

Agenda

- Background
- Deepwater
- Arctic

Background

Drilling contractor building deepwater drilling units in 1970s - first time in 6,000 ft (1,800 m)

Responsible for underwater electrical systems

- BOP Controls, cables, connectors
- Re-entry equipment, sonar/TV

Background

Special Projects Team

Deepwater

Too many strings of casing, BOPs too big, too heavy

Dual Gradient or Riserless or MPD

Kick detection, pit levels are too late

Downhole or At-BOP sensors

Too much flat time

- Best people and equipment
- Optimization tools including automation

Arctic

The Cold

- < -40C Protect People and Machines
- Problem moving, rig up/rig down, restart
- Wind walls, heated drillfloor
- Heat tracing and insulation
- Special lubricants
- Special steels and welding

Moving

- Need cranes, trucks or build rig for it
- Fast connections

Environmental

- Zero discharge
- Animals
- Permafrost

Arctic

Logistics

- Cost to haul fuel and supplies
- Camp and catering
- Moving personnel

Arctic

Offshore

- All the above plus boats
- Ice accumulation
- Limited drilling season

These problems mean more cost, so

- Design for efficiency when moving or walking
- Improve drilling efficiency
- Eliminate flat time

