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Fueling a sustainable energy transition
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Global production of REEs
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Uncoventional resources for critical minerals
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Our Technology: Enriched Plasma Separation

•Recovery up to 99% of available REEs, independent of feedstock composition
•Production of salable > 99% purity REE product
•Low secondary waste production
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Resource characterization
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Resource characterization

Basin Al2O3 CaO Fe2O3 K2O MgO NaO SiO2 TiO2

Illinois 20.6% 2.9% 22.1% 2.5% 1.0% 0.6% 49.4% 0.9%

Green River 17.1% 28.2% 5.8% 0.4% 6.7% 1.8% 38.0% 1.2%

Powder River 17.5% 6.0% 4.3% 1.2% 2.4% 1.6% 65.6% 0.9%
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Reagents-based recovery of REEs 
Illinois

Green River

Initial AR residue HF-AR residue

Si Al Ca Si Al Si
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Mineralogic heterogeneity on leaching
silicate particles
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Improved, environmentally-benign REEs 
recovery

120 ℃ 25 ℃
120 ℃ 25 ℃
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Our Technology: Enriched Plasma Separation

•Recovery up to 99% of available REEs, independent of feedstock composition
•Production of salable > 99% purity REE product
•Low secondary waste production
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REE ionization (ICP inductively coupled plasma) 
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Mesh size = ~61 K cells

• ICP provide an electrodeless approach to plasma generation and gas ionization 
(including the RRE species)

• Key questions are: 
1. Optimal geometric requirements and operating conditions for stable ICP generation
2. Ionization fraction of RRE species (process yield) transported into ICP

axis

coils
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Parameters

Feed stream (with mole 
fraction) 

Ar + Ce (10-5 mole fraction)

Inflow Temperature 300 K

Feed gas mass flow rate 8.1 × 10−8 ⁄𝑘𝑘𝑘𝑘
𝑠𝑠 (50 sccm)

Pressure 0.1 torr 1 torr 100 torr

EM Power 1 W

REE ionization studies based on plasma 
modeling

• We have performed extensive model-based exploration of the plasma parameter space 
(pressure, power, flow rates, discharge dimensions, etc.)

• Results indicate REE ionization fraction is strongly dependent on process pressure and power 
density into plasma 

• Higher pressures support higher ionization fraction
• Smaller discharge dimensions support higher power density
• Hence, we have chosen ~mm dia. ICP discharge as baseline geometry for studies r = 2.8 mm

L = 23 mm



# RXN RXN Type RXN Energy (eV) Ref.

1 Ar + E -> Ar* + E Excitation 11.56 BOLSIG

2 Ar + E -> Ar+ + 2E Ionization 15.76 BOLSIG

3 Ar* + E -> Ar+ + 2E Step-wise Ionization 4.2 BOLSIG

4 Ar+ + E -> Ar* Radiative 
Recombination 0.0 [1]

5 2Ar* -> E + Ar + Ar+ -7.56 [1]

6 Ar* + E -> Ar + E De-excitation -11.56 BOLSIG

7 Ar* + Ar -> 2Ar De-excitation -11.56 BOLSIG

8 Ar* -> Ar Radiative Decay 0.0 [1]

9 2E + Ar+ -> E + Ar* 3-Bdy Recombination -4.2 [1]

10 Ar* + 2Ar -> Ar2
* + Ar -0.6 [1]

11 Ar+ + 2Ar -> Ar2
* + Ar -1.3 [1]

12 E + Ar2
* -> 2E + Ar2

+ 3.5 [1]

13 E + Ar2
* -> 2Ar + E -10.96 [1]

14 Ar2
* -> 2Ar Radiative Decay 0.0 [1]

15 2Ar2
* -> Ar2

+ + 2Ar + E -7.46 [1]

16 E + Ar2
+ -> Ar* + Ar 0.0 [1]

17 E + CE -> 2E + CE+ [2]

Plasma chemistry for argon carrier gas with 
cerium (Ce) as REE surrogate

Reaction 17:  REE surrogate 
ionization based on theory

𝐸𝐸𝑎𝑎 = 5.77 eV
𝜎𝜎𝐴𝐴𝐴𝐴=1
𝑇𝑇 = 𝑇𝑇𝑒𝑒

[1] Lay, B., Moss, R. S., Rauf, S. and Kushner, M. J., “Breakdown processes in metal   halide lamps”, Plasma Sources Science and Technology, No. 12, 2003, pp. 8-21.
[2] Bringer A., “4f – Ionization of Atomic Cerium”, Solid State Communications, Vol.46, No.8, pp 591-593, 1983.

Ionization of Ce (REE surrogate)



Plasma parameters for varying pressures 
(pure argon carrier gas for trace 10-5 mole fraction RRE)

• Constant power in all cases 
• Increasing plasma density with increasing pressure (anticipate higher throughput for RRE ionization) 
• Plasma self constriction for increasing power (anticipate increased slip of unionized RRE)
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REE ionization for varying pressures 
(pure argon carrier gas for trace 10-5 mole fraction RRE)

• Peak REE ionization fraction 𝛼𝛼𝐶𝐶𝑒𝑒+ increases for increasing pressures but saturates above 1 Torr 
• Ions are quenched rapid at walls downstream of ionization region
• Plasma constriction at the highest pressure of 10 Torr results in significant slip/bypass of unionized Ce
• Hence, optimal pressure is ~ 1 Torr 
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Rethink of original concept based on modeling 
insights
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Multiple micro-
ICP ionization 

sources
ExB sorting

(low pressure)(high pressure)

• Operate ICP ionizer at ~ 1 Torr
• Place ICP ionization zone immediately upstream of exit  (REE ions are frozen immediately as they 

evacuate into ExB sorting region)



Stage 1: Gas & Feedstock 
Injection 

Stage 2: Plasma Ablation 
and ExB Separation

Stage 3: Mass Spectrometer 
Analysis 

RF Source (27 MHz)

Aerosol Generator
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Nd Magnet (~0.2 T)

Stage 2: E x B 
Separation

1 cm

Stage 1: Gas & Feedstock Injection
(Plasma Generation) 



Δm = 12 amu

Separation of Gas Streams
He/Ar Inflow N2/Ar InflowΔm = 36 amu

Sample Probe
(To Mass Spec)

Reaction Conditions:
• Pin = 100 W
• Residence Time = 0.1 ms
• Pressure = 200 mTorr
• Flow Rate = 50 sccm
• B = 0.2 T, V = 100 V

Advantages:
• Scalable to High Flow Rates
• Scalable to Collisional Pressures
• Fast Separation (~0.1 ms)
• Separation Dependent on Δm 

Room for Optimization:
• Residence Time
• Position of Centrifuge
• Process Efficiency (>> 10 

eV/Separated Molecule)
• Vaporization 20
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Illinois

Acid Extraction Recovery Efficiencies

Green River Powder River
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