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Fueling a sustainable energy transition

Global Energy'C@ Renewable Electricity
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Uncoventional resources for critical minerals
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Our Technology: Enriched Plasma Separation

(a) Initial Acid Treatment (b) Plasma REE/CM Elemental Separation
(i) Fly Ash (i) High Throughput Separation
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- Recovery up to 99% of available REEs, independent of feedstock composition
- Production of salable >99% purity REE product

- Low secondary waste production



Resource characterization
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Resource characterization

(c)

Fe-oxide

Mullite needles

Basin AlLO, Ccao Fe,0, K,0 MgOo NaO Sio, Tio,
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Recovery (%)
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Micro/nano intraparticle porosity
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Mineralogic heterogeneity on leaching
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Recovery (%)

Improved, environmentally-benign REEs
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Our Technology: Enriched Plasma Separation

(a) Initial Acid Treatment (b) Plasma REE/CM Elemental Separation
(i) Fly Ash (i) High Throughput Separation
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- Recovery up to 99% of available REEs, independent of feedstock composition
- Production of salable >99% purity REE product

- Low secondary waste production



REE ionization (ICP inductively coupled plasma)

* |CP provide an electrodeless approach to plasma generation and gas ionization
(including the RRE species)

e Key questions are:
1. Optimal geometric requirements and operating conditions for stable ICP generation
2. lonization fraction of RRE species (process yield) transported into ICP

Quartz

Mesh size = ~61 K cells
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REE ionization studies based on plasma
modeling

* We have performed extensive model-based exploration of the plasma parameter space
(pressure, power, flow rates, discharge dimensions, etc.)

* Results indicate REE ionization fraction is strongly dependent on process pressure and power
density into plasma

Higher pressures support higher ionization fraction
* Smaller discharge dimensions support higher power density
* Hence, we have chosen Ymm dia. ICP discharge as baseline geometry for studies

Parameters
Feed stream (with mole Ar + Ce (10~ mole fraction)
fraction)
Inflow Temperature 300 K
Feed gas mass flow rate 8.1 x 1078 *9/, (50 sccm)
Pressure 0.1 torr 1 torr 100 torr
EM Power 1W
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.
Plasma chemistry fo
.
cerium (Ce) as REE surrogate
# RXN RXN Type RXN Energy (eV) Ref.
1 Ar+E->Ar +E Excitation 11.56 BOLSIG
2 Ar+E->Art + 2E lonization 15.76 BOLSIG
3 Ar* +E -> Ar* + 2E Step-wise lonization 4.2 BOLSIG
4 Art+E->Ar Refs:iﬁi:::ion 0.0 [1]
5 2Ar" ->E + Ar + Ar* -7.56 [1]
6 Ar*+E->Ar+E De-excitation -11.56 BOLSIG
7 Ar" + Ar -> 2Ar De-excitation -11.56 BOLSIG
8 Ar" -> Ar Radiative Decay 0.0 [1]
9 2E + Ar* -> E + Ar" 3-Bdy Recombination -4.2 [1]
10 Ar® + 2Ar -> Ar," + Ar -0.6 [1]
11 Ar* + 2Ar -> Ar," + Ar -1.3 [1]
12 E +Ar,” -> 2E + Ar,* 3.5 [1]
13 E+Ar," ->2Ar + E -10.96 [1]
14 Ar,” -> 2Ar Radiative Decay 0.0 [1]
15 2Ar," -> Ar," + 2Ar + E -7.46 [1]
16 E+Ar," ->Ar’ + Ar 0.0 [1]
17 E + CE -> 2E + CE+ [2]

[1] Lay, B., Moss, R. S., Rauf, S. and Kushner, M. J., “Breakdown processes in metal halide lamps”, Plasma Sources Science and Technology, No.
[2] Bringer A., “4f — lonization of Atomic Cerium”, Solid State Communications, Vol.46, No.8, pp 591-593, 1983.

argon carrier gas with

Reaction 17: REE surrogate
ionization based on theory
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Electron
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Plasma parameters for varying pressures
(pure argon carrier gas for trace 10~ mole fraction RRE)
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* Constant power in all cases
* Increasing plasma density with increasing pressure (anticipate higher throughput for RRE ionization)

e Plasma self constriction for increasing power (anticipate increased slip of unionized RRE)
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REE ionization for varying pressures
(pure argon carrier gas for trace 10~ mole fraction RRE)
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* Peak REE ionization fraction a.,+ increases for increasing pressures but saturates above 1 Torr
* lons are quenched rapid at walls downstream of ionization region
* Plasma constriction at the highest pressure of 10 Torr results in significant slip/bypass of unionized Ce

* Hence, optimal pressure is ~ 1 Torr
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Rethink of original concept based on modeling
insights

Multiple micro-

ICP ionization ExB sorting
sources
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* Operate ICP ionizer at ~ 1 Torr
e Place ICP ionization zone immediately upstream of exit (REE ions are frozen immediately as they
evacuate into ExB sorting region)
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Stage 1: Gas & Feedstock Injection
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Separation of Gas Streams

Am =12 amu

N,/Ar Inflow

He/Ar Inflow Am = 36 amu
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Reaction Conditions:

e P,=100W

* Residence Time =0.1 ms
* Pressure =200 mTorr

* Flow Rate = 50 sccm
 B=0.2T,V=100V

Advantages:

* Scalable to High Flow Rates

* Scalable to Collisional Pressures
* Fast Separation (~0.1 ms)

* Separation Dependent on Am

Room for Optimization:

* Residence Time

* Position of Centrifuge

* Process Efficiency (>> 10
eV/Separated Molecule)

* Vaporization
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