 0 suggests that the mesh points are unvisited. Throughout

this Note, qij ← (B, τ) corresponds to assigning values, while qij → (B, τ) corresponds to reading the values

already assigned.

Next, as the extremal front expands, it is overlaid on top of the mesh. Each unvisited mesh point found

inside the interior of the closed curve approximated by Ft(q0; C), denoted by It, is assigned the pair (1, t):

∀ qij ∈ It if qij → (0,∞) then qij ← (1, t). Note that It represents, in other words, the reachable region
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enclosed by the extremal front. This process marks the mesh point as “visited” and assigns to it the time

value at which the extremal front first passes over it. In this way, every mesh point is assigned only one

time value that corresponds to the minimum time that the aircraft requires to reach the respective position.

Optimality is guaranteed by considering only the first crossing and capture of the mesh point by the extremal

front. After all mesh points in It are marked, the expansion of the extremal front continues and the algorithm

is repeated until the time limit Tmax is reached.

The minimum-time function is determined by all the mesh points found inside the region covered by the

expansion of the extremal front. This region, which is denoted by I, is taken to be the union of the interiors

of the closed curves approximated by Ft(q0; C), that is, I :=
⋃

t∈[0,Tmax]

It. If time values are required in

between mesh points, standard bilinear interpolation is used to get the interpolated time value denoted by

t⋆. This means that the precision of the approximation to the minimum-time function depends both on the

size of the mesh and on the integration time step ts. As a result, the approximation of the minimum-time

function is determined by:

F̂ (q; q0, Tmax) :=



























t = F (q; q0), if ∃ i, j such that q = qij , qij → (1, t), and F (q; q0) ≤ Tmax

t⋆, if ∃ t ≤ Tmax such that q ∈ I and q 6= qij , ∀ i, j

∞, otherwise

(5)

The main steps of the systematic procedure are summarized as follows:

Step 1: Compute the extremal front Ft(q0; C) by solving the ZNPS for the given time step and initial

conditions;

Step 2: Check the distance between the end-points of two “consecutive” trajectories to determine if

bisection is necessary:

‖q(k) − q
(k−1)‖ ≥ d̄ (6)

where q
(k) = ϕ(t; q0, ψ

⋆(·;ψ
(k)
0 )) and q

(k−1) = ϕ(t; q0, ψ
⋆(·;ψ

(k−1)
0 )) are the end-points of two trajectories

obtained from “consecutive” initial conditions for the control heading, ψ
(k)
0 and ψ

(k−1)
0 . If (6) is satisfied,

perform bisection, otherwise go to step 3;

Bisection Step 2.1: Increase the number of initial heading angles, H ← H + 1, through bisection:

ψ̂
(k)
0 ← (ψ

(k)
0 − ψ

(k−1)
0 )/2 and C ← C ∪ {ψ̂

(k)
0 };

Bisection Step 2.2: Compute the corresponding extremal trajectories q(k) = ϕ(t; q0, ψ
⋆(·; ψ̂

(k)
0 )) to

7 of 14

American Institute of Aeronautics and Astronautics



increase the fidelity of the extremal front for each time step until current time t is reached;

Step 3: Assign the current time value t to any unvisited mesh points inside the region enclosed by the

extremal front : ∀ qij ∈ It for which qij → (0,∞), qij ← (1, t). In this way, the approximation of the

minimum-time function, F̂ , is assigned the value t for all the mesh points that are contained in the region

enclosed by the extremal front and have not been already assigned a value less than t;

Step 4: Repeat steps 1-3 for each time step ts until Tmax is reached, while updating every time the initial

conditions for the integration of the ordinary differential equations (3) and (1) that lead to the extremal

trajectory, to avoid redundancy in computation.

To illustrate more clearly the generation of the extremal front, consider Figure 1. Here it can be observed how

the extremal front, which consists of the end points of the extremal trajectories, is expanded. The proposed

method forms the minimum-time function incrementally, by considering all the mesh points enclosed by the

extremal front. Mesh points or nodes that have not been visited yet are illustrated by simple dots while

visited nodes are described by asterisks.

Figure 1. Visualization of the extremal front expansion in time with nodal partition for visited and unvisited

mesh points.

Lastly, minimum-time trajectories can be obtained through a simple search on the extremal front. If

the target destination, denoted by qf , does not correspond to a point on the extremal front, the initial

condition for the optimal heading ψ(0) is unknown, since it is not in the set C which defines the extremal

front. However, knowing that the minimum time required to reach the destination is t⋆ = F̂ (qf ; q0, Tmax),

one can look for the points near the target destination qf only on the extremal front, Ft(q0; C), for which

expansion time t is approximately equal to t⋆. The initial conditions used to obtain these extremal front

points can be interpolated to approximate the initial condition ψ(0) which gives ϕ(t; q0, ψ
⋆(·;ψ(0))) ≈ qf .

Thus, an approximation of the globally optimal trajectory to qf can be determined by solving the ZNPS
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with the interpolated initial condition ψ(0). Furthermore, even though there might be different times when

the extremal front encloses the destination, only the minimum time will be considered due to the search

restriction presented herein. By doing so, any issues that may appear due to discontinuities of the minimum-

time function or singularities of the optimal synthesis can be handled, and thus only optimal solutions are

obtained.

