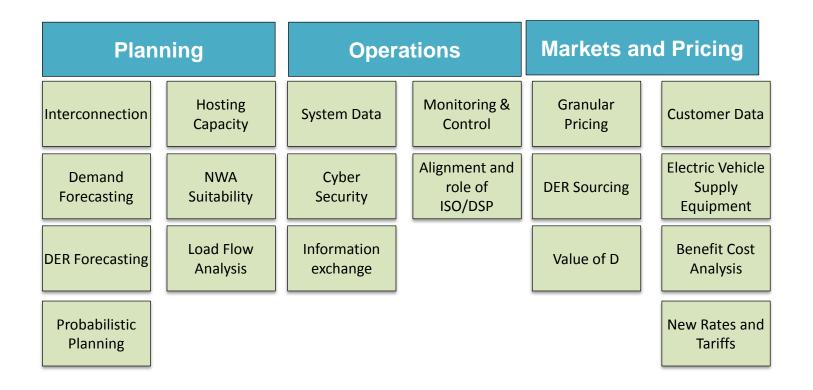
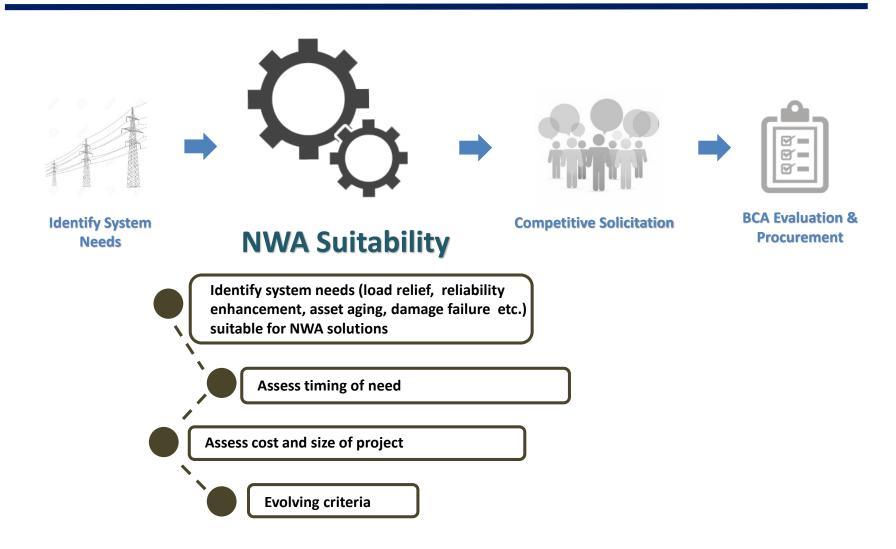

Rethinking Restructured Electricity


February 8, 2017 Laura Manz

Distributed Energy Evolution

Distribution system functions and processes will evolve in stages over time in relation to customer use of the grid driven in large part through adoption of distributed energy resources



- The Role of the Distribution Operator is changing
- Moving toward
 - Information provider
 - Technology platform to be leveraged
 - Independent evaluator
- Takes on qualities similar to, and must coordinate with, ISO
- Compensation mechanisms need to align

Suitability Criteria for Non-Wires Alternatives

Developing Suitability Criteria for NWAs

Non-Wires Suitability

Budget Category	Type of Work	Applicability for NWA
Load Relief	System enhancements to address capacity concerns	DER impacts on network or circuit load curves can
	(thermal load, voltage constraints, power quality) at the	be verifiable, quantified, and benchmarked.
	branch, feeder, substation, and transmission levels.	Utilities are making progress through current and
	Projects may include feeder reconductoring/circuit	planned projects to create frameworks for the
	rebuilding, transformer upgrades, new substations and	evaluation of NWAs with respect to their ability to
	station expansions, new regulators and capacitor	meet this type of system need. This is likely the
	installations.	category of greatest applicability for NWA.
Reliability	System enhancements that could prevent the	The ability of projects to reduce the
	interruption of service and/or respond to an	likelihood of outages could create the
	interruption in service in order to achieve	opportunity for NWA to provide reliability
	targeted system average interruption frequency	benefits, making this an applicable project
	index ("SAIFI") and customer average interruption	type. These projects are designed to
	duration index ("CAIDI") objectives.	"prevent the event."
Resiliency	System enhancements to respond to an	Measures to reduce outage times, such as
	interruption in service in order to achieve	storm hardening and similar efforts, are
	targeted CAIDI. Examples include adding circuits	difficult to displace through NWA. These
	and or switching points or station expansion	impacts are more challenging to quantify,
	projects to "firm" a substation.	making it less applicable for NWA.

Pilot Programs and Initiatives

- Brooklyn Queens Demand Management
 - Shares benefits between traditional upgrades and solution providers

<u>https://www.coned.com/energyefficiency/pdf/BQD</u> <u>M-program-update-briefing-08-27-2015-final.pdf</u>

- Partnerships but still utility driven
 - ICA Installed Capacity Analysis / Hosting Capacity
 - Locational Net Benefits Analysis
 - Smart technology adoption

Thank You

Laura Manz Laura.Manz@Navigant.com 858-354-8333

References at <u>www.jointutilitiesofny.org</u> and www.morethansmart.org