Geological Storage of Hydrogen

Peter Eichhubl

GeoH2 Research Group

Bureau of Economic Geology Jackson School of Geosciences The University of Texas at Austin

UT Energy Week March 2, 2022

Why hydrogen storage?

- Storage evens out variations and differences in supply and demand
- Hydrogen: Wide range of uses as energy carrier w/o carbon emissions at end user
- H₂ can be transported in pipelines
- <u>H₂ can be stored</u> in tanks and in the subsurface similar to natural gas
- Subsurface for long-term storage

Change in daily net-load profiles with increasing VEG

California excess VEG/demand for assumed 100% renewables

Bulk H₂ storage methods

Pre	essure [bar]	Stored H ₂ [t]	Working capacity [t]
Pressure vessels			
Spherical vessel	1-10	27	25
Pipe storage	7-100	50	45
Pre-stressed concrete	7-875	1	0.9
Cryogenic			
Liquid H ₂ @ 20K, -253°C	1		≤245
Cryo-compressed @ 200K, -73°C	350-480		
Geological			
Salt cavern	55-152	6,000	3,720
Lined rock cavern	10-230	672	640
Porous reservoir (saline aquifer, depleted oil/gas reservoir)	150-170	54,000 or mor	e 19,000 or more

modified after Ahluwalia et al. 2019

- Complementary approaches for different end uses
- Geological storage provides best options for large capacity storage

Porous reservoir storage

Advantages:

- Unlimited capacity, most cost-effective for long duration
- Widest geographic distribution
- Proven for NG and NG/H₂ blends, untested for H₂ storage
- Possible combination with CO₂ storage

Challenges:

- Location controlled by subsurface geology
- Reduced working capacity, H₂ loss by migration

 $< 500 \, \text{ft}$

- Potential for contamination
- Caprock integrity (saline aquifers)
- Integrity of abandoned wells (depleted O&G fields)

Sources of Hydrogen

Hydrogen as part of Low Carbon Economy

Low carbon emissions

- From electrolysis (hydro, solar, wind, nuclear, geothermal) without CO₂
- From fossil fuels combined with carbon capture and storage (CCS)
- Electric power generation through fuel cells, turbines without CO₂

• Transportable

- Pipeline gas
- Liquified
- Compounds (e.g. ammonia, NG-H₂ mix)

• Store-able

- Large capacity (geological)
- Indefinite storage duration

• Multiple sources

- Electrolysis
- Natural gas reforming
- Coal gasification

• Multiple Uses

- Transportation
- Industrial
- Power

Hydrogen demand potential across sectors – 2030 and 2050 vision Million metric tons per year

Increasing H₂ demand will require storage *at scale*

Projected Potential US Hydrogen Demand (MMT/year)

2030		2050		
Base	Ambitious	Base	Ambitious	
14	17	20	63	

NREL 2020

¹ Assuming that 20% of jet fuel demand would be met by synthetic fuel and 20% of marine bunker fuel by ammonia
² Demand excluding feedstock, based on IEA final energy demand for the US

Note: Some numbers may not add up due to rounding

https://www.fchea.org/us-hydrogen-study 2019

Hydrogen as Energy Storage Medium

¹ Pumped hydro capacity is limited due to geographic constraints. Estimated maximum potential is <1% of U.S. electrical energy demand ² As hydrogen, ammonia, or synthetic natural gas

NREL 2020

Hydrogen Production

- 1 kg H₂ ~ 1 gallon gasoline (energy equivalence)
- 1 t $H_2 \sim 1,000$ gallons gasoline
- 2.32 t H₂ in 1 million scf H₂ @ 1 Bar; 25° C

US Natural Gas Storage

- ~400 NG storage sites
- Depleted O&G fields: 80%
- Aquifers: 10%
- Salt caverns: 10%
- Storage capacity ~13% of yearly NG consumption
- About 20% of winter consumption from storage

Natural Gas Working Storage Levels

Energy Information Administration, "Weekly Natural Gas Storage Report, History," January 8, 2016.

The chart above shows how storage fluctuates with the weather. During the mild winter of 2012, the gas withdrawn from storage was far more moderate (see black arrow). In contrast, in 2014, the year of the Polar Vortex, natural gas storage was "drawn down" sharply (see grey arrow). But even in the mildest of winters, such as 2012, natural gas withdrawals from storage were vital to meeting winter natural gas demand.

Today's H₂ storage compared to NG storage

Modified from NEA, 2017

Source: EIA, 2021

Salt cavern storage—proven & operational technology

- 3 sites in TX, 1 in Scotland
- Lowest-cost bulk storage
- Proven technology
- Limited geographic distribution of suitable salt deposits
- Brine disposal
- Limited size
 8,000 t operational
 80,000 t proposed, Hystor, MS

Salt cavern storage—proven & operational technology

Salt domes & cavern storage US Gulf Coast

TABLE 20.2 Metrics of Hydrogen Caverns in the United States and the United Kingdom [10]

Classes

	Teesside (UK)	Dome, Texas (USA)	Moss Bluff, Texas (USA)	Spindletop, Texas (USA)
Salt formation	Bedded salt	Salt dome	Salt dome	Salt dome
Operator	Sabic Petrochem.	Chevron Phillips Chemical Comp.	Praxair	Air Liquide
Commissioned	1972	1986	2007	information not available
Geometrical volume/m ³	210 000	580 000	566 000	906 000
Mean cavern depth/m	365	1 000	1 200	1 340
Pressure range/10 ⁵ Pa (bar)	45	70–137	55–152	68–202
Net energy stored/GW h	27	81	123	274
Amount of H ₂ /t	810	2 400	3 690	8 230
Net volume/m ³ (std)	9.12×10^{6}	27.3×10^{6}	41.5×10^{6}	92.6×10^{6}
				The Barrier

