What will shape the global supply mix?

Dr. Jonathan Lewis
Senior Vice President, Completion & Production
February 2015
Safe Harbor

The statements in this presentation that are not historical statements, including statements regarding future financial performance and the pending Baker Hughes transaction, are forward-looking statements within the meaning of the federal securities laws. These statements are subject to numerous risks and uncertainties, many of which are beyond the company's control, which could cause actual results to differ materially from the results expressed or implied by the statements. These risks and uncertainties include, but are not limited to: with respect to the Baker Hughes acquisition, the timing to consummate the proposed transaction; the terms, timing and completion of divestitures undertaken to obtain required regulatory approvals; the conditions to closing of the proposed transaction may not be satisfied or the closing of the proposed transaction otherwise does not occur; the risk a regulatory approval that may be required for the proposed transaction is not obtained or is obtained subject to conditions that are not anticipated; the diversion of management time on transaction-related issues; the ultimate timing, outcome and results of integrating the operations of Halliburton and Baker Hughes and the ultimate outcome of Halliburton’s operating efficiencies applied to Baker Hughes' products and services; the effects of the business combination of Halliburton and Baker Hughes, including the combined company’s future financial condition, results of operations, strategy and plans; expected synergies and other benefits from the proposed transaction and the ability of Halliburton to realize such synergies and other benefits; with respect to the Macondo well incident, final court approval of, and the satisfaction of the conditions in, Halliburton's September 2014 settlement, including the results of any appeals of rulings in the multi-district litigation; indemnification and insurance matters; with respect to repurchases of Halliburton common stock, the continuation or suspension of the repurchase program, the amount, the timing and the trading prices of Halliburton common stock, and the availability and alternative uses of cash; changes in the demand for or price of oil and/or natural gas can be significantly impacted by weakness in the worldwide economy; consequences of audits and investigations by domestic and foreign government agencies and legislative bodies and related publicity and potential adverse proceedings by such agencies; protection of intellectual property rights and against cyber attacks; compliance with environmental laws; changes in government regulations and regulatory requirements, particularly those related to offshore oil and natural gas exploration, radioactive sources, explosives, chemicals, hydraulic fracturing services, and climate-related initiatives; compliance with laws related to income taxes and assumptions regarding the generation of future taxable income; risks of international operations, including risks relating to unsettled political conditions, war, the effects of terrorism, foreign exchange rates and controls, international trade and regulatory controls, and doing business with national oil companies; weather-related issues, including the effects of hurricanes and tropical storms; changes in capital spending by customers; delays or failures by customers to make payments owed to us; execution of long-term, fixed-price contracts; structural changes in the oil and natural gas industry; maintaining a highly skilled workforce; availability and cost of raw materials; and integration and success of acquired businesses and operations of joint ventures. Halliburton’s Form 10-K for the year ended December 31, 2015, recent Current Reports on Form 8-K, and other Securities and Exchange Commission filings discuss some of the important risk factors identified that may affect Halliburton’s business, results of operations, and financial condition. Halliburton undertakes no obligation to revise or update publicly any forward-looking statements for any reason.
Agenda

Where Are We?

How Did We Get Here?

Demand Outlook

Key Drivers of Where the Industry Will Find and Produce Resources
Where We Are

- Crude oil at 13-year lows
- U.S. rig count down 72%
- Capital spend reduced
- 250,000 energy jobs lost

U.S. Rig Count Index

Source: Baker Hughes US Rig Count, through 2/12/16
How We Got Here

Incremental Supply and Demand by Source

Healthy demand growth following global recession

Source: EIA, IHS
How We Got Here

Incremental Supply and Demand by Source

- **2010-11**: Healthy demand growth following global recession
- **2012-14**: N. America production growing faster than incremental global demand

Source: EIA, IHS

© 2016 Halliburton. All rights reserved.
How We Got Here

Incremental Supply and Demand by Source

- **2010-11**: Healthy demand growth following global recession
- **2012-14**: N. America production growing faster than incremental global demand
- **2015**: OPEC increases production to maintain share

Source: EIA, IHS
Is This Downturn Different?

1985 - 1987

Oil price only bottomed after OPEC cut production in 3Q86

Global Production vs. Oil Price

2014 – 2016

Lack of meaningful production declines has weighed on price

Oil price only bottomed after OPEC cut production in 3Q86.
Going Forward – Hydrocarbons Dominate

Economic Growth

Urbanization

Policy

Technology Developments

Source: BP, Exxon Mobil, Statoil, company estimates

© 2016 Halliburton. All rights reserved.
Time To Revisit Demand Consensus?

