

Centralized or Distributed?

Jeffrey Sabins
2/8/2017

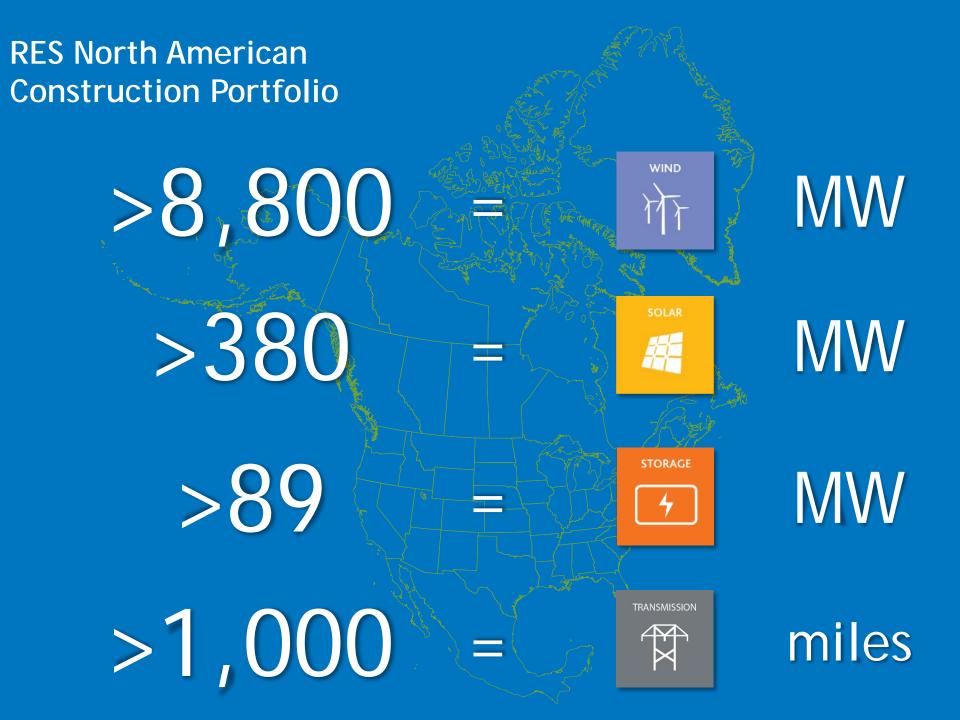
### **RES Integrated Energy Solutions**

DEVELOPMENT | CONSTRUCTION | OPERATIONS



WIND








**SOLAR** 


ENERGY STORAGE

**TRANSMISSION** 



### **RES' Worldwide Presence**





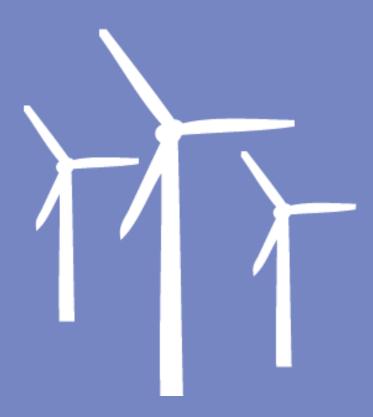


# Distributed or Utility Scale?










### What RES looks for in a Renewable Energy Project



- Low cost renewable product
- Financeable
- The bigger the better

## WIND



### Rooftop Wind: <1kW Generation Capacity



- Wind resource depends on micro-geography
  - Can not finance w/o good expectation of production
  - Uncertain payback on homeowner investment
- \$1k to \$10k investment
  - ~\$750/MWh Cost of Power





7

### Distributed Wind: Up to 100kW Generation Capacity



- Wind resource depends on micro-geography
  - More expensive turbines, but still not justifying a wind study
- \$65,000 investment (12.5Kw Model)
  - -~\$520/MWh Cost of Power





### Utility Scale Wind: 2+MW units, 50+MW total facility



- Financeable
  - Investment can support extensive wind studies
  - Clear financial payback
- \$20/MWh Cost of power in windy places (\$50/MWh without PTC)



## SOLAR



### Residential Solar more expensive per MWh



Table 2: Levelized Cost of Utility- and Residential-scale PV (\$ per Solar MWh)

| No         | Scenario                   | Utility-scale | Residential-scale<br>Purchase | Cost Difference<br>(Res-Utility) | Residential-scale<br>Lease |
|------------|----------------------------|---------------|-------------------------------|----------------------------------|----------------------------|
| Reference  | 2019 ITC @ 10%             | 83            | 167                           | 83                               | 182                        |
| Scenario 1 | 2019 ITC @ 30%             | 66            | 123                           | 57                               | 140                        |
| Scenario 2 | 2019 Developer absorbs ITC | 66            | N/A                           | N/A                              | 140                        |
| Scenario 3 | 2019 Higher Inflation      | 95            | 187                           | 92                               | 206                        |
| Scenario 4 | 2019 Lower PV Cost         | 69            | 137                           | 67                               | 149                        |
| Scenario 5 | 2014 Actual PV Cost        | 117           | 193                           | 76                               | 237                        |

#### Notes:

<sup>1-</sup>All Scenarios other than Scenario 2 assume there is a tax equity partner.

<sup>2-</sup>In Scenario 1, 30% ITC assumption has been applied to all three cases uniformly.

<sup>3-</sup>Scenario 2 is only relevant to the utility- and residential-scale leased systems and does not to impact residential-scale purchases.

<sup>\*</sup>Brattle Group, July 2015, Comparative Generation Costs of Utility Scale and Residential-Scale PV in Xcel Energy Colorado's Service Area

### Why is utility scale solar power less expensive?



- Production efficiency
  - Trackers
  - No obstructions
  - Regular panel cleanings
- Balance of system efficiencies
  - Assembly line approach
  - Installation automation coming soon

### Why does distributed get built?



- Competing in different markets:
  - Distributed is off-setting retail energy costs (~\$120/MWh Austin Energy Home Rate)
  - Utility scale selling into wholesale power mkt (~\$20/MWh ERCOT market)

### How does energy storage change things?



- Further shift to utility scale projects
  - Greater transmission line efficiencies lower interconnection costs
  - Solve utility ancillary services challenges
  - Solar + Storage looks like a peaking gas plant



# Thank you!

#### Contact:

Jeffrey Sabins Senior Development Manager 512-814-3033 Direct Jeffrey.Sabins@res-group.com

9050 North Cap. of TX Highway Suite 390 Austin, TX 78759 USA www.res-group.com







