

Assessment of the Full Cost of Electricity (FCe⁻)

A multi-disciplinary collaborative project across the campus of the University of Texas at Austin

Moderator: James Dyer, The Fondren Foundation Centennial Chair in Business, McCombs School of Business, The University of Texas at Austin Sheila Olmstead Associate Professor, LBJ School of Public Affairs, The University of Texas at Austin David Spence Professor, McCombs School of Business, School of Law, and Department of Government, The University of Texas at Austin

Defining the Full Cost of Electricity

- Many Components Define the Full Cost of Electricity
 - Lost in Public and Private Discussions are the Linkages among the Cost Components
- The study will be multi-disciplinary in nature and synthesize analysis and perspective from all applicable disciplines and schools of thought and perspective.

Power Plant	Facilitating Infrastructure	Environmental & Life Cycle		
 Capital (CAPEX) Financing (per plant-specific risks) Land lease Operation (OPEX) Fuel Labor Maintenance Fuel price hedging Handling risk and uncertainty Taxes & Subsidies Greenhouse gas policy Renewable policies Pilot and demonstration projects (e.g. CO₂ capture) 	 Cost of connectivity Transmission and Distribution Microgrids Storage or firming power for intermittency Smart Grid Customer level control of home Utility & ISO level control of grid and dispatch Energy Efficiency of End-Use Independent System Operator (ISO) operations Ancillary services Market design Energy-only vs. Capacity Markets Regulated utilities 	 Water Land Health impacts from pollutants (NOx, SOx, Hg, Particulate Matter) Greenhouse Gases (CO₂, CH₄, etc.) Federal regulation State/regional regulation Waste and recycling Spent nuclear fuel Coal ash Decommissioning Biodiversity (from land, water, air impacts) 		

UT-Austin Experts Dedicated to Project

Project Management & Research

James Dyer **Project Lead** Professor, McCombs School of Business

Fred Beach Assistant Director (Policy Studies), **Energy Institute**

Carey King Assistant Director. **Energy Institute**

John C. Butler, \geq Clinical Assoc. Professor, McCombs Business School

Dale Klein Associate Director, Energy Institute

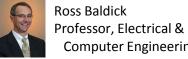
THE UNIVERSITY OF TEXAS AT AUSTIN

Roger Duncan Research Fellow, Energy Institute

- **Energy Finance Decision Analysis**
- **Energy Security**
- Nuclear power

- New utility business
- models

Sheila Olmstead Assoc. Professor, School of Public Policy


Melinda Taylor Professor, Law

- Erich Schneider,
 - Associate Professor. Mechanical Engineering

Core Research Team

 \geq

Computer Engineering Surya Santoso

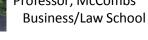
Computer Engineering

Professor, Electrical &

Robert Hebner Director, Center for Electromechanics

David Adelman. Professor, Law

Storage Intermittency \geq


PV integration, Distribution, and

Electric grid market operation

Transmission and distribution

Wind integration

- Transmission, Distribution, Metering, and microgrids
- Stranded electric grid assets
- Health impacts from air emissions
- Regulatory and permitting costs
- Legal aspects of valuation of externalities and hedging
- EPA regulatory process \geq
- Valuation of environmental externalities
- Arbitration
- Energy and environmental law
- Nuclear power

- Professor. McCombs
- - **David Spence**

Why This Work Is Important

Key Points

• The Problem

Focused studies may model "their solution" without simultaneously considering other alternatives, and may not consider the "full costs" of these solutions

• The Solution/Goal Inform public debate and the policy process with *quantitative, transparent, comprehensive and objective analysis*

- The Problem
 - One person's cost is another person's benefit
 - No quantitative structure *simultaneously* combines *all* cost information
 - Many economic studies are not transparent to lay person

Inputs
$$\rightarrow$$
 Black Box \rightarrow Outputs

Work Products from FCe⁻ Study: Written Reports and Interactive Calculator

Key Points

- Project coordinated through Energy Institute
- Work products cover multiple audiences using tailored level of detail
- Written and interactive products reinforce and refer to each other
- Interactive product creates a 'living resource' to invite users to participate

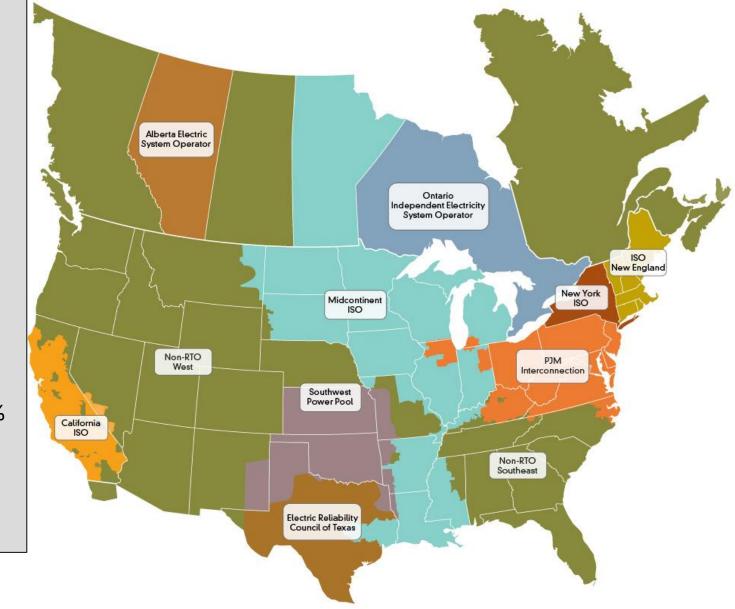
- UT Energy Institute coordinates project across campus
 - Providing value by integrating perspectives across campus that otherwise would not occur
- Core written products
 - Phase 1: 'hard costs' and externalities for electricity
 - Phase 2: forward-looking projections of costs
 - Final Comprehensive Report
- Interactive online calculator
 - A "go to" tool for interested persons to compare electricity options