Global Demand vs. Oil Price

- **1994 – 2004 low-priced oil**
 - Average demand growth: +1.8% / year

- **2004-2014 high-priced oil**
 - Average demand growth: +0.8% / year

- **YOY Change in Oil Demand**
- **WTI Price**

© 2016 Halliburton. All rights reserved.
How Much New Oil Do We Need To Produce?

Global Demand vs. Oil Production

2015 - 2020

19mm barrels of new supply to offset production decline and meet 1% demand growth

Source: Rystad Energy, February 2016
Resource Availability
Key drivers of where the industry will find and produce oil

Economically Recoverable Resources by Supply Source

- $40 Breakeven
- $60 Breakeven

At $60 Oil
LTO has significant upside production potential relative to deep water

Source: Rystad Energy, February 2016
Light Tight Oil Costs Are Declining, While Production Increases

Cost per horizontal well and per foot of lateral Permian Basin

<table>
<thead>
<tr>
<th>Year</th>
<th>$/M per horizontal well</th>
<th>CapEx per Well</th>
<th>$/ft lateral</th>
<th>CapEx per Lateral Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>$12</td>
<td>28%</td>
<td>$0</td>
<td>68%</td>
</tr>
<tr>
<td>2012</td>
<td>$8</td>
<td></td>
<td>$2</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>$6</td>
<td></td>
<td>$4</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>$4</td>
<td></td>
<td>$6</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>$2</td>
<td></td>
<td>$8</td>
<td></td>
</tr>
</tbody>
</table>

Average 90-day IPs, horizontal wells Permian Basin

<table>
<thead>
<tr>
<th>Year</th>
<th>90-day initial production, BOE/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>300</td>
</tr>
<tr>
<td>2012</td>
<td>300</td>
</tr>
<tr>
<td>2013</td>
<td>400</td>
</tr>
<tr>
<td>2014</td>
<td>400</td>
</tr>
<tr>
<td>2015</td>
<td>500</td>
</tr>
</tbody>
</table>

Source: Rystad Energy, February 2016, PacWest
North American LTO Production

2010-2016

U.S. shale production has not declined at the rate of rig count, partially driven by increased new barrels per rig.

Source: EIA

© 2016 Halliburton. All rights reserved.
Technologies Enabling North American Shale Efficiency

- Reservoir Insight
- Frac Design
- Surface Efficiency
- Stimulation Materials
- Harvesting Reserves
LTO vs. Deep Water Breakeven Trends

Light Tight Oil
U.S. average wellhead breakeven price for horizontal wells by spud year

Deep Water
Deepwater project breakeven by approval year

Source: Rystad Energy, February 2016

© 2016 Halliburton. All rights reserved.
Light Tight Oil Expected To Be The Largest Source Of New Production in 2020

Source: Rystad Energy, February 2016

© 2016 Halliburton. All rights reserved.
Light Tight Oil Expected To Be The Largest Source Of New Production in 2020

New Production By Source With Current Breakevens

<table>
<thead>
<tr>
<th>Source</th>
<th>Million barrels per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTO</td>
<td><20</td>
</tr>
<tr>
<td>Shelf and Midwater</td>
<td>$20-40$</td>
</tr>
<tr>
<td>Other Onshore</td>
<td>$40-60$</td>
</tr>
<tr>
<td>Deep Water</td>
<td>$60-80$</td>
</tr>
<tr>
<td>Other</td>
<td>$80-100$</td>
</tr>
<tr>
<td>Other</td>
<td>>100</td>
</tr>
</tbody>
</table>

19 million bpd of new supply

New Production By Source with Continued Productivity Gains*

<table>
<thead>
<tr>
<th>Source</th>
<th>Million barrels per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTO</td>
<td><20</td>
</tr>
<tr>
<td>Shelf and Midwater</td>
<td>$20-40$</td>
</tr>
<tr>
<td>Other Onshore</td>
<td>$40-60$</td>
</tr>
<tr>
<td>Deep Water</td>
<td>$60-80$</td>
</tr>
<tr>
<td>Other</td>
<td>$80-100$</td>
</tr>
<tr>
<td>Other</td>
<td>>100</td>
</tr>
</tbody>
</table>

19 million bpd of new supply

*Productivity assumptions include:
- 30% total cost reduction for LTO and deepwater from 2015-20
- 40% increase in production from new LTO assets
- 15% increase in production from new deep water assets

Source: Rystad Energy, February 2016
THANK YOU