

Decarbonizing the U.S. Energy Economy: Importance of the Demand Side

UT Energy Week Austin, TX February 19, 2020

Dr. Benjamin D. Leibowicz Assistant Professor The University of Texas at Austin

Kaya Identity

Carbon intensity of energy (Supply Side)

Changes due to ...

- Shifts in the energy resource mix (coal, gas, solar, etc.)
- Carbon intensity of energy production

- The Demand Side has been the dominant driver of historical decarbonization in the U.S., and it is not even close.
- Its continued importance tends to be overlooked by researchers, policymakers, and stakeholders.

Energy intensity of the economy (Demand Side)

Changes due to ...

- Efficiency improvements for end-use technologies
- Structural shifts in the composition of the economy
- Changes in lifestyles and consumption patterns

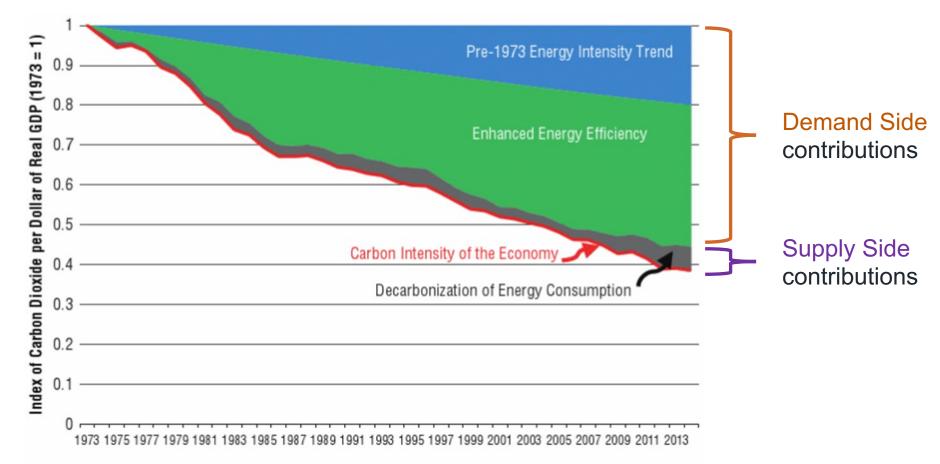
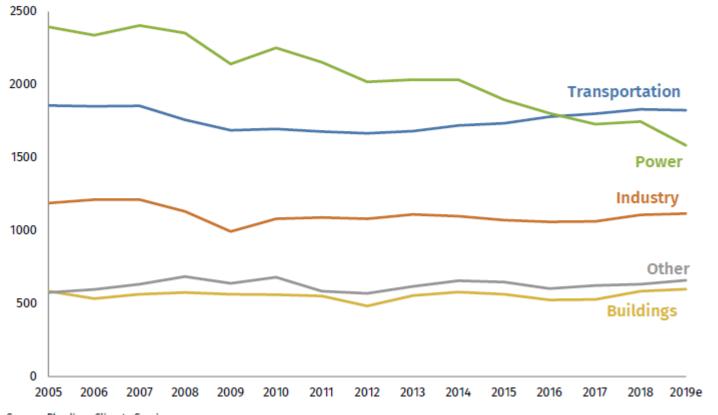
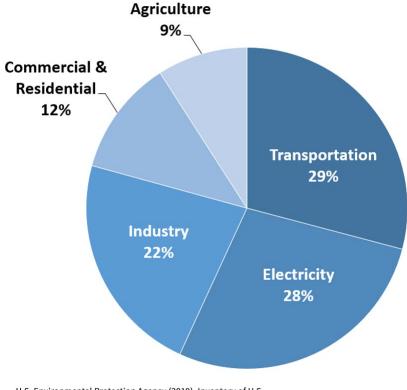


Figure 4.3. Factors Leading to Reduced Carbon Intensity of US Economy

Source: James Sweeney, 2016. Energy Efficiency: Building a Clean, Secure Economy (Hoover Institution Press).