Written Products: inform calculator methods and design

Interactive Calculator:

refers to written research products for assumptions and description of methods

The Electric Grid


Grid Operation

Power markets

Least-cost Dispatch Rule

Generation Mix (2013):

- Coal 39%
- Natural gas 27%
- Nuclear 19%
- Hydro 7%
- Wind 4%
- Solar <1%

Potential Externalities: <u>Generation Phase</u> (Incomplete)

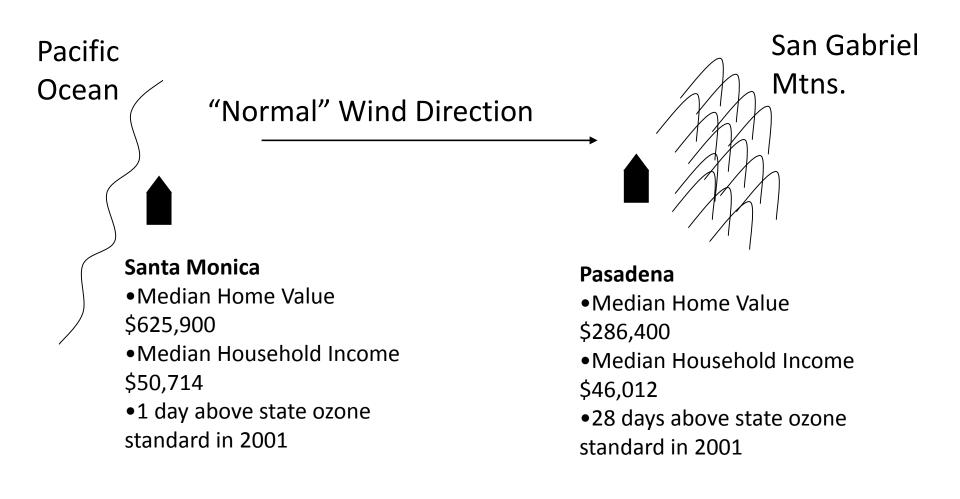
Generator Type	Air	Water	Solid waste	Other
Generator Type Coal	PM, SO2, NOx, Hg, CO2	Heat Water consumption Discharges from ash storage, Etc.	Ash disposal Etc.	
Natural Gas	NOx, CO2 Etc.	Heat Water consumption		
Nuclear		Heat Water consumption	High-level Nuclear Waste	
Hydropower		Changes to stream ecology Fish migration Heat Etc.		Aesthetic
Wind				Bird/Bat mortality Aesthetic
Solar		Water consumption		Land use Bird mortality (CSP)

EPA's "War on Coal"

Air Pollution:

- PM standard
- SO2 standard
- Ozone standard
- Cross-State Air Pollution Rule
- Mercury Rule
- Greenhouse Gas (Proposed) Rules

Other Regulation:


- Cooling Water Rule
- Coal Ash Rule
- Mining Rules

Economic methods for monetizing environmental amenities/disamenities

	Revealed Preference	Stated Preference
Explicit prices/markets	Market pricesSimulated markets	•Contingent valuation
Implicit prices/markets	 Travel cost Hedonic property values Hedonic wage Avoidance expenditures Derived demand for options 	

Valuing property value damages

 Estimate the effect of air quality (e.g., smog in LA) on home prices, holding all else constant.

Valuing changes in mortality risk

- Wages provide a "footprint" in labor markets of compensation for mortality risk.
 - Observe wages for many jobs.
 - Wages are a function of many things, including risk premiums.
 - Risk premium: holding all else equal, environmentally inferior jobs command a higher wage.
- These risk premiums, estimated statistically from wage data, are used in regulations to monetize the value of avoided deaths (highway safety, workplace safety, ambient pollution control).
- EPA uses ~ \$7 million (average of 21 labor market studies, plus 5 others) as the "value of a statistical life" in regulatory standard-setting.

Example: monetizing damages from U.S. air pollution

Pollutant	1 st percent	25 th percent	50 th percent	75 th percent	99 th percent	99.9 th percent	E[MD]
PM _{2.5}	250	700	1,170	1,970	12,400	41,770	3,220
PM_{10}^{-1}	60	120	170	280	1,960	6,550	450
NOx	20	180	250	370	1,100	1,780	260
NH ₃	100	300	900	2,000	20,620	59,450	2,520
VOC	40	120	180	280	1,370	4,540	730
SO_2	220	550	970	1,300	4,130	10,860	1,310

TABLE 1—MARGINAL DAMAGES OF EMISSIONS BY QUANTILE (\$/ton/year)

Note: Final column is the expected marginal damage of emissions for each pollutant.

- Muller, Nicholas Z., and Robert Mendelsohn. 2009. Efficient Pollution Regulation: Getting the Prices Right. *American Economic Review* 99(5): 1714-1739.
 - Included: Premature deaths, increased rates of illness, impaired visibility, depreciation of man-made materials, reduced recreation services, lost timber yields, and decreased agriculture harvests

Human health-related damages (deaths, illness) represent ~95 percent
 energy of these damage estimates.

Thank You

Contacts:

Dr. Tom Edgar, *Director* (tfedgar@austin.utexas.edu)

Dr. Michael E. Webber, *Deputy Director* (webber@mail.utexas.edu)