IV. Numerical Simulations and Results

In this section, simulation results for the extremal front algorithm are presented. To demonstrate the

procedure’s applicability, realistic winds obtained from NOAA’s Satellite and Information NOMADS20 open

database were used. The structure of the winds can be observed in Figure 2 as a direction vector field

representing wind data extracted from 10/28/2014 0:00:00 AM. The maximum wind speed from this data

was about 130 mph. Aircraft airspeed was set constant at 560 mph. This causes a decrease in travel time,

compared to the real travel time, since take-off and landing are not considered. Optimal trajectories were

generated and their travel times were computed for the following flight routes: JFK to SFO in 4 hours and

50 minutes, JFK to MIA in 2 hours and 11 minutes, JFK to JNB in 13 hours and 25 minutes, and JFK

to AUH in 11 hours and 27 minutes. These times show a decrease in total flight time by more than an

hour compared to the actual flight times, which can be obtained from any airline website. This is partly

the result of the simplified model which does not account for landing and take off and partly the result of

more complex constraints that airlines try to satisfy. Considering these facts, it can be concluded that the

presented algorithm is able to exploit the structure of winds in order to produce flight routes that are at

least comparable if not faster than the ones currently used by airlines. The generated results are displayed

in Figures 2 and 3.

To demonstrate the ability of the proposed algorithm to handle discontinuities of the minimum-time

function or singularities of the optimal synthesis, a simulation which excludes the systematic method for

eliminating sub-optimal solutions is performed. Furthermore, to increase the possibility of obtaining multiple

trajectories to the same destination, the aircraft’s airspeed is reduced to 90 mph such that it is smaller than

the speed of the winds in which it travels. This forces the aircraft to fly only in the direction that the winds

prescribe. As such, the result for an aircraft departing from Johannesburg and traveling to a destination in

the Indian ocean, which is illustrated in Figures 4 and 5, indicates that overlapping extremal front instances

lead to the existence of sub-optimal trajectories. Thus, for this example, two initial headings lead the

aircraft to the same destination yielding two possible travel times: 5 hours and 54 minutes for the optimal

trajectory, and 17 hours and 45 minutes for the suboptimal one. Figure 5 is a three-dimensional plot of the

extremal front time evolution, which shows the existence of multiple solutions caused by the intersection
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Figure 3. Extremal front expansion on the sphere with optimal trajectories for four different destinations.
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of the extremal front expansion, represented by light grey circles, with the target destination, shown as

the black vertical line. This is representative for the discussion on the possibility of obtaining suboptimal

trajectories given in Section III. The systematic method proposed herein is able to handle such cases and to

compute unique global minimum-time solutions.

Longitude

195 200 205 210 215 220 225 230 235 240

L
a
ti
tu
d
e

-45

-40

-35

-30

-25

-20
optimal trajectory
suboptimal trajectory

Figure 4. Trajectories for a destination that admits multiple candidate optimal solutions. Specifically, two

different values of ψ0 determine two candidate optimal trajectories which reach the same point at different

times.

Figure 5. Time evolution of the extremal front presented in Figure 4, with two possible solutions for the time

function.

Further, to test the accuracy of these solutions, the optimization software GPOPS21 was used to generate

minimum-time trajectories of the Zermelo navigation problem on the sphere. This software is able to compute

accurate solutions to the optimal control problem. However, without sufficient effort on tuning the initial
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guesses for each different scenario, GPOPS cannot easily compute globally the minimum-time function.

In other words, GPOPS is more suitable for the computation of optimal trajectories for a given set of

boundary conditions than the characterization of the optimal synthesis, which typically requires a dynamic

programming approach. As such, only trajectories were compared for the first presented scenario and the

results were plotted against the minimum-time trajectories obtained with the proposed algorithm in Figures

2 and 3. The mean squared error (MSE) between these trajectories is averaged to 0.005489%. This close

agreement demonstrates the ability of the proposed algorithm to produce accurate optimal solutions.

Lastly, to illustrate the efficiency of the presented algorithm, consider the times required for the com-

putation of the paths presented in Figures 2 and 3. The minimum-time function was computed in 251

seconds. While this might appear as a long time, one must consider the fact that this function provides

minimum time values for the entire reachable set within the specified time limit of Tmax = 14 hours. Having

the minimum-time function computed, the 4 specific paths were obtained in times comparable to GPOPS.

These times are presented in Table 1.

Table 1. Comparison for Algorithm Computational Times and Errors

Path Presented Algorithm Times (sec) GPOPS Times (sec) MSE (km) MSE (%)

JFK-SFO 0.240 0.632 0.1605 0.0043

JFK-MIA 0.244 0.259 0.0719 0.0039

JFK-JNB 0.239 0.716 0.5871 0.0055

JFK-AUH 0.470 0.667 1.0510 0.0083

V. Conclusions

This Note presents a new method for computing globally the minimum-time function of the Zermelo

navigation problem on a sphere, in the presence of a spatially varying wind field. One of the distinctive

features of the method is the ability to handle discontinuities in the minimum-time function and singularities

of the optimal synthesis. The proposed algorithm exploits the structure of the solution to the optimal control

problem and uses a systematic method to “filter out” sub-optimal solutions. This allows for the computation

of the minimum-time function using a discretized mesh of points that are assigned minimum time values

specific to their respective positions. In general, the use of a mesh may lead to slow computational times

if the mesh size is very large. However, the mesh size depends on the desired application, which in this

case does not require an extremely fine resolution. Furthermore, with the minimum-time function already

generated, minimum-time trajectories can be obtained with minimal computational effort.
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