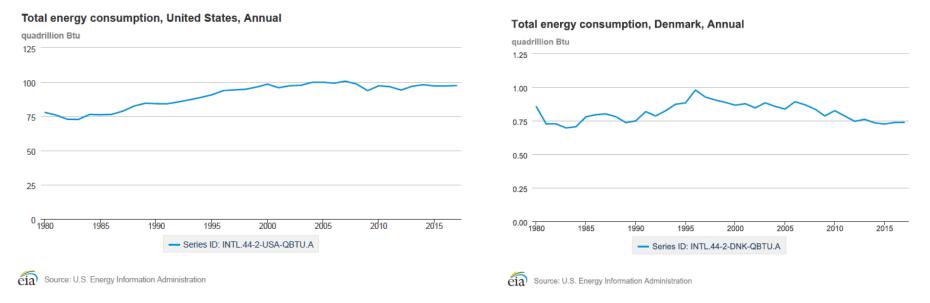

FIGURE 2


Net US GHG emissions by sector

GHG Emissions by Sector

Million metric tons CO2e, IPCC definitions, excludes international bunkers

Total U.S. Greenhouse Gas Emissions by Economic Sector in 2017


U.S. Environmental Protection Agency (2019). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2017

Source: Rhodium Climate Service

Energy Demand Trends

- Models often assume a backdrop of ever-increasing energy demand, but this typical assumption is ...
 - 1. Already wrong for many advanced economies, and ...
 - 2. Energy demand reductions can be purposefully accelerated through policies, technology strategies, and individual choices

Low Energy Demand Mitigation Pathways

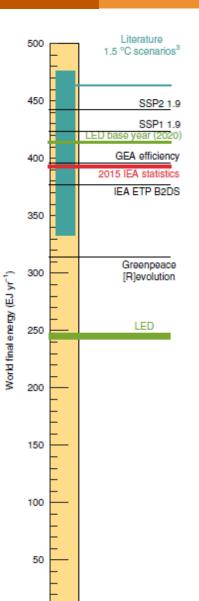
Tabl

End-

ANALYSIS

https://doi.org/10.1038/s41560-018-0172-6

A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies


The University of Texas at Austin Operations Research and Industrial Engineering Cockrell School of Engineering

nature

energy

Arnulf Grubler[©]^{1*}, Charlie Wilson^{1,2}, Nuno Bento^{1,3}, Benigna Boza-Kiss[©]¹, Volker Krey¹, David L. McCollum[©]¹, Narasimha D. Rao[©]¹, Keywan Riahi^{1,4,5}, Joeri Rogelj[©]^{1,6}, Simon De Stercke[©]^{1,7}, Jonathan Cullen⁸, Stefan Frank¹, Oliver Fricko¹, Fei Guo¹, Matt Gidden¹, Petr Havlík¹, Daniel Huppmann[©]¹, Gregor Kiesewetter¹, Peter Rafaj¹, Wolfgang Schoepp¹ and Hugo Valin¹

le 2 Impact	t of the LED scena	rio on fina	al energy deman	d in 2050		
		Region	% change in activity levels (2020–2050)	% change in energy demand (2020-2050)	Activity levels in 2050	Energy demand ir 2050 (EJ)
-use services	Thermal comfort	North	6	-74	$47 \times 10^9 m^2$	8
		South	63	-79	218 × 10 ⁹ m ²	8
	Consumer goods	North	79	-25	67×10° units	13
		South	175	54	186×10° units	28
	Mobility	North	29	-60	25 × 1012 passenger km	16
		South	122	-59	73×10 ¹² passenger km	12
	Contingency reser	ve				
tream	Public and commercial buildings	North	49	-64	35×10 ⁹ m ²	5
		South	77	-82	68×10° m²	3
	Industry	North	-42	-57	1.0×10°t	26
		South	-12	-23	5.4 × 10° t	82
	Freight transport	North	109	-28	31×1012 tkm	11
		South	75	-12	51×1012 tkm	17
	International aviat	ion and shi	pping (bunker fuel	s)		
il		North ^a		-53		82
		Southa		-32		153

"Down-sizing the global energy system dramatically improves the feasibility of a low-carbon supply-side transformation."

Rapid system transformations are more likely to be led by end-use technologies (small, flexible) than by energy supply systems (large, inflexible).

Demand-side strategies largely avoid the carbon leakage problem.

