

David Castiñeira (Chief Technology Officer at QRI)

(1/31/2018)

Simulation, Analytical and Data-driven Models

- Data-driven
- Full-Physics

- Heuristics, Correlations and Analogues (PVT models, Recovery Factor,)
- Statistical & Signal Processing methods (Regressions, Wavelets, Laplace, ...)
- Machine Learning and Neural-networks (Linear, recurrent, deep learning, ...)
- Simple analytical models (Material balance, Decline Curves, Buckley-Leverett, ..)
- Simple numerical models (Capacitance-Resistance, Parametric, Streamlines, ...)
- Full-physics reservoir simulation (Black-Oil, Compositional, Dual-Porosity, ...)

Data-driven models vs Physics (?)

Example: Modeling oil production rate for pseudo-steady state flow circular reservoir

Darcy's law, integration in cylindrical coordinates)

$$Q_{o} = \frac{2\pi K K_{ro} h}{B_{o} \mu_{o} \left(\ln \left(\frac{r_{e}}{r_{w}} \right) - 0.75 + s \right)} (P - P_{wf})$$

- K and h can be (partially) characterized by the location of a well
- \blacksquare Bo and μ o are function of the average reservoir pressure
 - o Average **reservoir pressure** is a strong function of the cumulative production, reservoir properties and drainage area
 - o The **drainage area of a well** is determined by reservoir characteristics, cumulative production and number of wells in the field.
- Kro is a function of the oil saturation, which is strongly related to the cumulative production.
- Pwf and skin factors are the most likely time-dependent and are usually hard to quantify

- Let data speak too!
- Build from physics...
- .. but don't restrict to textbook models and assumptions
- Data-driven models can capture underlying physics under right framework.
- Al + engineering context can provide optimum solution

Example: Determining OWC

<u>Example</u>: Reduce the Risks of Excessive Water Production in Infill Drilling Campaign

 Data-driven models must be combined with fundamental, engineering understanding of reservoir behavior (!)

Considerations to Select Right Modeling Strategies

- i. Do we really know our reservoir?
- ii. Do we have data?
- iii. What is the time frame to solve the problem?
- iv. Context: reservoir management?

A Systematic Approach to Machine Learning Modeling

- Clearly understanding the goals of the problem we want to model
- Data pre-processing (data gathering, exploration/visualization, transformation/reduction)
- **3. Determine the machine learning task** (i.e., translate step 1 into a more specific statistical question).
- 4. Apply machine learning algorithm (e.g., ANN, Random Forests, SVM...)
- **5. Interpret results** of the machine learning algorithm
- **6. Deploy the model** (integrate model into operational system).

I/O view of the modeling problem

This is easy to automate!

Modeling Execution Process

Reservoir Management

- Recovery Design (e.g., D&C design)
- KROs
- Pressure Maintenance
- Depletion
- Reserves
- Surveillance
- Workovers
- Economics
-

Can we automate the whole thing?

Organizational Capabilities for Automation

- i. Good problem framing (Mgmt&Engineering&Quants)
- ii. Allow lateral thinking when it comes to automation
- iii. Agile/Lean Development
- iv. Emphasize knowledge mgmt

Application 1: Eagle Ford

Eagle Ford

- Client owns land in Eagle Ford; first wells show disappointing results.
- Client is considering 3 options:
 - I. Change operator
 - II. Sell entire position
 - III. Be patient and wait for technology to improve
- Want quantitative answers

Application 2: FDOs in non-economical Mexico field

• Objective: Opportunity identification in very large tight-oil field

Timeframe:

- Preliminary data collection
- 3 weeks of focused work
- 1 week of meetings, reviews and workshops

Approach:

- Top-down workflow focused on value creation
- Speed provided by fast Quantitative Analysis
- Guidance provided by experienced engineers & geoscientists
- Analysis accelerated by proprietary technologies
- Diversified modeling approaches
- Strong Knowledge Management foundation
- Thousands of opportunities identified using QRI AI and Machine Learning Algorithms and Workflows.

Application 3: Well Target Identification

Problem: To identify new well targets using AI in complex fractured carbonate

BASIC WELL DATA

X=489610.9; Y= 1995589; Z=3784.7; Length = 12m

Application 3: Well Target Identification

2-year Cum

Problem: To identify new well targets using AI in complex fractured carbonate

Application 4: Drilling

SDS - SpeedWise® Drilling Solutions

Problem: Analyzing drilling performance (and opportunities) for field with > 200 wells

- Advanced technology to improve drilling efficiency.
- Rapid and intelligent analysis of drilling data.
- SDS automates metrics (NPT, DEI, ROP) and analytics
- Value creation (NPV) by optimizing rig schedule, drilling practices, etc

Original Plan: There are 25 wells in the inventory. The plan is to drill with 4 rigs from 01/2018 to 01/2019.

By optimizing current schedule, NPV can be potentially increased by 69 MMUSD during 18 months

· Using the historical performance of rigs, days to drill, ROP, DEI etc. . Using QRI advanced optimization algorithms to optimize the schedule

By improving the drilling efficiency, NPV can be increased by 121 MMUSD during 18 months

Scenario 2

· Reducing drilling days from P50 to P25 by identifying the bottlenecks and improving performance

Planning Period:

Evaluation Period:

12 months

18 months

		Scenario	No. of Wells	Required Capital (MMUSD)	NPV (MMUSD)	Sum of IP (MSTB/day)	Cum. Oil (MMSTB)
(0	Original plan	16	58.2	248.9	24	7.1
	1	Optimizing current schedule	18 (+2)	59.7 (+1.5)	318.4 (+69.4)	28.9 (+4.9)	8.6 (+1.5)
(a) Improving efficiency: same no. of wells	16 (+0)	48 (-10.3)	342 (+93.0)	26.8 (+2.8)	9 (+2.0)
	2	b) Improving efficiency: capital constraint	20 (+4)	58.1 (-0.1)	366.8 (+117.8)	31.3 (+7.3)	9.8 (+2.7)
		c) Improving efficiency: max. no of wells	20 (+4)	59.4 (+1.1)	370.3 (+121.3)	31.8 (+7.8)	9.9 (+2.8)

Major activities during D&C: Drilling (76.4%), Casing (7.8%),

Major NPT causes: LostCirculation (10.8%), Logistics (10.4%)

Highest completion capital was allocated to FA field during the past 7 years: 107 MMUSD

- Average completion cost per 12 month cum. increased from 2.4 to 9.4 usd/bbl in the past 6 years
- . Lowest recent completion cost per 12 month cum.: field FA

Ultimate goal: Augmented Al

- Al frameworks to solve problems in specialized domain that typically requires human expertise
- Al solutions will draw upon the our worldwide knowledge of reservoirs + technology applications.
- Knowledge Base Systems, Expert Systems, Machine Learning and Heuristics to generate:
 - Insights
 - Business optimization
 - Process automation

Quantum Reservoir Impact®